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ISOTYPE WARFIELD SUBGROUPS
OF GLOBAL WARFIELD GROUPS

CHARLES MEGIBBEN AND WILLIAM ULLERY

ABSTRACT. Using a new characterization of global Warfield
groups, necessary and sufficient conditions are given for an iso-
type subgroup of a global Warfield group to be itself, Warfield.
Our result generalizes similar theorems in the simpler contexts
of totally projective p-groups and p-local Warfield groups.

1. Introduction. We shall be dealing exclusively with additively
written abelian groups, hereafter referred to simply as “groups,” and
G will always denote such a group. We emphasize from the outset that
G is allowed to be mixed.

Recall that a group is simply presented if it can be presented by
generators and relations where each relation involves at most two
generators. In the torsion and torsion-free settings, a summand of
a simply presented group is again simply presented. However, for
mixed groups G this is not generally the case. By definition, a global
Warfield group is a direct summand of a simply presented group. Most
of the early theory of global Warfield groups was developed by Hunter,
Richman and Walker [8, 9, 10]. But it was not until the introduction of
knice subgroups [3] and the attainment of an Axiom 3 characterization
[4] that fundamental problems regarding isotype subgroups became
accessible (for prime examples, see [4] and [11]).

In this paper we again demonstrate the power of the theory of knice
subgroups and Axiom 3 by finding necessary and sufficient conditions
for an isotype subgroup of a global Warfield group to be itself Warfield.
Our result generalizes the earlier treatments of isotype subgroups of
totally projective p-groups in [2], and of p-local Warfield groups in
[7]. To a certain extent, our theorem and proof are modeled after
the special case in [7]; however, the generalization from the local to
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the global case is not routine. Indeed, in addition to making further
modifications to the concepts of separability and compatibility, we
require the new characterization of global Warfield groups established
by Theorem 2.5 below. Moreover, even when specialized to the local
case, our main theorem (Theorem 5.2) is more extensive than the
corresponding theorem in [7]. Since a torsion-free group is simply
presented if and only if it is completely decomposable, Theorem 5.2
also specializes to yield a new characterization of when a pure subgroup
of a completely decomposable torsion-free group is itself completely
decomposable.

In the sequel, unexplained notation and terminology will be as in
[3, 4] and [11]. In particular, we direct the reader to those papers
for the definitions and basic properties of knice subgroups and the
associated notions of primitive element and ∗-valuated coproduct. As
is now customary, we use the notation ‖x‖ for the height matrix of
x ∈ G. If p is a prime, |x|p denotes the height of x at the prime p and
‖x‖p = {|pix|p}i<ω is the height sequence determined by the p-row of
‖x‖. When necessary to avoid confusion, we affix superscripts to this
notation to emphasize the group in which heights are computed. Also,
the ordering of the class of ordinals, with the symbol ∞ adjoined as a
maximal element, induces in a pointwise manner the lattice relation ≤
on height matrices and sequences. (In order to deal with groups that
are not necessarily reduced, we adopt the convention ∞ <∞.)

2. A new characterization of global Warfield groups. Our
new characterization of global Warfield groups is a consequence of
the following general result regarding the structure of knice subgroups
of global k-groups. Recall that G is a (global) k-group if the trivial
subgroup 0 is a knice subgroup.

Theorem 2.1. If M is a knice subgroup of a global k-group G and
if S is a finite subset of M , then there exists a ∗-valuated coproduct

N = 〈y1〉 ⊕ 〈y2〉 ⊕ · · · ⊕ 〈ys〉 ⊆M
where each yi is a primitive element of G and 〈S,N〉/N is finite.

Proof. Since G is a k-group, there is a ∗-valuated coproduct
F0 = 〈x1〉 ⊕ 〈x2〉 ⊕ · · · ⊕ 〈xk〉
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where each xi is a primitive element of G and 〈S, F0〉/F0 is finite.
Replacing each xi by a nonzero multiple, if necessary, we may assume
that F0 is contained in a ∗-valuated coproduct M ⊕B0 where M ⊕B0

is a knice subgroup of G and B0 is a finitely generated knice subgroup
of G. With this beginning, repeated applications of [4, Proposition
1.6] allow us to define inductively two ascending sequences {Tn}n<ω

and {Sn}n<ω of finite subsets of G, together with a family {Bn}n<ω

of finitely generated knice subgroups of G such that all the following
conditions are satisfied for all n < ω.

(1) T0 = {x1, x2, . . . , xk}, each Tn consists of primitive elements of
G and Fn = 〈Tn〉 =

⊕
x∈Tn

〈x〉 is a ∗-valuated coproduct.
(2) For each n < ω, M ⊕B0⊕B1⊕· · ·⊕Bn is a ∗-valuated coproduct

and is a knice subgroup of G that contains Fn.

(3) Fn ⊆ 〈Sn〉 and Sn = (Sn ∩M) ∪ (Sn ∩ (B0 ⊕B1 ⊕ · · · ⊕Bn)).

(4) 〈Sn, Fn+1〉/Fn+1 is finite.

Now let F =
⋃

n<ω Fn, T =
⋃

n<ω Tn and B =
⊕

n<ω Bn. Then clearly
F =

⊕
x∈T 〈x〉 and M ⊕ B are ∗-valuated coproducts with F “quasi-

splitting” along M and B in the sense that F is a torsion modulo
(F ∩M)⊕ (F ∩B).
By [4, Corollary 2.5], there is a ∗-valuated coproduct

F ′ = 〈z1〉 ⊕ 〈z2〉 ⊕ · · · ⊕ 〈zk〉 ⊕M ′ ⊕B′

where F/F ′ is torsion, M ′ ⊆ M , rank ((F ∩ M)/M ′) ≤ k and the
z1, z2, . . . , zk are nonzero multiples of x1, x2, . . . , xk, respectively. Let
F ′

0 = 〈z1〉 ⊕ 〈z2〉 ⊕ · · · ⊕ 〈zk〉 and observe that, since both F0/F
′
0 and

〈S, F0〉/F0 are finite, it follows that 〈S, F ′
0〉/F ′

0 is finite. Note also
that F ′ ∩M = M ′ ⊕ A where A = M ∩ (F ′

0 ⊕ B′). Since S ⊆ M ,
〈S〉 ∩A = 〈S〉 ∩ (F ′

0 ⊕B′) and the finiteness of

〈S,A〉/A ∼= 〈S, F ′
0 ⊕B′〉/(F ′

0 ⊕B′)

is a consequence of 〈S, F ′
0〉/F ′

0 being finite. Moreover, s = rank (A) ≤
K because A ∼= (F ′ ∩M)/M ′. Using the fact that F/F ′ is torsion, it is
easily verified that F ′ is also “quasi-splitting” along M and B. Hence,
F ′ is torsion modulo

(F ′ ∩M)⊕ (F ′ ∩B) =M ′ ⊕A⊕ (F ′ ∩B)
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and therefore, by [4, Proposition 2.2, Corollary 2.4] applies to yield
a ∗-valuated coproduct N = 〈y1〉 ⊕ 〈y2〉 ⊕ · · · ⊕ 〈ys〉 where each yi is
a primitive element of G contained in A ⊆ M and A/N is torsion.
Finally, since 〈S,A〉/A is finite and A/N is torsion, it follows that
〈S〉/(〈S〉 ∩N) is both torsion and finitely generated; that is, 〈S,N〉/N
is finite as desired.

Recall that a subgroup N of G is a nice subgroup if, for all primes p
and ordinals σ, the cokernel of the canonical map

(pσG+N)/N �−→ pσ(G/N)

contains no element of order p. Both here and in Section 4, it will be
convenient to have the following characterization of knice subgroups.

Lemma 2.2 [4, Proposition 1.7]. A subgroup N of a group G is a
knice subgroup if and only if the following conditions are satisfied.

(a) N is a nice subgroup of G.

(b) G/N is a global k-group.

(c) To each g ∈ G there corresponds positive integer m such that the
coset mg +N contains an element x with ‖x‖G = ‖mg +N‖G/N .

Corollary 2.3. Suppose that N is a pure knice subgroup of G. If A
is any subgroup of N , then N/A is a pure knice subgroup of G/A.

Proof. Since N is both knice and pure, [4, Corollary 1.10] says that
pσ(G/N) = (pσG + N)/N for all primes p and ordinals σ. It is now
routine to verify that N/A is nice in G/A. Indeed, even more is true:

pσ((G/A)/(N/A)) =
pσ(G/A) + (N/A)

N/A

for all primes p and ordinals σ. Moreover, (G/A)/(N/A) ∼= G/N
is a k-group by Lemma 2.2. Also, N/A inherits from N the prop-
erties required by condition (c) of Lemma 2.2 since ‖mg + A +
(N/A)‖(G/A)/(N/A) = ‖mg + N‖G/N for all g ∈ G and positive in-
tegers m. Because it is clear that N/A is pure in G/A, the proof is
complete.
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As a crucial step in the proof of Theorem 2.5, we show that, for pure
knice subgroups M , Theorem 2.1 generalizes to include countable sets
S.

Proposition 2.4. If M is a pure knice subgroup of a global k-group
G, and if S is a countable subset of M , then there exists a ∗-valuated
coproduct

N =
⊕
y∈Y

〈y〉 ⊆M

where Y is a countable set of primitive elements of G and 〈S/N〉/N is
torsion.

Proof. Select an ascending family

S0 ⊆ S1 ⊆ · · · ⊆ Sn ⊆ · · · (n < ω)

of finite subsets of S with S =
⋃

n<ω Sn. It suffices to show that there
exists an ascending sequence

Y0 ⊆ Y1 ⊆ · · · ⊆ Yn ⊆ · · · (n < ω)

where, for each n < ω, Yn is a finite set of primitive elements of G,

Nn =
⊕
y∈Yn

〈y〉 ⊆M

is a ∗-valuated coproduct and 〈Sn, Nn〉/Nn is finite. Proceeding by
induction, we assume that Yn has been constructed with the desired
properties and demonstrate how to construct a suitable Yn+1. Let
T = Sn+1 \ Sn and T = {t +Nn : t ∈ T}. Note that M/Nn is a knice
subgroup of G/Nn by Corollary 2.3 and, since Nn is knice in G, G/Nn

is a k-group by Lemma 2.2. Therefore, Theorem 2.1 implies that there
is a finite subset {y′1, y′2, . . . , y′s} ofM such that N =

⊕s
i=1〈y′i+Nn〉 is

a ∗-valuated coproduct in G/Nn with each y′i +Nn primitive in G/Nn

and 〈T ,N〉/N finite. As noted in the proof of Theorem 3.7 in [3],
Nn being knice in G allows us to replace each y′i + Nn by a positive
multiple and then select an appropriate yi in each coset so that each yi
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is a primitive element of G with Nn+1 = Nn ⊕〈y1〉⊕ 〈y2〉⊕ · · ·⊕ 〈ys〉 a
∗-valuated coproduct. Set Yn+1 = Yn ∪ {y1, y2, . . . , ys}. Clearly then

Nn+1 =
⊕

y∈Yn+1

〈y〉 ⊆M

is a ∗-valuated coproduct and 〈Sn+1, Nn+1〉/Nn+1 is finite.

We are now in a position to establish the main result of this section.

Theorem 2.5. If

0 =M0 ⊆M1 ⊆ · · · ⊆Mα ⊆ · · · (α < µ)

is a smooth chain of pure knice subgroups of the group G such that
|Mα+1/Mα| < ℵ0 for all α and

⋃
α<µMα = G, then G is a global

Warfield group.

Proof. We may assume that µ is the first ordinal of cardinality |G|
and, to avoid trivialities, that each quotient Mα+1/Mα has infinite
torsion subgroup. Note from the hypotheses that G is at least a k-
group since we are given that M0 = 0 is a knice subgroup.

We shall show that the chain ofMα’s that can be refined to a smooth
chain of knice subgroups

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nβ ⊆ · · · (β < µ)

with the additional property that, for each β, either Nβ+1/Nβ is cyclic
of prime order, or Nβ+1 = Nβ ⊕ 〈xβ〉 is a ∗-valuated coproduct with
xβ a primitive element of G. Once this is achieved, we may apply
Theorem 3.2 in [4] to conclude that G is a global Warfield group. The
refinement will be accomplished with each Mα = Nβ for some limit
ordinal β and the proof requires an explanation of how, for each α, one
interpolates between Mα and Mα+1 an ascending sequence of knice
subgroups

Mα = Nβ ⊆ Nβ+1 ⊆ · · · ⊆ Nβ+n ⊆ · · · (n < ω)

satisfying the requisite properties and with Mα+1 =
⋃

n<ω Nβ+n.
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We consider first the interpolation between M0 and M1. By Propo-
sition 2.4, there is a countable set Y of primitive elements such that
N =

⊕
y∈Y 〈y〉 is a ∗-valuated coproduct and M1/N is a countable tor-

sion group. If Y is finite, say Y = {x1, x2, . . . , xs}, then the subgroups
N0 = 0, N1 = 〈x1〉, N2 = N1 ⊕ 〈x2〉, . . . , Ns = Ns−1 ⊕ 〈xs〉 are knice
since G is a k-group, and we select an ascending sequence

Ns+1 ⊆ Ns+2 ⊆ · · · ⊆ Ns+n ⊆ · · ·

of subgroups with M1 =
⋃

n<ω Nn and Ni+1/Ni cyclic of prime order
for i ≥ s. Since finite extensions of knice subgroups are knice, this
establishes the desired interpolation in the special case where Y is finite.
Suppose, however, that Y = {y1, y2, . . . , yn, . . . } is infinite and choose
an ascending sequence of subgroups

0 = B0 ⊆ B1 ⊆ · · · ⊆ Bn ⊆ · · · (n < ω)

having M1 as its union and such that, for each n ≥ 1, Bn contains the
finitely generated knice subgroup An = 〈y1, y2, . . . , yn〉 with Bn/An

finite. Thus, for each n, Bn is a knice subgroup ofG and, by Proposition
2.7 in [3], there is a positive multiple xn of yn such that Bn−1⊕〈xn〉 is a
∗-valuated coproduct. We then choose an ascending chain of subgroups
N0 = 0, N1 = 〈x1〉, N2, . . . , Nk1 = B1 where the successive quotients
Ni+1/Ni are cyclic of prime order for i ≥ 1. Then Nk1+1 = B1⊕〈x2〉 is
∗-valuated with x2 primitive. Continuing in this manner, we generate
an ascending sequence of knice subgroups

0 = N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆ Nn ⊆ · · ·

havingM1 as its union and an associated increasing sequence of positive
integers

1 < k1 < k2 < · · · < ki < · · ·
such that, for each i, Nki

= Bi, Nki+1 = Bi ⊕ 〈xi+1〉 is a ∗-valuated
coproduct with xi+1 primitive and Nn+1/Nn is cyclic of prime order
whenever n is distinct from each ki. Finally, by remaining each xi+1 as
xki
, we have the desired interpolation between M0 and M1 in the case

where Y is infinite.

We assume now that, for some limit ordinal λ < µ, we have obtained
knice subgroups {Nβ}β<λ with the requisite properties and such that
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⋃
β<λNβ =Mα for some α < µ. It remains to explain how we continue

the process by interpolating betweenMα andMα+1. SinceMα+1/Mα is
a pure knice subgroup of G/Mα by Corollary 2.3, taking Nλ =Mα and
applying the construction of the preceding paragraph in the k-group
G/Nλ, we obtain an ascending sequence

Nλ ⊆ Nλ+1 ⊆ Nλ+2 ⊆ · · · ⊆ Nλ+n ⊆ · · · (n < ω)

of subgroups of G such that
⋃

n<ω Nλ+n = Mα+1, each Nλ+n/Nλ is a
knice subgroup of G/Nλ and, for each n, either

(1) (Nλ+n+1/Nλ)/(Nλ+n/Nλ) ∼= Nλ+n+1/Nλ+n is cyclic of prime
order, or else

(2) Nλ+n+1/Nλ = (Nλ+n/Nλ)⊕〈xλ+n+Nλ〉 is a ∗-valued coproduct
with xλ+n +Nλ a primitive element of G/Nλ.

It follows from [3, Theorem 3.7] that each Nλ+n is a knice subgroup
of G. Therefore, as in the proof of Proposition 2.4, in case (2)
we have a ∗-valuated coproduct N ′ = Nλ+n ⊕ 〈x′λ+n〉, where x′λ+n

is a primitive element of G with x′λ+n + Nλ a positive multiple of
xλ+n +Nλ. Thus, by interpolating when necessary, a finite number of
subgroups with successive quotients of prime order between each N ′

and the corresponding Nλ+n+1, we obtain (after reindexing as needed)
the desired knice subgroups {Nβ}λ≤β<λ+ω between Mα and Mα+1.
Finally the requirement that the Nβ form a smooth chain completes
the construction.

Remarks. Certainly the converse of Theorem 2.5 is true. That this
is so is an immediate consequence of [4, Theorem 3.2] and the fact
that each countable subgroup of G is contained in a countable pure
subgroup. Hence, it will remain a mystery as to why the hypotheses of
Theorem 2.5 do not appear among the six conditions of [4, Theorem
3.2], all of which are equivalent to G being a global Warfield group. We
should also mention that the simpler p-local versions of Theorems 2.1
and 2.5 appear as [6, Theorem 3.1] and [7, Proposition 9], respectively.

3. Separability.

Definition 3.1. Call a subgroup H of G strongly separable in G if,
for each g ∈ G, there is a corresponding countable subset {hn}n<ω ⊆ H
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with the following property: if h ∈ H, there exists an n < ω such that
‖g + h‖ ≤ ‖g + hn‖.

Lemma 3.2. Suppose that H is an isotype subgroup of G and that
H contains a valuated coproduct H ′ =

⊕
i∈I Hi with |Hi| ≤ ℵ0 for all

i ∈ I. Then H ′ is a strongly separable subgroup of G.

Proof. Suppose to the contrary that H ′ is not strongly separable in
G. Therefore, we can select and fix a g ∈ G with the property that,
for each countable subset C of H ′, there exists hC ∈ H ′ such that the
inequality ‖g + hC‖ ≤ ‖g + x‖ fails for all x ∈ C.
We claim that there exist subsets J(n) of I that satisfy the following

two conditions.

(1) J(0) = ∅, J(n) is a countable subset of I for each n < ω, and

J(0) ⊆ J(1) ⊆ J(2) ⊆ · · · ⊆ J(n) ⊆ · · · (n < ω)

(2) If h′ ∈ ⊕
i∈J(n)Hi for some n < ω and if |pk(g+h)|p � |pk(g+h′)|p

for some h ∈ H ′, prime p and nonnegative integer k, there exists
h′′ ∈ ⊕

i∈J(n+1)Hi such that |pk(g + h′′)|p � |pk(g + h′)|p.
To verify the claim, suppose we have constructed a finite sequence

J(0) ⊆ J(1) ⊆ · · · ⊆ J(m)

of countable subsets of I so that condition (2) holds for all n < m.
Now to extend the sequence to J(m+ 1), let S be the set of all triples
s = (h′, p, k) such that h′ ∈ ⊕

i∈J(m)Hi, p is a prime, k a nonnegative
integer, and the inequality |pk(g + h)|p � |pk(g + h′)|p holds for some
h ∈ H ′. For each such s, select and fix a single hs ∈ H ′ such that
|pk(g + hs)|p � |pk(g + h′)|p. Since g is fixed and S is countable, there
is a countable subset J ′ of I such that hs ∈ ⊕

i∈J′ Hi for all s ∈ S.
Observe now that J(m+ 1) = J ′ ∪ J(m) has the desired properties to
establish the claim.

To complete the proof, set J(ω) =
⋃

n<ω J(n) and Hω =
⊕

i∈J(ω)Hi.
Since Hω is a countable subgroup of H ′, there is an h ∈ H ′ such that
the inequality ‖g + h‖ ≤ ‖g + x‖ fails for all x ∈ Hω. In particular
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‖g + h‖ ≤ ‖g + h′‖ fails where h′ is the projection of h onto Hω.
Therefore,

|pk(g + h)|p � |pk(g + h′)|p
for some prime p and nonnegative integer k. Since h′ ∈ ⊕

i∈J(n)Hi

for some n, condition (2) above implies that there exists h′′ ∈ Hω such
that

|pk(g + h′′)|p � |pk(g + h′)|p.
We now have

|pk(h′ − h′′)|p = |pk(g + h′)− pk(g + h′′)|p
= |pk(g + h′)p � |pk(g + h)− pk(g + h′′)|p
= |pk(h− h′′)|p.

Thus, since H is isotype in G,

|pk(h′ − h′′)|Hp � |pk(h− h′′)|Hp .

However this last inequality is absurd. Indeed, as a consequence of the
facts that pk(h′−h′′) is the projection of pk(h−h′′) ∈ H ′ onto Hω and
that

H ′ = Hω ⊕
( ⊕

i∈I\J(ω)

Hi

)

is a valuated coproduct in H, we obtain |pk(h′−h′′)|Hp ≥ |pk(h−h′′)|Hp .

Recall that a subset X of a group H is a decomposition basis for H
if each x ∈ X has infinite order and 〈X〉 = ⊕

x∈X〈x〉 is a valuated
coproduct for which H/〈X〉 is torsion. Since each 〈x〉 is countable, the
next result follows immediately from Lemma 3.2.

Corollary 3.3. Suppose H is an isotype subgroup of G. If H has a
decomposition basis X, then 〈X〉 is a strongly separable subgroup of G.

Definition 3.4. Let p be a prime. Call a subgroup H of G p-
separable if, for each g ∈ G, there is a corresponding countable subset
{hn}n<ω of H with the following property: if h ∈ H, there is an n < ω
such that |g + h|p ≤ |g + hn|p.
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If a subgroup H of G is p-separable in G for all primes p, we say that
H is locally separable in G.

Definition 3.5. Suppose H is a subgroup of G. Call H almost
strongly separable in G if H is locally separable in G and, for each
g ∈ G, there is a corresponding countable subset {hn}n<ω of H with
the following property: if h ∈ H there is an n < ω and a positive
integer m such that ‖m(g + h)‖ ≤ ‖m(g + hn)‖.
In contrast to the torsion-free and p-local settings, it is shown in [5]

that a global Warfield group is not necessarily a strongly separable
subgroup of every group in which it appears as an isotype subgroup.
However, we do have the following positive result.

Proposition 3.6. Suppose H is an isotype subgroup of G. If H is a
global Warfield group, then H is almost strongly separable in G.

Proof. By a result of [12], H is at least locally separable in G.
To complete the proof, recall that any global Warfield group has a
decomposition basis. In particular, we can select a decomposition basis
X for H. If g ∈ G, Corollary 3.3 implies that there is a countable
subset D of 〈X〉 such that, for any positive integer k and y ∈ 〈X〉,
there exists d ∈ D with ‖kg + y‖ ≤ ‖kg + d‖.
For each positive integer k, set Dk = {h′ ∈ H : kh′ ∈ D}. Define

an equivalence relation on Dk by decreeing that h′1 and h
′
2 in Dk are

equivalent if and only if kh′1 = kh
′
2. Let Ck be a set of representatives

for the distinct equivalence classes in Dk. Since D is countable, so
are Ck and C =

⋃
1≤k<ω Ck. Now, for a given h ∈ H, there is a

positive integer m with mh ∈ 〈X〉 and so there is a d ∈ d such that
‖m(g + h)‖ ≤ ‖mg + d‖. Clearly d ∈ mG ∩ H = mH. Thus, there
exists d′ ∈ H with md′ = d; hence, d′ ∈ Dm so that md′ = mx for
some x ∈ Cm ⊆ C. Therefore, ‖m(g + h)‖ ≤ ‖m(g + x)‖ with x ∈ C.
We conclude that H is almost strongly separable in G.

Remark. It is also true that an isotype global Warfield subgroup H
of G is strongly locally separable. That is, for each g ∈ G and prime
p, there is a countable subset {hn}n<ω ⊆ H such that, for every h ∈ H,
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there is an n < ω with ‖g + h‖p ≤ ‖g + hn‖p. However, this fact will
not be needed.

4. Compatibility.

Definition 4.1. Let H and N be subgroups of C, and suppose that
p is a prime. If, for each pair (h, x) ∈ H ×N there is a corresponding
x′ ∈ H ∩ N with |h + x|p ≤ |h + x′|p, then H and N are called p-
compatible.

If the subgroups H and N of G are p-compatible for all primes p, we
say that H and N are locally compatible.

Lemma 4.2. Suppose that K is a subgroup of G and that N is a
pure nice subgroup of G. If K and N are locally compatible, then the
following conditions are satisfied.

(i) If M is a subgroup of G that contains N , then M/N is locally
compatible with (K +N)/N if and only if M is locally compatible with
K.

(ii) If K is isotype in G, then (K + N)/N is isotype in G/N and
K ∩N is knice in K.

Proof. Since N is both knice and pure, [4, Corollary 1.10] says that
pσ(G/N) = (pσG + N)/N for all primes p and ordinals σ. It then
follows that the lemma essentially reduces to the local case where only
one prime is relevant; and, in the local case, (i) and (ii) are well known.

Definition 4.3. Let H and N be subgroups of G. If H and N
are locally compatible and, if for each pair (h, x) ∈ H × N there is a
corresponding x′ ∈ H ∩N and a positive integer m with ‖m(h+x)‖ ≤
‖mh+ x′‖, then we say that H and N are almost strongly compatible.

Note that almost strong compatibility is a symmetric relation. More-
over, it is inductive in the sense that if N =

⋃
α<µNα is an ascending

union of subgroups of G such that each Nα is almost strongly com-
patible with a fixed subgroup H, then N is almost strongly compatible
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with H. Our next three propositions are the generalized global versions
of local results established in [7].

Proposition 4.4. Suppose that H is an isotype subgroup of G and
that N is a pure knice subgroup of G. If H/(H ∩N) is a global k-group
and if H and N are almost strongly compatible, then H ∩N is a knice
subgroup of H.

Proof. By Lemma 4.2, H ∩ N is a nice subgroup of H. Since
H/(H ∩ N) is a k-group, by hypothesis it remains to show condition
(c) of Lemma 2.2; that is, if h ∈ H, then there is a positive integer
m such that the coset mh + (H ∩ N) contains an element x with
‖x‖H = ‖mh+ (H ∩N)‖H/(H∩N).

So now suppose that h ∈ H. Since N is knice in G, by Lemma 2.2
there exists a positive integer n and an element y ∈ nh + N such
that ‖y‖G = ‖nh + N‖G/N . Write y = nh + z′ for some z′ ∈ N .
Clearly z′ ∈ nG. Thus, because N is pure in G, z′ = nz for some
z ∈ N . We now apply the hypothesis that H and N are almost
strongly compatible to obtain x′ ∈ H ∩ N and a positive integer k
such that ‖kn(h + z)‖G ≤ ‖knh + x′‖G = ‖knh + x′‖H . We now set
x = knh + x′ ∈ H and m = kn. Then certainly x ∈ mh + (H ∩ N).
Moreover, ‖mh + (H ∩ N)‖H/(H∩N) ≤ ‖mh + N‖G/N = ‖ky‖G =
‖mh + kz′‖G = ‖kn(h + z)‖G ≤ ‖knh + x′‖H = ‖x‖H . Therefore,
‖x‖H = ‖mh+ (H ∩N)‖H/(H∩N), as desired.

Proposition 4.5. Suppose that H is a subgroup of G and that N is
a pure knice subgroup of G that is almost strongly compatible with H.
If M is a subgroup of G that contains N and if M/N is almost strongly
compatible with (H+N)/N in G/N , then M and H are almost strongly
compatible in G.

Proof. By Lemma 4.2(i), at least H and M are locally compatible.
Now suppose that h ∈ H and x ∈ M . To complete the proof we need
to show that there exist a positive integer m and an x′ ∈ H ∩M such
that ‖m(h+ x)‖ ≤ ‖mh+ x′‖.
Because (H+N)/N is almost strongly compatible withM/N , ‖k(h+
x) + N‖ ≤ ‖(kh + c) + N‖ for some positive integer k and c ∈
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(H + N) ∩M = (H ∩M) + N . Thus, without loss, we may assume
that c ∈ H ∩M . Since N is knice in G, Lemma 2.2 applies to produce
a y ∈ N such that ‖n(kh+ c)+ y‖ = ‖n(kh+ c)+N‖ for some positive
integer n. Note that y ∈ nG. Therefore, since N is pure in G, y = ny′

for some y′ ∈ N . We now have
‖nk(h+ x)‖ ≤ ‖nk(h+ x) +N‖ ≤ ‖n(kh+ c) +N‖

= ‖n(kh+ c) + y‖ = ‖n((kh+ c) + y′)‖.
Since kh + c ∈ H and y′ ∈ N , the fact that H and N are almost
strongly compatible implies that ‖l((kh+c)+y′)‖ ≤ ‖l(kh+c)+z‖ for
some z ∈ H ∩ N and positive integer l. Hence, ‖nl((kh + c) + y′)‖ ≤
‖n(l(kh + c) + z‖. If we now take m = nlk and x′ = nlc + nz, then
x′ ∈ H ∩M and

‖m(h+ x)‖ = ‖l(nk(h+ x))‖ ≤ ‖l(n((kh+ c) + y′))‖
≤ ‖n(l(kh+ c) + z)‖ = ‖mh+ x′‖

as desired.

As the final result of this section, we establish a link between the
notions of almost strong compatibility and almost strong separability.

Proposition 4.6. Suppose H is almost strongly separable in G. If
A is a countable subgroup of G, then there is a countable subgroup B
of G that contains A and is almost strongly compatible with H.

Proof. Since H is almost strongly separable in G, for each a ∈ A there
is a countable subgroup Ca ⊆ H such that the following conditions are
satisfied.

(1) For each prime p and h ∈ H, there exists cp ∈ Ca such that
|a+ h|p ≤ |a+ cp|p.
(2) For each h ∈ H, there exists c′ ∈ Ca such that ‖m(a + h)‖ ≤

‖m(a+ c′)‖ for some positive integer m.
Set C = (

⋃
a∈A Ca) and A1 = 〈A,C〉. Notice that A1 is countable

and, for each a ∈ A, the following conditions are satisfied.
(1′) For each prime p and h ∈ H, there exists c ∈ H ∩ A1 such that

|a+ h|p ≤ |a+ c|p.
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(2′) For each h ∈ H, there exists c′ ∈ H ∩A1 such that ‖m(a+h)‖ ≤
‖ma+ c′‖ for some positive integer m.
By repeated applications of the above construction, we obtain an

ascending sequence

A = A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ · · · (n < ω)

of countable subsets of G with the property that, for any a ∈ An,
h ∈ H and prime p, there exist elements c and c′ in H∩An+1 such that
|a+h|p ≤ |a+c|p and ‖m(a+h)‖ ≤ ‖ma+c′‖ for some positive integer
m. Then B =

⋃
n<ω An is countable and is almost strongly compatible

with H.

Remark 4.7. For later use, we note that Proposition 4.6 is also true
if “almost strongly separable” and “almost strongly compatible” are
replaced by “locally separable” and “locally compatible,” respectively.

5. The main theorem. Recall that a collection C of subgroups
of G is an Axiom 3 system for G if the following three conditions are
satisfied.

(G0) C contains the trivial subgroup 0.
(G1) C is closed under unions of ascending chains.
(G2) For each N ∈ C and countable subgroups A of G, there exists
M ∈ C such that N +A ⊆M and M/N is countable.

As is shown in [4, Theorem 3.2], a group G is a global Warfield group if
and only if G has an Axiom 3 system C consisting of knice subgroups.

Definition 5.1. Suppose that H is a subgroup of a global Warfield
group G.

(I) If there exists an Axiom 3 system C of knice subgroups of G such
that, for each N ∈ C, (H + N)/N is a global k-group that is almost
strongly separable in G/N , then we say that G satisfies Axiom 3 over
H with respect to almost strongly separable k-groups.

(II) If there exists an Axiom 3 system C of knice subgroups of G such
that, for each N ∈ C, (H +N)/N is locally separable in G/N , then we
say that G satisfies Axiom 3 over H with respect to locally separable
groups.
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Theorem 5.2. For an isotype subgroup H of a global Warfield group
G, the following statements are equivalent.

(1) H is a global Warfield group.

(2) G satisfies Axiom 3 over H with respect to almost strongly
separable k-groups.

(3) H has a decomposition basis and G satisfies Axiom 3 over H with
respect to locally separable groups.

Proof. We begin by showing that (1) implies (2). Since, assuming (1),
both G and H are Warfield groups, there exist an Axiom 3 system CG of
knice subgroups for G and an Axiom 3 system CH of knice subgroups
for H. Now introduce C as that family containing all N ∈ CG that
satisfy the following three conditions:

(a) N is a pure subgroup of G.

(b) H ∩N ∈ CH .

(c) N is almost strongly compatible with H.

We shall show that C is the desired Axiom 3 system satisfying condition
(I) of Definition 5.1. Indeed, since H/M is a global Warfield group for
allM ∈ CH and (H+N)/N ∼= H/(H∩N), it follows that (H+N)/N a
Warfield group for each N ∈ C. In particular, (H+N)/N is a k-group.
Moreover, (H +N)/N is isotype in G/N by Lemma 4.2(ii), and hence
(H+N)/N is almost strongly separable in G/N by Proposition 3.6. It
remains to verify that C is an Axiom 3 system for G. But the collection
of all Axiom 3 systems for G is closed under finite intersections [1,
Lemma 1.2] and so we may deal with the three conditions (a), (b) and
(c) separately. As the set of all pure subgroups of G is easily seen to be
an Axiom 3 system, there is no difficulty with condition (a). Likewise,
the proof of Lemma 1.5 in [1] shows that the collection of all N ∈ CG

with H ∩ N ∈ CH is an Axiom 3 system for G. Finally, since almost
strong compatibility is an inductive relation, it suffices to show that if
N ∈ C and A is a countable subgroup of G, there is an M in CG such
that M contains A +N , M/N is countable and M is almost strongly
compatible with H. By a simple interlacing argument using property
(G2) and Proposition 4.6, we obtain anM ∈ CG satisfying the first two
of these conditions and with M/N almost strongly compatible with
(H +N)/N . Then, since N is almost strongly compatible with H, and
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we may now assume condition (a), M is almost strongly compatible
with H by Proposition 4.5.

We next turn to the proof that (2) implies (1). So suppose that C is
an Axiom 3 system of knice subgroups for G with the property that, for
each N ∈ C, (H +N)/N is a k-group that is almost strongly separable
in G/N . We restrict attention to the subfamily CG consisting of all
N ∈ C such that
(a) N is a pure subgroup of G.

(b) H ∩N is pure in H.

(c) N is almost strongly compatible with H.

To verify that CG is an Axiom 3 system, we may once again deal with
the three conditions (a), (b) and (c) separately. But (a) and (c) are
handled exactly as in the preceding paragraph; while condition (b)
again follows from the proof of Lemma 1.5 in [1] and the fact that pure
subgroups of H form an Axiom 3 system for H. Now, from the Axiom 3
system CG, we extract a smooth chain

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nα ⊆ · · · (α < µ)

where G =
⋃

α<µNα and, for all α < µ, Nα ∈ CG and |Nα+1/Nα| ≤ ℵ0.
Then, for all α, H/(H ∩Nα) ∼= (H +Nα)/Nα is a k-group and Nα is a
pure knice subgroup of G that is almost strongly compatible with H.
It then follows from Proposition 4.4 that each H ∩ Nα is knice in H.
Also, each H ∩Nα is pure in H by condition (b). Therefore,

0 = H ∩N0 ⊆ H ∩N1 ⊆ · · · ⊆ H ∩Nα ⊆ · · · (α < µ)

is a smooth chain of pure knice subgroups of H, where each link in
the chain has countable index in the next and H =

⋃
α<µ(H ∩ Nα).

Theorem 2.5 now applies to show that H is a global Warfield group.

At this point it should be clear that (2) implies (3). Indeed, if
(2) holds, the argument above shows that H is a global Warfield
group and hence has a decomposition basis. Moreover, condition (2)
implies directly that G satisfies Axiom 3 over H with respect to locally
separable groups.

Finally we complete the proof of Theorem 5.2 by showing that
condition (3) implies (1). Assuming (3), select a decomposition basis
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X for H, and let C be an Axiom 3 system of knice subgroups for G
that witnesses to the fact that G satisfies Axiom 3 over H with respect
to locally separable groups. We first introduce the family C′ consisting
of all N ∈ C that satisfy to four conditions:
(a) N is a pure subgroup of G.

(b) H ∩N is pure in H.

(c) N is locally compatible with H.

(d) (H ∩N)/〈XN 〉 is torsion, where XN = (H ∩N) ∩X = N ∩X.
We claim that C′ is an Axiom 3 system for G. Conditions (a) and

(b) can be dealt with exactly as in the proof that (2) implies (1); while
(c) can be handled by an interlacing argument using property (G2),
Lemma 4.2 and Remark 4.7. As it is routine to verify that the family
of all subgroups N of G that satisfy condition (d) forms an Axiom 3
system for G, we conclude that C′ is indeed an Axiom 3 system for G.

Throughout this paragraph, N will denote a fixed group in C ′ that is
locally compatible with 〈X〉. Note that Lemma 4.2 implies that H ∩N
is a nice subgroup of H. We maintain that H ∩ N is actually knice
in H. To see this, it is enough to show that (H ∩ N) ⊕ 〈YN 〉 is a ∗-
valuated coproduct in H where YN = X \ XN . But this will be the
case if (H ∩ N) ⊕ 〈YN 〉 is a valuated coproduct since 〈XN 〉 ⊕ 〈YN 〉 is
a ∗-valuated coproduct and (H ∩ N)/〈XN 〉 is torsion. However, that
(H∩N)⊕〈YN 〉 is a valuated coproduct is an easy consequence of the fact
thatH∩N is locally compatible inH with 〈X〉 (where the latter follows
fromH being isotype in G and 〈X〉 ⊆ H). Therefore, as claimed, H∩N
is knice in H. Furthermore, by Remark 1.8 in [4], H/(H ∩ N) has a
decomposition basis consisting of all the cosets y+(H∩N) with y ∈ YN .
Then, by the canonical isomorphism H/(H ∩ N) ∼= (H + N)/N , the
corresponding cosets y + N form a decomposition basis for the group
(H + N)/N . Since (H + N)/N is an isotype subgroup of G/N by
Lemma 4.2, 〈y + N : y ∈ YN 〉 = (〈X〉 + N)/N is strongly separable
in G/N by Corollary 3.3. Since C′ is an Axiom 3 system, a simple
interlacing argument exploiting Remark 4.7 yields an M ∈ C′ that
contains N and any given countable subgroup A of G where M/N is
countable and locally compatible with (〈X〉 + N)/N . Because N is
locally compatible with 〈X〉, the same applies to M by Lemma 4.2.

Now take CG to be the family of all N ∈ C′ that are locally compatible
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with 〈X〉. Since local compatibility is an inductive relation, the
argument in the preceding paragraph allows us to conclude that CG

is an Axiom 3 system for G. To complete the proof that condition (3)
implies (1), extract from the Axiom 3 system CG a smooth chain

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nα ⊆ · · · (α < µ)

where G =
⋃

α<µNα and, for all α < µ, Nα ∈ CG and |Nα+1/Nα| ≤ ℵ0.
As shown above, Nα ∈ CG implies that H∩Nα is knice in H. Moreover,
by condition (b), each H ∩ Nα is pure in H. Thus, after intersecting
each link in the chain withH, the conclusion thatH is a global Warfield
group follows from Theorem 2.5.
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