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A NOTE ON CYCLOTOMIC POLYNOMIALS

MING-CHANG KANG

ABSTRACT. Let R be a Dedekind domain and n a square-
free positive integer, A := R[T]/T™ — 1. The fact that A is
a Dedekind-like ring will make possible the classification of
integral representations of the cyclic group of order n over R
[7]. We shall prove that A is a Dedekind-like ring for a fairly
large class of Dedekind domains R. The proof is facilitated
by an identity among cyclotomic polynomials [2]. Some other
applications of the same identity will be presented also.

1. Introduction. Let ®,(X) be the nth cyclotomic polynomial.
Then the formula

(1) X" —1=][®ax)
d|n

is well known. There are other identities among cyclotomic polynomi-
als, which are not so well known, for example, identities of Beeger and
Schinzel [12, 1]. Recently a new factorization identity was proved by
Cheng, McKay and Wang [2], namely,

Theorem 1.1 [2, Lemma 1]{10, p. 105] [5, p. 394]. Let m,n,k be
positive integers so that g.c.d. {m,n} =1 and m is divisible by every
prime factor of k. Then

) B (X7) = T[ Brota(X).
d|n

In particular, we find that

(3) O (X") = [[ @ma(X),if g.c.d. {m,n} =1;
d|n
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r—1
(4) ®pr (X) = p(XP ) = ‘I)prfl(Xp)a
if p is a prime number and r > 2.

The purpose of this note is to provide several applications of formulae

(2) and (3). Before proceeding to these applications, let us state a result
which seems not well known.

Theorem 1.2. Let d and e be distinct positive integers and
(P4(X),®c(X)) the ideal generated by ®4(X) and ®.(X) in Z[X].
Then

@aC0,m(x)) = { T e e e
d s Xe =

pZ if (e/d) = p' for some prime number p.

In the second case if e > d and we write e = dp' for some prime
number p and some integer [ > 1, then

Z[X]/(®a(X), ®c(X)) ~ Z[X]/(p, Pa(X)).

Theorem 1.2 is equivalent to the computation of Exty (A/®4(X), A/
®.(X)) where A :=Z[X]/X™ —1 with d | n and e | n.

We shall give three applications of the above two theorems:

Application 1. Let n be any positive integer. In high-school algebra
it is known that (i) X™ — 1 is always divisible by X —1 and (ii) X" +1
is divisible by X + 1 if and only if n is an odd integer. Consider the
question: If f(X) is any nonzero polynomial with integer coefficients
and f(X™) is divisible by f(X), what will the polynomial f(X) look
like?

Application 2. In view of the particular form of formula (3), one
might ask the question: If fi(X), fo(X),..., fm(X),... is a sequence
of nonzero polynomials with integer coefficients so that

fm(Xn) = Hfmd(X)

d|n
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whenever g.c.d.{m,n} = 1, what can we say about these polynomials
fm(X)s?

Application 3. In the study of all finitely generated modules over
the integral group ring of a cyclic group of square-free order, a crucial
step is to show that the integral group ring A := R[X]/X" —1is a
Dedekind-like ring in Levy’s sense [7] where R is a Dedekind domain
and n is a square-free positive integer. Indeed, Levy was able to
show that it was the case when R = Z or Z[(,] if gn is square-free
[8, Theorem 1.2, Corollary 1.8]. Using Theorem 1.2 we can prove
the following theorem which generalizes Levy’s result, and therefore
A becomes a Dedekind-like ring when R satisfies some mild conditions,
see Example 3.10.

Theorem 1.3. Let n be a square-free positive integer, A :=
R[X]/X™ —1 where R is a Dedekind domain satisfying both the condi-
tions (R1) and (R2).

(R1) R[X]/®4(X) is a Dedekind domain for every integer d with d | n;

(R2) The ideal nR is not zero in R and is an intersection of mazimal

ideals.

Then A is a Dedekind-like ring.

Standing notations. All the polynomials in this note are polynomials
of one variable. ®,(X) will be the nth cyclotomic polynomial [6, pp.
263-267]. p(n) is the Mobius function defined by

1 ifn =1,
u(n):=4¢0 if n has a square factor,
(—=1)" if n is square-free and has precisely r prime factors

[6, p. 145]. ¢(n) is the Euler-¢ function, which is equal to the number
of positive integers < n which are relatively prime to n [6, p. 47]. If
a,b € A, a commutative ring, then (a, b) will denote the ideal generated
by a and b.
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2. Polynomials with integer coefficients.

Lemma 2.1. Let m and n be any positive integers. Then ®,,(X™)
is divisible by ®,,(X) if and only if g.c.d{m,n} = 1.

Remark. When m = 1 and 2, the above are just the formulae of high
school algebra mentioned in Application 1 of Section 1.

Proof. The proof follows from formula (3) of Theorem 1.1 because
®,(X) and ®,4(X) are relatively prime if r # s [6, p. 264]. (Note that
Z[X] is a unique factorization domain [6, p. 147].)

Theorem 2.2 [4] [3, pp. 550-554]. Let d and e be distinct positive
integers. Then

Z if (e/d) is not a prime power,
X), P (X Z =
($a(X), @e(X)) N {pZ if (e/d) = p' for some prime number p.

In the second case if e > d and we write e = dp' for some prime number
p and some integer [ > 1, then

Z[X]/(®a(X), ®.(X)) ~ Z[X]/(p, Pa(X))-

Theorem 2.3. Let n be any positive integer with n > 2, f(X) a
nonzero polynomial with integer coefficients. Then f(X™) is divisible
by f(X) if and only if

F(X) = aX{@1(X)}*{@rmy (X))} -+ { Py (X))} { @ty (X))}
"‘{(I)dl(X)}Bl
where g.c.d{n,m;} =1 and m; > 2 for any 1 < i < k, dy,...,d; are
distinct divisors of n with d; > 2 for any 1 < j <, o, ag, aq,...04,

1y.++ 391 QTE NOMNE ative integers with 3; < Qg jor 1<5< l, and a
g g J J
a nonzero intege7 .

Proof. <. By Theorem 1.1.
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=-. Write

(5) fF(X") = g(X)- f(X)

where g(X) is some nonzero polynomial with integer coefficients.

If € is any root of f(X) = 0 such that £ # 0,1, then £ is also a root
of f(X) = 0 by (5). Thus |{| = 1; otherwise, f(X) = 0 would have
infinitely many roots.

Write £ = exp(2m+/—1n) for some real number 7. Again 1 should be

a rational number; otherwise, {5,5”,5”2, ...} would be an infinite set
of roots of f(X) =0. Write

n=_—
sm

where r, s, m are nonzero integers so that

(i) s >0, m >0,

(ii) g.c.d{r,sm} =1

(iii) g.c.d.{s,m} =1, g.c.d.{m,n} = 1 and every prime factor of s, if
any, should divide n.

It is clear that {”l will be a primitive mth root of 1 if [ is an integer
large enough. Thus, if m > 2, then f(X) will be divisible by ®,,(X)
since ®,,,(X) is irreducible [6, p. 264]. On the other hand, if m = 1 and

s > 2, choose nonnegative integer a such that n-n® ¢ Z but nn®*! € Z.
Write

where d > 2 and g.c.d.{d,e} = 1. Then f(X) is divisible by ®4(X)
with d | n. Thus we may write f(X) = z®-{®1(X)}*{®,,/(X)}7-h(X)
where either g.c.d.{m/,n} =1 or m' | n.

In either case, if degh(X) = 0, then h(X) is a nonzero integer. If
deg h(X) > 1, we can also extract a factor {®,,(X)}" from h(X) where
either g.c.d.{m’,n} =1 or m’ | n. Proceeding as before, we can prove
that every factor of degree > 1 of f(X) is of the form

X7 X_17 ém(X)a(I)d(X)

where m,d > 2, g.c.d{n,m} =1 and d | n.
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Suppose that di,...,d; are those distinct divisors of n such that
®4,(X) is a factor of f(X) and d; > 2. Write

n = njkj

where d; and k; have the same set of prime factors and g.c.d.{d;,n;} =
1. Apply formula (2) and note that ®4;(X) is relatively prime to

l

!
[T« (x™) =] I1 ®ar.a(X)

i=1 i=1d|n;

because d; | n and, for each 1 <4 <, there is a prime p such that the
exponent of p in d;k; exceeds that of p in n, and therefore d; # d;k;d.
Clearly ®4,(X) is also relatively prime to

O (X") = [[ ®ma(X), ifgcd{m,n}=1,
d

because d; | n and md contains a prime factor not appearing in the
factorization of n provided that m > 2, and therefore d; # md.

Thus, if f(X) | f(X") and ®4,(X) divides f(X), then X™ —1 should
be the multiple of ®4,(X) in f(X") and the multiplicity of ®4,(X) in
f(X) is not greater than that of X — 1 in f(X). Hence the result.

Before we start to solve the second question, consider the following
lemma, which is the Md&bius inversion formula in some special context
[6, p. 145].

Lemma 2.4. Let f1(X), fo(X),..., fa(X),... be a sequence of
nonzero polynomaals so that

Fu(X™) = ] fma(X)

d|n

whenever g.c.d.{m,n} = 1. Then

(6) fmn(X) = H{fm(Xd)}u(n/d)
d|n
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provided that g.c.d.{m,n} = 1. In particular,
— H{q,m(Xd)}u(n/d)
d|n

whenever g.c.d.{m,n} = 1.

Proof. We shall prove formula (6).
Induction on n. Consider

H{Hf yu(d/e) } = T (x5 :H{ TT fm(x ,,(f)}

dln ~ e|ld eld eln “efln
d|n

(by writing d = ef)

—H{ (XY i f)}

eln
— fnlx) (S un=0 itw'2)
flm/
= Hfmd(X) = fmn(X) : H fmd(X
o i
= fn(X) - f(X u(d/e)
RISV

(by induction).

Hence the result.

Remark. It is unnecessary to assume that f,,(X) has integer coeffi-
cients in the above lemma.

Theorem 2.5. Let fi1(X), f2(X),..., fm(X),... be a sequence of
nonzero polynomials with integer coefficients. Then this sequence of
polynomials satisfies the following property

Xn) = Hfmd(X

d|n
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whenever g.c.d.{m,n} = 1 if and only if there exist nonnegative integers
a and 3, a nonzero integer a, so that

(7) fi(X) = aX*(X - 1),
and
(8) fm(X) = X¢Me (X)P, ifm >2.

Proof. <. By Theorem 1.1 and the formulae

n=>_(d),

d|n
o(mn) = p(m)p(d) if g.cd.{m,d} =1

[6, p. 107].
=. Since

(X =[] fa(x)
d|

for any positive integer n, it follows that f1(X™) is divisible by f1(X)
for any n. Using Theorem 2.3 and after some computation, we find
that

f1(X) = aX(X — 1)°
for some nonnegative integers o and (3, a # 0.

By Lemma 2.4, we find that, for any n > 2,

Fa(X) = TTEA /D

d|n
= [/ . xotr/ard (xt _ qyfutn/d)y
d|n
8
_ (D /D) a3, p(n/d)d { Tex - 1)u(n/d)}

d|n
= x*¢Mg (X)P.
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Remark. If f1(X), f2(X),... are defined by (7) and (8), clearly this
sequence satisfies the property

fm(Xnk) = H fmra(X)
d|n

whenever g.c.d.{m,n} = 1 and m is divisible by every prime factor of
k.

3. Integral group rings. Throughout this section, except in
Theorem 3.9 and Example 3.10, we shall assume that n := pips---p,
is a square-free positive integer and R is a Dedekind domain satisfying
the following two conditions.

(R1) R[X]/®4(X) is a Dedekind domain for any integer d with d | n,

(R2) The ideal nR is not zero in R and is an intersection of maximal
ideals.

Note that char R = 0 because of the condition (R2).

Definition 3.1. Define S; and S by

S1:={deN:d|nand u(d) =1}
Se:={deN:d|nand u(d) =—-1}.

Definition 3.2. Define f1(X), f2(X) € Z[X](C R[X]) by

AX) =[] 2u(X),  fo(X):= [] 2a(X).

desS, deSs

Definition 3.3. Define A, Ay, A; and A; by
A:=R[X]/X" -1,  Ap:= RX]/(fi(X), f2(X)),

Let m; : A; — Ao, ¢; : A — A; be the canonical projections for
1 <i < 2. Note that A is the integral group ring of the cyclic group of
order n over R.
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Lemma 3.4. Letd € S1, e € S3. Then

€ <<I)d(X)7f2(X)> n <f1(X)7q>e(X)>'

Proof. We shall prove n € (®4(X), f2(X)). The proof of n €
(f1(X), ®c(X)) is similar.

For any e € Ss, if (e/d) ;ép?ﬂ for some i, 1 < i < r, then
(9) 1 € (@4(X), ®c(X))

by Theorem 2.2.
If p; | d, then (d/p;) € Sz and

(10) pi € (Pa(X), @q/p, (X))

again by Theorem 2.2.
If p; 1 d, then dp; € Sy and

(11) Pi € (@a(X), Papi(X))-
From (9), (10) and (11) we obtain

n=pips- - pr € (Bq(X), f2(X)).

Lemma 3.5.

Ay~ P RIX]/Ru(X), Ay~ P RIX]/®(X).

deS, e€Sy

Proof. For any d,d’ € Sy, if d # d', then 1 € ($4(X), P4 (X)) by
Theorem 2.2. Hence the decomposition of A; (or As) follows from the
Chinese Remainder Theorem.
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Definition 3.6. For 1 < i < r, define

Since p; 1 n;, X™ — 1 is a separable polynomial in Z/p;Z[X].
Moreover, p; R is an intersection of maximal ideals in R by the condition
(R2). Write

R/piR=F;1 xF;o x--- xFiy,

where each F; ; is a field of characteristics p; > 0.

In F; ;[X], X™ — 1 is a separable polynomial. Write

xm—1=[[ 9Gik)

1<k<m(i,5)

where each g¢(i, j, k) is a monic irreducible polynomial in F; ;[X] and
m(i, j) is a positive integer.

Let Sy be the set of these triples (3, j, k), i.e.,

So = {(i,j,k) e N*: 1 <i<r,1<j<l;1<k<m(,j)}

Lemma 3.7.

AO = @ FZ,J[X]/g(Za]ak)

(i,4,k)ESo

where F; ;[ X]/g(i,j, k) is a field of characteristic p; > 0.

Proof.

Ao = R[X]/(f1(X), fo(X))
~ RIX]/f1(X) @ RIX]/f~(X)

~ (@D RIX)/2u(X)) @ RIX]/ fo(X)

desS;

~ P RIX]/(@a(X), f2(X))

des,
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= P RIX]/(n, ®a(X), f2(X)) (by Lemma 3.4)
des,

@ @R puéd )7f2(X)>

1<i<rdes;

P P P Fi,X1/(@a(X), f2(X))

1<i<r 1<j<l; deSy

O @ {@F,J (), @, ()

1<i<r 1<j<l; ~deS,

12

1R

12

pild
« @ Fis[X] >¢Mmﬁ
de S,
pitd
- @ @{@F,J a1 (X) % ) Fuslx)/ ()
1<i<r1<5<Il; ~desS, desS,
pild pitd

o
@
@

pifm
~ @ @ Fi;[X]/X™ 1
1<i<r 1<5<l;
= @ Fzg /g T, J, )

(%,3,k)€So

Theorem 3.8. The following is a pull-back diagram

#1

A——A4

4 E

A2 7|'—2>A0

i.e., the map A — {(a1,a2) € A1 ® Ay : my(a1) = m2(a2)} by sending
a € A to (¢1(a), p2(a)) is an isomorphism. Moreover, A is a Dedekind-
like ring in the sense of Levy [8, p. 355].
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Proof. To prove the above diagram is a pull-back diagram is equiva-
lent to proving that the following is a short exact sequence

O%A(M)Z)Al@flz—)z‘lo—)()

(a1, a2) = mi(ar) — m2(as).

However it is clear that the above is a short exact sequence by
definitions of A, Ay, Az and Ag.

It remains to prove that A is a Dedekind-like ring in Levy’s sense.
Define ¢; : Ay ® A2 — Ag by qi(a1,a2) = mi(a1), g2(a1,a2) = ma(az).
It is easy to verify that (a1, as) — (q1(a1,as),g2(a1,as)) of Ay ® Ay —
Ao @ Ay is onto and A ~ {(a1,a2) € A1 ® Ay : ¢1(a1,a2) = ¢2(a,a2)}-
Note that Ker gq; D As, Kergo D Aq; thus, the independence condition
[8, p. 355] is satisfied. Since A; @ Az is a finite direct sum of Dedekind
domains (but not fields) by Lemma 3.5 and Ay is a finite direct sum of
fields by Lemma 3.7, hence A is a Dedekind-like ring.

Theorem 3.9. Let R be the ring of integers of some algebraic number
field K, and let n be a square-free positive integer. Assuming that (i) K
and the cyclotomic field Q(exp(2my/—1/n)) are linearly disjoint over Q,
and (i) nR is unramified in R. Then R satisfies both conditions (R1)
and (R2). Therefore, A := R[X]/X™ — 1 is a Dedekind-like ring.

Proof. Let (4 := exp(2my/—1/d) for any d | n. Note that K and Q((q)
are linearly disjoint over Q, because of [9, p. 50] and the assumption
(i). Hence R[(4] ~ R®z Z[X]/®4(X) ~ R[X]/®4(X) by [9, p. 49].
Moreover, the only prime numbers p ramified in Q(¢z) are the odd
prime numbers p with p | d by [11, p. 92]. Thus the ring of integers
in K((q) is R[Cq] by [11, p. 91], thanks to the assumption (ii). Hence
R[X]/®4(X) is a Dedekind domain. It follows that both the conditions
(R1) and (R2) are satisfied.

Example 3.10. Let (j := exp(2my/—1/k) and n be a square-free
positive integer.

For any positive integer m with g.c.d.{m,n} = 1, Q({;») and Q(¢,)
are linearly disjoint over Q. (Note that [Q((m)®q Q(¢n) : Q] =
p(mn) = [Q(Cmn) : Q] = [Q((m)Q(¢n) = Q] Then apply [9, p. 49].
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By the above theorem, if R := Z[(y], then A := R[X]/X"™ —1is a
Dedekind-like ring. (Thus the condition that ¢ is square-free in [8,
Corollary 1.8] is unnecessary; only the condition that g.c.d.{q,n} =1
will suffice to guarantee that A is Dedekind-like in this situation.)

Consider the case of quadratic fields. If m is any square-free integer,
i.e., m < 0 is permitted, and g.c.d.{m,n} = 1, then Q(y/m) and Q((,)
are linearly disjoint over Q because Q(v/m) N Q(¢,) = Q. (Note that,
if K1 and K> are field extensions of a field F' and K7 is a finite Galois
extension of F, then K; and K, are linearly disjoint over F' if and
only if K3 N Ky = F.) Thus, if R is the ring of integers in Q(y/m)
and A := R[X]/X™ — 1, then A is a Dedekind-like ring if m = 1 or 2
(mod 4). Moreover, if n is odd and m = 3 (mod 4), then A is also a
Dedekind-like ring.

On the other hand, if K is any algebraic number field such that
g.c.d{o(n),[K : Q]} =1, then K and Q((,) are linearly disjoint over
Q. Hence if we assume furthermore that n is unramified in K, then
the ring of integers in K also satisfies the conditions (R1) and (R2).

Acknowledgment. I should like to thank the referee for pointing
out a dubious argument in the proof of Theorem 2.3 of an original
version of this note. It led to the present form and the modified proof
of Theorem 2.3.
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