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FINITE CODIMENSIONAL INVARIANT SUBSPACES
OF BANACH SPACES OF ANALYTIC FUNCTIONS

A. ABDOLLAHI AND K. SEDDIGHI

ABSTRACT. Let G be a bounded domain in the complex
plane. Let £ be a Banach space of functions analytic on G,
such that for each A € G the linear functional ey of evaluation
at A is bounded on €. Assume further that 2z C £ and, for
every A € G, ran (M, — \) = kerey. Here M, is the operator
of multiplication by z on £ given by f +— zf. In this article
we characterize the finite codimensional subspaces of £ which
are invariant under M, in some special cases.

1. Introduction. Let G be a bounded domain in the complex plane.
Let £ be a Banach space of functions analytic on G such that for each
A € G the linear functional e, of evaluation at A is bounded on £.
Assume further that z€ C £ and for every Ain G, ran (M, —\) = kere,.
A Banach space £ with all the above properties is called a Banach space
of analytic functions and is called a Banach space of functions if we only
have z€ C €. As aresult we conclude that M, — ) is Fredholm for every
A € G and because dimker(M} — X) = 1 we have ind (M, — \) = —1
for A € G. A function ¢ : G — C with the property o€ C &£ is called
a multiplier on £, and the collection of all these multipliers is denoted
by M(E). If ¢ € M(E), then the operator M, of multiplication by ¢
is bounded.

Richter [11] has shown that the commutant of the operator M, is
equal to {M, : ¢ € M(E)}. This makes M(E) into a Banach space
by defining ||¢||se) = [|My|lz(e)- Tt is also true that M(E) C H*(G)
and for each ¢ € M(E), [|¢|lco < [[Myllze) = ll@llace). Now suppose
that M(&) contains a norm closed subalgebra A of H*°(G). Then the
above inequality shows that A is also closed in M(E) and the open
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mapping theorem applied to the map i : (A, ||.[sme) = (A lllloo)
yields [|¢[| ey < cll¢llso, for some positive constant ¢ and all ¢ € A.

Let K be a compact subset of C. We denote by Rat (K) the set of all
rational functions with poles lying outside K. The closure of Rat (K)
in the space C(K) of all continuous complex valued functions on K is
denoted by R(K). A point a € K is said to be a peak point for R(K)
if there is a function f € R(K) such that f(a) = 1 and |f(¢)| < 1 for
each ¢ # a.

Let F be a subset of the complex plane, and let H(F') be the set of
analytic functions f defined on Cy\K for some compact subset K of
F such that f(oo) =0 and [|f|lc\x < 1.

For a set F' C C, let y(F) denote the analytic capacity of F and
define it by

V(F) = sup{|f'(c0)| : f € H(F)}.

The following results are useful and can be found in [8] and [9].

Proposition 1.1. (a) If Fi C Fa, then v(F1) < v(F>).
(b) If K is a compact subset of C, then
Y(K) = 7(0K) = 7(K) = ~(0K),
where K is the union of K and bounded components of K€.

(¢c) If K is a compact subset of C, then

Y(K) =inf{y(U) : U is an open set containing K }.

(d) If K is compact and connected, then

v(K) < diam K < 4v(K).

Proposition 1.2. If K is a compact set, there is a unique function f

~

in H(K), which is called the Ahlfors function, such that f'(c0) = v(K).

Let £ be a Banach space of analytic functions on G. A function
f € &€ is called a cyclic vector for the operator M, if the polynomial
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multiples of f are dense in £. Suppose R(G) C M(E). We say that
M, is rationally cyclic if there is a function g € £ such that all rational
multiples of g are dense in £. That is, all elements of the form fg,

f € Rat (G) are dense in £.

Banach spaces of analytic functions exist in abundance, for example
the Bergman spaces LE(G) for 1 < p < oo, the Banach algebra
H® (@) of all bounded analytic functions on G, the Dirichlet spaces
D,, —00 < a < 00, and many other examples which can be found in
[11], [8] and [2].

Axler and Bourdon [4] characterized the finite codimensional invari-
ant subspaces of L2(G) in the case when every connected component
of OG contains more than one point, and Aleman [3] has done this for
arbitrary bounded domains.

In this article we characterize the finite codimensional subspaces of
€ which are invariant under M, in certain special cases. Our first
assumption is that £ contains a cyclic vector. In the second section
we assume that £ is a Banach algebra. We also characterize the finite
codimensional subspaces of £ which are invariant under M, when the
space contains a T-invariant subalgebra of C(G) as a dense subset.
We also consider reflexive Banach spaces £. Finally we classify the

boundary points of G.

For this characterization we need the next results which can be found
in [2] and [4].

(a) If X is a normed linear space and 7' : X — X is a bounded
operator such that dim X/[(T — \)X]~ < 1, for all A € o(T), then
every finite codimensional invariant subspace E of T has the form
E = [p(T)X]~, where p is a polynomial whose degree equals the
codimension of F and whose zeros lie in the residual spectrum of 7.

(b) Let £ be a Banach space of analytic functions on a plane domain
G such that ran (M, — \) is dense in & for every \ € o(M,)\G. Let F
be a closed finite codimensional subspace of £ that is invariant under
M,. Then F = p& for some polynomial p whose roots lie in G.

Now if A € G, then (z — A)€ is closed and has codimension one, so
that in order to apply (a) we investigate only the codimension of the
subspace [(z — A\)E] 7, A € o(M)\G.

We say that a Banach space of functions £ has *-property if, for every
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A € C, dim[(z — A)&]* < 1. It is clear that, if £ has *-property, then
every finite codimensional subspace M of £ which is invariant under
M., has the form M = [p€]~, where p is a polynomial whose degree
equals the codimension of M in £ and whose zeros lie in o (M) [4].

As a way of listing all the instances where a clear characterization of
finite codimensional subspaces is obtained, we state the next theorem.

Theorem 1.3. (a) Let £ be a Banach space of analytic functions
which contains a cyclic vector. Then £ has x-property.

(b) If € is rationally cyclic, then € has x-property.

(c) Let A be a T—invariant subalgebra of C(G). Then A has -
property.

(d) The finite codimensional subspaces of a reflexive Banach space of

analytic functions £ in either of the cases where R(G) C M(E) and
each point of 0G is a peak point for R(G) or M(E) = H*(G) and
no connected component of OG is equal to a point can be completely

characterized.

Theorem 1.4. Let £ be a Banach space of functions. Furthermore,
assume that each invariant subspace M of M, with codimension one
has the form M = [p€]~, where p is a polynomial. Then & has x-
property.

Proof. Let A € C and z* be a nonzero element of [(z — \)&]*.
Then M = ker2* is an invariant subspace of M, of codimension one.
Hence M = [p€]~ for some polynomial p. Since, for each f € &,
f,z*) = p(A\){f,z*) = 0, it follows that p(A\) = 0. Therefore,
p = (z — A)q for some polynomial g. We also note that [(z — A)¢€]~ C
[(z—A)E]” C M C [p€] . Hence kerz* = [(z — A)E]~ and the proof is
complete. ]

Theorem 1.5. Let & and & be two Banach spaces of functions,
such that &1 C &;.

(a) Assume that & is closed in &, dim &y /€1 = n < oo, and & has
x-property. Then & has x-property.
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(b) If &1 is dense in E; and & has x-property, then Ey has x-property.

Proof. Let M be an invariant subspace of £; with codimension one in
&1. Then dim &2/ M = n + 1. Therefore M = [¢€3]~ and & = [p&s] ™,
where p and g are polynomials whose degrees are equal to n and n+ 1,
respectively. Because dim&; /M = 1, we have [(z — A\)&]” C M
for some A € C. But [(z — A)p&]™ C [(z = AN)&] ¢ M C &
and n + 1 = dim&/M < dim&/[(z — AN)p€]~ < n + 1. Therefore
M =[(z — A)&;]~ and the proof of (a) is complete by Theorem 1.4.

Let A € C and ¢y, @2 be two nonzero elements of [(z — A)&;]+. Then
@1 and 3 are in [(z— \)&E;]*. Hence p1]g, = agpalg, , for some constant
a. Since & is dense in &, it follows that p; = aps. The proof of (b)
is now complete. ]

We now assume that £ is a Banach space of analytic functions which
contains a cyclic vector. We will give some examples of this type of
Banach space at the end of this section.

Lemma 1.6. Let £ be a Banach space of analytic functions which
contains a cyclic vector. If A € C, then € has *-property.

Proof. Let A € C, * # 0 be an element of [(z — A\)&]- and g € €
be a cyclic vector. Then, for each polynomial p, (pg, z*) = p(A\)(g, z*).
Hence (g,z*) # 0. Let } # 0 be another element of [(z — \)&]*.

Then ((pg,z*)/(9,2%)) = ((pg,x1)/(g, 7)), for every polynomial p.
The cyclicity of g in £ shows that the above equality holds for each

f € &; hence dim[(z — \)&]+ < 1. u]

Example. Let w € C2[0,1) be a positive integrable function. Denote
by H, the space of analytic functions f on the open unit disc D that
satisfies

I£1I% = 1£(O)F* +/D |f'(2)Pw(]2)dA(2),

where dA is the area measure on C. A simple computation shows that,
if f(z) = ano a,z" is analytic on D, then ||f||? = ano la,|?w,,
where wy = 1 and, for n > 1, w, = 2wn? fol r?"Lw(r)dr. Hence
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H,, is a separable Hilbert space of analytic functions in D and the
polynomials are dense in H,,.

The Dirichlet space D is obtained when w = 1 and the Hardy space H?
is obtained when w(r) =1—r, r € [0,1). Therefore, if w is decreasing,
concave, and satisfies lim, o w(r) = 0, then D C H,, C H?.

The space H,, satisfies the conditions of Lemma 1.6 and, hence, the
finite codimensional subspaces M of H,, which are invariant under M,
can be characterized accordingly.

Example. For a subarc I of 0D and f in L', let I(f)
1/|I| [, f(t) dm(t), where dm is the arc measure. We say that
is of bounded mean oscillation and write f € BMO if |f||.
sup;(|f — I(f)]) < oo. BMO is a Banach space under the norm given
by |||l = |£(0)] + ||f||«- Let VMO, the space of vanishing mean oscil-
lations, be the closure of the continuous functions on 0D in BMO. Let
BMOA = BMO N H! and VMOA = VMO N H!. One shows [12] that,
if g is an outer function in VMOA, then g is a cyclic vector for M,.
Hence, the space VMOA satisfies the conditions of Lemma 1.6.

I~ 1l

In [6] Bourdon has shown that if G = ¢(D) where ¢ is a weak-star
generator of H> the polynomials are dense in LZ(G). Hence such
spaces satisfy the above conditions. Another example can be found in
(8]

2. Banach spaces of analytic functions. Let A be a Banach
algebra of analytic functions on a bounded domain G which contains
the constants and has *-property. It is clear that M(A) = A C H*(G).
We will show that A is a subalgebra of C'(G). At the end of this section
we show that if a Banach space of analytic functions £ contains a T-

invariant subalgebra of C(G) as a dense subset, then £ has *-property.

Theorem 2.1. Let A be a Banach algebra of analytic functions on a
bounded domain G which contains the constants. If A has x-property,

then A C C(G).

Proof. Let A\ € G and {,} be a sequence in G which converges to \.
Note that {eg,} is a bounded sequence in the unit ball of A*. Hence
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there is a subsequence {eg, } and p € A* such that eg, — ¢ in the
weak* topology. Since 1 € A and eg, (1) = 1, it follows that (1) =1

and ¢ € [(z — )AL

Let {\,} be a sequence in G which converges to A. Because {ey, } is
a bounded sequence in the unit ball of A4*, there exists a subsequence
{ex,,} and ¥ € A" such that ey, — 1 in the weak® topology. It is
clear that 1 is an element of [(z — X).A]* and (1) = 1. Hence ¢ = ¢
because A has *-property. Therefore ex, — ¢ weak*, and it follows
that f is continuous at \. u]

Remark. The above theorem shows that even H>°(D) does not have
x-property because H* (D) # A(D).

Let g € C!, and let f be a bounded Borel function on C. Define
Tyf :C— C by

7,5) = = [ 1= 500)0400)

The operator Ty is called the Vitushkin localization operator. If K is a
compact subset of C and A is a closed subalgebra of C'(K), A is said to
be T-invariant if R(K) C A and for each f € Aand g € C}, Tyf € A,
where f is extended to C by letting it be identically zero off K.

Now let £ be a Banach space of analytic functions on G, and let
A be a T-invariant subalgebra of C(G) such that A C £. Then the
inclusion map i : (A, ||.]lc) — (&€, ]|-]) is continuous, where ||.|| is
the supremum norm on A. This follows from the continuity of point
evaluations on €. Therefore ||f|| < ¢||f||co for every f € A and for some

constant c.
The next two results are useful and can be found in Conway [8].

(c) Suppose A is a T-invariant subalgebra of C'(K) and ¢ € K. If
f € A and f has an analytic extension to a neighborhood of a, then
(f = f(@))/(z=a) € A

(d) If A is a T-invariant subalgebra of C(K) and a € K, then the

subalgebra of A consisting of those functions in A that have analytic
extension to a neighborhood of a is dense in A.
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Lemma 2.2. Let A\ € 0G and z* € [(z — N\)E]*. Assume that
R(G) Cc M(E). Then, for each f € R(G) and g € €,

(1) (fg,z") = f(N)(g,z").

If £ is rationally cyclic, then £ has *-property.

Proof. Let f € R(G) have an analytic extension to a neighborhood

of \. Then f — f(A) = (z — A)gy for some g; € R(G). Hence (1) holds
for such f.

By (d) every f € R(G) can be uniformly approximated by such

functions, and for each f € R(G) and g € &,

1fglle < [[fllmellglle < cllflleollglle-

Hence (1) holds for each f € R(G) and g € €. The proof of the second
part follows the lines of the proof of Lemma 1.6. O

An example of spaces having the x-property can be constructed from
the next theorem.

Theorem 2.3. Let A be a T-invariant subalgebra of C(G). Then A
has x-property.

Proof. Let A\ € 0G, and let z* # 0 be an element of [(z — \).AJ*.
Assume that f € A, the subalgebra of A consisting of those functions
in A that have an analytic extension to a neighborhood of A\. Then, by
(¢), f—=Ff(A) = (2= A)g1 for some g; € A. Hence, (f,z*) = f(A)(1,z*).
By (d) it follows that this relation holds for each f € A. Hence, A has
*-property. O

Aleman [2] has characterized the finite codimensional subspaces of
Hilbert spaces of analytic functions when M, is subnormal, o(M,) = G
and M (&) contains A(G), the space of continuous functions on G which
are analytic on G. Here we do this for the case that £ is a reflexive

Banach space of analytic functions such that R(G) C M(€) using the
techniques of [2]. Note that the last condition implies that o(M,) = G.
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Theorem 2.4. Let & be a reflezive Banach space of analytic func-
tions such that R(G) C M(E) and each point X € OG is a peak point
for R(G). Let F be a closed finite codimensional invariant subspace of

E. Then F = p€ for some polynomial p whose roots lie in G.

Proof. By (b) it is enough to show that ran (M, — \) is dense in
€ for each A € o(M,)\G. Let A € OG and z* # 0 be an element
of [(z — A\)&]*. There is an f € R(G) such that f(\) = 1 and, for
each ¢ # A, |f(¢)] < 1, and there is a g € £ with (g,z*) # 0. For
each n € N, (f"g,z*) = f"(\){g,z*) = (g9,2*) by Lemma 2.2, and
1£°glle < I e lglle < el lecllglle < cliglle. Hence, {£7g} is a
bounded sequence in £ and, for each ¢ # A, f™(¢)g(¢) — 0 as n — oo.
Since €& is reflexive, there exists a subsequence {f™g} which converges
to zero weakly, that is a contradiction. Therefore ran (M, — X) is dense
in £, and the proof is complete now. O

Remark. The conclusion of Theorem 2.4 does not hold without
the assumption R(G) C M(E). For example, let £ be the weighted
Dirichlet space Dy, @ > 1, and M = {f € D, : f(1) = 0}. It is
clear that M is closed with codimension one which is invariant under
M, but cannot be written in the form pD,, for any polynomial p with
zeros in the open unit disk. Note that in this case M(E) = D,. Let
f(z) =X2(1/(n+1)#)z", where 3 = ((a+1)/2). Then f € R(D), and
fis not in D,.

The proof of the following theorem is mainly based on the proof of
Curtis’s peak point criterion which is cited in [8] and [9].

Theorem 2.5. Let G be a bounded domain in the complex plane
such that no connected component of OG is equal to a point. Assume
further that € is a reflexive Banach space of analytic functions with
M(E) = H*(G). Then, for each A € 8G, (z — A& is dense in E.
Furthermore, every closed finite codimensional subspace M of & which
s tnvariant under M, can be written in the form M = p€ for some
polynomial p whose roots lie in G.

Proof. Let A € 0G and C), be the connected components of G which
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contains A. In [4] the authors showed that, for each r < (diam C/2),
the connected component K, of Cy N B(A,r)~ which contains A meets
OB(\,r). Therefore, for each r < (diam C)/2), there is a A, € 9G
so that B(A.,7/4)7\G contains a connected subset F of K, with
diam F' > (r/2) and X is not in B(\,,r/4)"\G. Hence, we can choose a
sequence {r,} of positive numbers and a sequence {\,} in 9G so that
rn — 0, B(Ap,mn/4) " \G C B(A,mn) \G, XA & B(A\p,mn/4) \G and

V(BAn; 70 /4)7\G) = /8.

Hence, there is a sequence of functions {h,,} such that, for each positive
integer n, h,, is analytic on Coo\ Ly, [|hnllc\z, <9, hn(A) = 1. Also
hy, — 0 uniformly on compact subsets of G and h,,(\) = 1, see Curtis’s
peak point criterion. Since h, € H>®(Cy\L,), there is an analytic
function k,, € H*(Cu\Ly) such that h, — hy,(X) = (2 — )k,

For each f € &, the sequence {h, f} is a bounded sequence and hence
hn,; f — h weakly for some subsequence {h,,f} and h € £. It is clear
that h = 0. Now let z* € [(z — A)€]*. Then, for each positive integer
n’

(hnf,a") = hn(A)(f,27) = (f,2").

Hence z* = 0, and the proof is complete. a

Now assume £ is a Banach space of analytic functions on a bounded
domain G and 1 € £. Denote the set of all A € 9G such that
ran (M, — X) is closed by 9,.(€) and 9.(€) = 0G\9,(€). Observe that
if X € 0,(€) then ran (M, — X\) # &, otherwise M, — ) is invertible
which contradicts the fact that G C o(M,). It will be seen that 9,.(€)
is a relatively open subset of 0G.

Next we study some properties of the boundary points of G. Part of
the next lemma is similar to Subin’s lemma; however, it is stated in
our context.

Theorem 2.6. Let A € 0,(€). Then there is a neighborhood V' of A
such that VN OG C 0.(E), each f € £ has an analytic extension to V,

and each point of V' is an analytic bounded point evaluation. Moreover,
dim[(z — M)E]* = 1.
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Proof. Because ran (M, — A) is closed, M, — X is left invertible. Hence
there is an operator B such that B(M, —A) =1I1. Let V = {8 € C:
I8 —A < (1/]|BI)}. Then 1 — (8 — A)B is invertible for every 8 € V
and M, — 3 =[1—(8—\)B](M, —A). It follows that the ran (M, — 3)
is closed for every 8 € V. Hence V N OG C 0,(€).

For the second part note that ran (M, — X) # £. Hence there exists
hy € [(z — A)E]* such that (1,hy) # 0. Replacing hy by a suitable
multiple of itself, we may assume that (1,hy) = 1. Let B and V be as
before. Define h : V. — £* by h(B) = [l — (8 — A\)B*]~!hy. Clearly
h(B) # 0 and h(B) € ker(M, — B)*. We also note that h(A) = hy
and, because the function 8 — (1, h(5)) is analytic on V' by making V'
smaller, we may assume that (1,h(8)) # 0 for every 3 € V. If f € €,
then

(f,1(B)) = (f,[1 = (B=NB"]"'ha) = ([1 = (B = N)B] " f, ha)-

Hence the function 8 — (f,h(B)) is analytic on V. Let 8 € GNV.
Then there is a k € € such that f — f(8) = (z — B)k. Therefore, (f —
7(8),h(8)) = {(z— Bk, h(8)) = 0. Hence £(8) = ({f, h(8))/(1, h(E))).
For each 8 € V, define fo(8) = ({(f, h(B))/(L,h(B))). It is clear that fo
is an analytic extension of f on GUV. If we let k(8) = (h(8)/(1, h(B))),
B € V, then k(f) is the reproducing kernel at 4. Then dim[(z—\)&]+ =
1.

For the next part note that because ran (M, — ) is closed for every
B € V, there is a ¢ > 0 such that ¢||f|]| < |[(z — A)f]|, for each
f € &. There is a sequence {8,} in G such that 8, — A. Hence
there is N > 0 so that |3, — A| < ¢/2 for each n > N. For such
n and each f € & c|f|| < [I(z = VIl < [I(z = Ba)FIl + (/2N
Therefore (¢/2)||f|| < ||(z — Brn)f|l- For each n > N there is a g, € €
so that f — f(Bn) = (2 — Bn)gn. It follows that {g,} is a bounded
sequence in €. Now let ¢ l[(z — A)E]. Therefore, o(f — f(Bn)) =
o((z — Bn)gn) = (A — Bn)p(gn). Without loss of generality we may
assume that ¢(g,) — « for some a € C. Therefore ¢(f) = f(A)p(1)
and the proof is complete. ]

Note that A is a bounded point evaluation and ran (M, — ) C kere,.
Because both these spaces have codimension one, we easily conclude
that ran (M, —)\) = kere,. An application of Cauchy’s integral formula
yields the following result.
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Lemma 2.7. Let G be a bounded domain in the complex plane,
a rectifiable simple closed curve in G and V the inside of ~y. Assume
further that £ is a Banach space of analytic functions on G. Let A be
a subset of € such that every f € A is analytic on GUV . If A is dense
in &, then the following holds

(i) for each A\ € GUV the point evaluation at A is bounded.
(ii) each f € € has an analytic extension to GUV.

Proof. For each f € Aand A € V\G we have by the Cauchy’s integral
formula f(\) = (1/27%) f% (f(2)/(z — X)) dz. Because 7 is a compact
subset of GG, there is a ¢ > 0 such that, for each f € £ and z € ~y,
[f(2)] < cllfll. Therefore, |f(N)] = |(1/(271)) [, (f(2)/(z = A)) dz| <
M, ||f]|, for each f € Aand A € V\G. Let f € £. Hence there is a
sequence {f,} in A such that ||f, — f|| — 0 as n — oo. Therefore,
{fn(A)} is a Cauchy sequence and hence lim,_,o fn(A) exists. Define
F(A) =lim, 00 fn(A). It is clear that f(X) = (1/(271)) f% (f(2)/(z -
) dz, and [f(A)] = [(1/(27)) [, (f(2)/(z = X)) dz| < M,]|f], for each
f € & and X € V\G. Therefore point evaluation at A is bounded.

For any closed curve yin GUV and f € A, f7 f(2)dz = 0 and hence

for each f € €, f,y f(2)dz = 0. Therefore, each f € £ is analytic on
GUV. O

Example. Let D be the open unit disc in the complex plane. Delete
from D a sequence of disjoint closed disc B(zy,r,), whose centers
lie on the positive real axis and decrease monotonically to zero. The
region G obtained this way is called an L region.

Let £ be a Banach space of analytic functions on G which contains the
polynomials as a dense subset. Then by Lemma 2.7 the set of bounded
point evaluations is D, o(M,) = D and each f € £ is analytic on D.

These regions were first studied by L. Zalcman in [13], where he
proved that for every f € H*(G), lim,_,o- f(2) exists if and only if
> ((rn/@n) < 0o. The equivalence condition for the existence of this
limit for other Banach spaces of analytic functions can be found in [10].
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