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THE BLOW-UP PROFILE FOR
A FAST DIFFUSION EQUATION WITH A
NONLINEAR BOUNDARY CONDITION

RAÚL FERREIRA, ARTURO DE PABLO,

FERNANDO QUIRÓS, JULIO D. ROSSI

ABSTRACT. We study positive solutions of a fast diffusion
equation in the half-line with a nonlinear boundary condition,{

ut = (um)xx (x, t) ∈ R+ × (0, T ),

−(um)x(0, t) = up(0, t) t ∈ (0, T ),

u(x, 0) = u0(x) x ∈ R+,

where 0 < m < 1 and p > 0 are parameters. We describe
in terms of p and m when all solutions exist globally in time,
when all solutions blow up in a finite time, and when there
are both blowing up and global solutions. For blowing up
solutions we find the blow-up rate and the blow-up set and we
describe the asymptotic behavior close to the blow-up time T
in terms of a self-similar profile.

1. Introduction and main results. We deal with the problem

(1.1)



ut = (um)xx (x, t) ∈ R+ × (0, T ),
−(um)x(0, t) = up(0, t) t ∈ (0, T ),
u(x, 0) = u0(x) x ∈ R+,

where 0 < m < 1 and p > 0 are parameters. We assume that u0 is
bounded, continuous and positive in R+ = (0,∞).

For every m > 0 problem (1.1) can be thought of as a model for
nonlinear heat propagation. In this case u stands for the temperature
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and −(um)x represents the heat flux. Hence the boundary condition
represents a nonlinear radiation law at the boundary. This kind of
boundary condition appears also in combustion problems when the
reaction happens only at the boundary of the container, for example
because of the presence of a solid catalyzer, see [22] for a justification.

Local in time existence of positive classical solutions of this problem
and comparison arguments can be easily established, see Section 2. The
time T is the maximal existence time for the solution, which may be
finite or infinite. If T < ∞, then u becomes unbounded in finite time
and we say that it blows up. If T = ∞ we say that the solution is global.

In this article we are interested in the blow-up phenomenon, a
subject that has deserved a great deal of attention in recent years,
see for example the book [26] and the surveys [19] and [7]. For
specific references about blow-up in problems with nonlinear boundary
conditions see the surveys [6, 8].

As a precedent we have the work of Galaktionov and Levine [12],
where they study the same problem for the range of parameters m ≥ 1.
The authors show that if 0 < p ≤ p0 = (m + 1)/2, then for arbitrary
initial data the solution is global in time, while for p > (m + 1)/2
there are solutions with finite time blow-up. Thus, p0 is the critical
global existence exponent. Moreover, they prove that pc = m + 1 is a
critical exponent of Fujita type. By definition, this means that pc has
the following properties:

(i) if p0 < p ≤ pc, then u blows up for all nontrivial u0;

(ii) if p > pc, then u is global in time for “small” u0.

Our first theorem proves that the same result holds valid for
0 < m < 1.

Theorem 1.1. The critical exponents for problem (1.1) are given by
p0 = (m+ 1)/2 and pc = m+ 1. More precisely:

(i) If 0 < p ≤ (m+ 1)/2 every positive solution is global in time.

(ii) If (m + 1)/2 < p ≤ m + 1 every positive solution blows up in
finite time.

(iii) If p > m+1 there exist solutions that blow up in finite time and
there exist also global solutions.
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The main difference between the cases m < 1, the so-called fast dif-
fusion equation, and m > 1, the well-known porous medium equation,
is the finite speed of propagation property. Solutions with compactly
supported initial data u0 stay compactly supported for 0 < t < T if
m > 1. However, if m < 1, solutions become instantaneously positive
everywhere. That is the reason why we are restricting ourselves to
positive solutions. This introduces a technical difficulty. The results
in [12] for m > 1 are restricted to compactly supported initial data.
This makes comparison with global supersolutions easier. In our case
m < 1 and we have to take care of the decay of solutions at infinity.
This is done thanks to the decay results for general solutions of the fast
diffusion equation of Herrero and Pierre, [14]. The linear case m = 1,
also treated in [12], is similar to the fast diffusion case, as solutions
become instantaneously positive. However, the linearity of the equa-
tion provides a representation formula. In the nonlinear case we do not
have such a tool, and the proofs have to be necessarily different.

We also remark that the critical exponents are not the same in the
cases m > 1 or m < 1 if we consider problem (1.1) defined in a bounded
interval [0, L] with the boundary conditions −(um)x(0, t) = up(0, t),
−(um)x(L, t) = 0, see [10]. In fact, in this situation p0 = 1 if m > 1
while p0 = (m+1)/2 if 0 < m < 1; the exponent pc does not exist, since
every nontrivial solution blows up for p > p0. Therefore Theorem 1.1
is not so evident.

Once we have characterized for which exponents the solution to
problem (1.1) can or cannot blow up, we want to study the way the
blowing up solutions behave as approaching the blow-up time. This
means that we must investigate where the solutions blow up, the blow-
up set, the speed at which they blow up, the blow-up rate, and the
shape of the solutions close to the blow-up time, the blow-up profile.
To this purpose we consider from now on exponents p > (m+1)/2 and
u a blowing up solution with blow-up time T .

We begin with the blow-up set, which is defined in the following way,

B(u) = {x ∈ [0,∞); ∃xn → x, tn ↗ T, with u(xn, tn) → +∞}.
We have single-point blow-up for every p > (m+ 1)/2.

Theorem 1.2. Let u be a blowing up solution of (1.1). Then
B(u) = {0}.
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The argument that we use is valid for a bounded interval, improving
the result in [10] as we do not require conditions on the initial data.

Our theorem is in contrast with the case m > 1, where the blow-up
set is a single point if p > m, but is the whole half-line if p < m and
a bounded interval if p = m. Notice that in our case in order to have
blowing up solutions we need p > (m+ 1)/2, and hence p > m.

To get the blow-up rate of blowing up solutions, we need an extra
monotonicity assumption,

(H) ut > 0 for t near T .

This hypothesis holds for example for solutions with smooth compatible
initial data such that (um

0 )′′ ≥ 0.

Theorem 1.3. Let u be a solution of (1.1) with finite blow-up time
T satisfying (H). As t approaches T we have

(1.2) ‖u(·, t)‖∞ ∼ (T − t)−1/(2p−m−1).

where f ∼ g means that there exist finite positive constants c1, c2 such
that c1g ≤ f ≤ c2g.

The argument in the proof is local and hence applies to the case of
a bounded interval. Therefore (1.2) holds for solutions of the latter
problem, improving slightly the result of [10]. This contrasts with the
case m > p > 1, where the rate is not the same in the half-line as in a
bounded interval, see [10, 24].

Remark. Following [15] it is possible to obtain the blow-up rate
without the monotonicity assumption (H). However, a restriction on the
exponents arises and the rates are only valid for (m+1)/2 < p ≤ m+1.
A different approach to eliminate the monotonicity assumption, based
on the study of the energy functional, has been recently proposed in
[5] for the case m = 1. These authors use a concavity argument of [20]
to prove a lower bound for the energy. However, it is unclear whether
this concavity argument may be applied in the nonlinear case m �= 1.

Next we study the asymptotic behavior of blowing up solutions, which
is the main subject of this work. As is often the case in nonlinear
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problems of parabolic type, the characteristic properties of an equation,
in this case the blow-up behavior, are displayed by means of appropriate
self-similar solutions, [3].

The linear case m = 1 is considered in [9] and [16]. The case m > 1
is studied in [23] by means of a self-similar solution constructed using
results from [13]. When m < 1 no such self-similar solution is available
(the results in [13] are restricted to m > 1) and we must establish its
existence in the present paper.

In the case of problems with finite-time blow-up, the expected self-
similar solutions take the form

(1.3) U(x, t) = (T − t)−αF (ξ), ξ = x(T − t)−β.

The values of the similarity parameters α and β are automatically
determined from the fact that U(x, t) is a solution of (1.1); we easily
get the values

(1.4) α =
1

2p−m− 1
, β =

p−m
2p−m− 1

.

Observe that in the blow-up range we have α, β > 0. The profile
F = F (ξ) must satisfy the problem

(1.5)
{
(Fm)′′ − βξF ′ − αF = 0 ξ ∈ (0,∞),
−(Fm)′(0) = F p(0).

Theorem 1.4. There exists a unique solution of problem (1.5). This
solution is positive, strictly decreasing and satisfies

(1.6) F (ξ) ∼ ξ−α/β as ξ → ∞.

The precise decay (1.6) is crucial. Other decays would lead either
to a self-similar solution with global blow-up, something which is
impossible, or to a trivial asymptotic profile.

Next we show that the asymptotic behavior of the solution u(x, t)
of problem (1.1) as t approaches the blow-up time T is described by
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the self-similar solution (1.3). Following the standard technique, we
introduce the new rescaled function

g(ξ, τ) = (T − t)αu(x, t), ξ = x(T − t)−β,

where α and β are given by (1.4) and

τ = − log(T − t)

is the new time. Then g(ξ, τ) satisfies the following parabolic problem



gτ = (gm)ξξ − βξgξ − αg (ξ, τ) ∈ R+ × (− log T,∞),
−(gm)ξ(0, τ ) = gp(0, τ ) τ ∈ (− logT,∞),
g(ξ,− logT ) = Tαu0(ξT−β) ξ ∈ R+.

Therefore, the problem of the asymptotic behavior of u(x, t) near a
finite blow-up time T > 0 is reduced to the problem of the stabilization
of g(ξ, τ) as τ → ∞ to a stationary solution of (1.7), i.e., a solution of
(1.5). We prove the following general result.

Theorem 1.5. Let u be a solution to problem (1.1) satisfying the
rate (1.2). Then the rescaled orbits g(ξ, τ) tend to the stationary self-
similar profile constructed in Theorem 1.4. Therefore, as t approaches
T , we have single point blow-up in the precise form

(1.8) lim
t↗T

(T − t)α|u(x, t)− U(x, t)| = 0,

uniformly in sets of the form |x| ≤ c(T − t)β.

In particular, from (1.6) we obtain

(1.9) u(x, T ) ∼ x−α/β for x ≈ 0.

This behavior can also be proved directly, see for instance [8], even if
we only assume u0 nonincreasing.

The self-similar solution constructed in Theorem 1.4 also gives the
behavior close to the blow-up time for solutions of problem (1.1)
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in a bounded interval (0, L) with a Neumann boundary condition
(um)x(L, t) = 0 at the right boundary. This completes the analysis
given in [10].

Organization of the paper. In Section 2 we prove Theorem 1.1;
Theorems 1.2 and 1.3 are proven in Section 3; Theorem 1.4 is proven
in Section 4; finally we prove Theorem 1.5 in Section 5 and give the
appropriate modifications needed to adapt the proof to the case of a
bounded interval.

2. Global existence and Fujita exponents. We start by making
some comments on the local in time theory for problem (1.1). To
establish the existence of a solution for some time 0 ≤ t < T , we make
use of two auxiliary problems. For any n ∈ N, let un, Un be the
solutions of

(In)




(un)t = (um
n )xx (x, t) ∈ (0, n)× (0, tn),

−(um
n )x(0, t) = up

n(0, t) t ∈ (0, tn),

un(n, t) = 0 t ∈ (0, tn),

un(x, 0) = φn(x) x ∈ (0, n),

(IIn)




(Un)t = (Um
n )xx (x, t) ∈ (0, n)× (0, Tn),

−(Um
n )x(0, t) = Up

n(0, t) t ∈ (0, Tn),

(Um
n )x(n, t) = 0 t ∈ (0, Tn),

Un(x, 0) = ψn(x) x ∈ (0, n),

where the initial functions satisfy: {φn} is a monotone increasing ap-
proximation of u0, continuous and compatible with the boundary con-
ditions of (In); {ψn} is a monotone decreasing sequence of decreasing
functions, continuous and compatible with the boundary conditions of
(IIn), and with ψn ≥ ‖u0‖∞.

The local in time existence for these problems for some tn and Tn,
as well as comparison properties are classical for (In) and follows from
[10] for (IIn).

Now it is easy to check the following properties:

• un+1 is a supersolution to problem (In);
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• Un+1 is a subsolution to problem (IIn);

• Uk is a supersolution to problem (In) for every k ≥ n.
This in particular implies

Tn ≤ Tn+1 ≤ tn+1 ≤ tn.

Therefore, there exists the limit u = limn→∞ un, it is a solution to
problem (1.1), and it is defined for 0 ≤ t < T for some T > 0.

As to comparison of sub and supersolutions to problem (1.1), the
same argument as in [24] shows that it holds provided that the initial
values are also strictly ordered at x = 0. Observe that this does not
imply uniqueness, as it can fail for some values of the exponents, see
for instance [24].

Finally, the positivity of u follows by comparison with the solutions
of the problem with Neumann boundary condition zero at x = 0.

We are now ready to prove Theorem 1.1. The basic idea is to compare
from below with blowing up subsolutions or from above with global in
time supersolutions.

Proof of Theorem 1.1. (i) We look for a supersolution in self-similar
form

ū(x, t) = eLtϕ(ξ), ξ = xeJt,

see [23]. We choose ϕ(ξ) = (K + e−Mξ)1/m, with

J =
1
2
(1−m)L, L = (K + 1)(2p−1)/m,

M = (K + 1)p/m, K > 0.

It is not hard to check that ifK is large enough, then ū satisfies the first
two equations in problem (1.1) with the = sign replaced by ≥. Also,
we have ū(x, 0) ≥ u0(x) and ū(0, 0) > u0(0) if we choose K ≥ ‖u0‖m

∞.
Hence the comparison argument gives ū(x, t) ≥ u(x, t) and we conclude
that u is global.

(ii) We now construct blowing up subsolutions for p > (m + 1)/2.
Consider the function

u(x, t) = (T − t)−αϕ(ξ), ξ = x(T − t)−β,
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with α and β as in (1.4), and with profile ϕ(ξ) = (A+Bξ)−2/(1−m). It
is a subsolution if

B2 ≥ (1−m)2

2m(m+ 1)(2p−m− 1)
, A(2p−m−1)/(1−m) ≤ 1−m

2mB
,

i.e., B large and A small. The condition p > (m+1)/2 comes from the
second inequality.

We have thus proven that p0 = (m + 1)/2 is the global exis-
tence exponent. To prove that every solution blows up in the range
(m+1)/2 < p < m+1, we use this subsolution u and show that it can
be put from below any solution u. We follow the same argument used
in [12], comparing our solution with the explicit Barenblatt solution
(see below) and then comparing this solution with the above blowing
up subsolution.

We first assume, without loss of generality, that u is nonincreasing
in x. If not we consider any (nonincreasing) solution w corresponding
to an initial nonincreasing value w0 ≤ u0, with w0(0) < u0(0), for
instance w0 = (1− ε)ũ0, where ũ0 is the nonincreasing minorant of u0.
If w blows up in finite time, so does u. On the other hand, u satisfies,
for every ε > 0 and t0 > 0 fixed,

u(x, t0) ≥
(
(Cm + ε)x2

t0

)−1/(1−m)

for x ≥M,

with

(2.1) Cm = (1−m)/(2m(m+ 1))

and some M > 0 large, see [14]. Also,

u(x, t0) ≥ u(M, t0) for 0 ≤ x ≤M.

Now consider the Barenblatt solution
(2.2)
E(x, t) = t−1/(m+1)G(x/t1/(m+1)), G(ξ) = (a2+Cmξ

2)−1/(1−m),

where Cm is given in (2.1) and a > 0 is a free constant. It is easy to
choose a > 0 large and 0 < τ < t0 such that u(x, t0) ≥ E(x, τ). As
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∂E/∂x(0, τ ) = 0, comparison implies that u(x, t + t0) ≥ E(x, t + τ )
for every t > 0. The final step is to select t∗ > 0 such that
E(x, t∗ + τ ) ≥ u(x, 0). This means

a−2/(1−m)(t∗ + τ )−1/(m+1) ≥ T−αA−2/(1−m),

((t∗ + τ )/Cm)1/(1−m) ≥ (T/B2)1/(1−m).

This is possible if
Tα � T 1/(m+1)

for arbitrarily large T , i.e., if and only if p < m+ 1.

It remains to deal with the case p = m+1. We follow the stationary
state technique from [12]. Assume by contradiction that there exists
a global nontrivial solution. Without loss of generality, we can assume
that u0(0) > 0. Hence, using the spatial decay given in [14], we can
choose a and b such that

u0(x) ≥ G(x+ b),

where Cm is given (2.1) and G is the Barenblatt profile given in (2.2).
Now we make the following change of variables,

θ(ξ, τ) = (1 + t)1/(m+1)u(ξ(1 + t)1/(m+1), t),

where τ = log(1+t) denotes the new time. This function θ is a solution
of 


θτ = (θm)ξξ +

1
m+ 1

(ξθ)ξ (ξ, τ) ∈ R+ × R+,

−(θm)ξ(0, τ ) = θm+1(0, τ ) τ ∈ R+,
θ(ξ, 0) = u0(ξ) ξ ∈ R+.

Let us call θ(ξ, τ) the corresponding solution with initial data G(ξ+ b).
It follows that θ ≥ θ and therefore θ is also global. It can be easily
checked that θτ ≥ 0, see [12]. We will prove that for any ξ > 0,

+∞ > lim
τ→∞ θ(ξ, τ) = G(ξ) �≡ 0.

To see this we just observe that the limit of θ(ξ, τ) exists (finite or not)
for every ξ > 0. If there exists a point ξ0 > 0 with limτ→∞ θ(ξ0, τ ) =
+∞, then we have that θ(ξ, τ) → +∞ uniformly for 0 < ξ < ξ0. Hence
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we can put a blowing up solution below θ, a contradiction with the fact
that θ is global. Arguing as in [12] we can prove that G is a solution
of

(2.3) (Gm)ξξ +
1

m+ 1
(ξG)ξ = 0.

satisfying the boundary condition −(Gm)′(0) = Gm+1(0). We end the
argument by recalling that every solution of (2.3) is a Barenblatt profile,
and this profile does not satisfy the boundary condition, leading to a
contradiction.

(iii) Now we consider p > m + 1 and show that besides the above
blowing up solutions there are also nontrivial global in time solutions.
We look for a global supersolution of the form

ū(x, t) = (t+ τ )−αf(ξ), ξ =
x

(t+ τ )β
,

where τ > 0 and α and β as before. As we need f to satisfy

(2.4)
{
(fm)′′(ξ) + βξf ′(ξ) + αf(ξ) ≤ 0 ξ ∈ R+,
−(fm)′(0) ≥ fp(0),

we try f(ξ) = LG(ξ + 1), with G the profile of the Barenblatt solution
(2.2). Since p > m+ 1, it is possible to choose L such that

m+ 1
2p−m− 1

< Lm−1 < 1.

Finally, with this choice of L one can check that it is possible to choose
a large enough in order to verify (2.4).

3. The blow-up set and the blow-up rate. In this section we
prove Theorems 1.2 and 1.3. We are assuming p > (m + 1)/2 and we
consider a solution u(x, t) of (1.1) that blows up at a finite time T .

Proof of Theorem 1.2. We perform comparison with the explicit
super-solution

U1(x, t) =
(
t+ τ
Cmx2

)1/(1−m)
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for τ > 0 large enough and Cm as before, if u0 has the appropriate
decay at infinity. If not we use the super-solution

U2(x, t) = (t+ τ )1/(1−m)w(x),

where w is a solution of the elliptic problem
 (wm)′′ − 1

1−m w = 0 0 < x < R,

w(0) = w(R) = ∞,

and τ and R are large enough, see [4].

For the rest of the section we assume that u satisfies hypothesis (H).
As a consequence we have that (um)xx ≥ 0 and ux ≤ 0. Therefore, the
following properties hold for t close to T ,

u(0, t) = max
x∈[0,∞)

u(x, t), (um)x(0, t) = min
x∈[0,∞]

(um)x(x, t).

Proof of Theorem 1.3. In this proof we follow the techniques used in
[16, 24] for the case m ≥ 1.

We define M(t) = u(0, t) and the function

φM (r, s) =
1
M(t)

u(ar, bs+ t),

where a = Mm−p, b = Mm+1−2p. Since p > (m + 1)/2 > m, we have
that a and b go to zero as t→ T .
The function φM is a solution of the following problem,{

(φM )s = (φm
M )rr (r, s) ∈ R+ × (−t/b, 0),

−(φm
M )r(0, s) = φ

p
M (0, s) s ∈ (−t/b, 0).

Moreover, using that ut ≥ 0, we get that 0 ≤ φM ≤ 1 and φM (0, 0) = 1.

We claim that there exist two positive constants c and C such that

c ≤ (φM )s(0, 0) ≤ C.
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If we rewrite these inequalities in terms of M(t), we obtain

c ≤Mm−2p(t)M ′(t) ≤ C.

Integrating and taking into account that M(t) = u(0, t), we get

C1(T − t)−1/(2p−m−1) ≤ u(0, t) ≤ C2(T − t)−1/(2p−m−1),

and the proof is complete.

Now we prove the claim. First of all we show that φM (r, s) is bounded
below away from zero in sets of the form [0, r0] × [s0, 0], with s0 < 0
small and any r0 > 0. In fact φM (0, s0) ≥ 1/2 if s0 < 0, |s0| < ε, for if
not φM cannot reach the value 1 at (0, 0). On the other hand, the fact
that (φM )s ≥ 0 implies φm

M convex, and therefore, using the boundary
condition, φm

M (r, s) ≥ (1/2)m − r, so that, choosing r1 small, we get
φM ≥ c > 0 for 0 ≤ r ≤ r1, s0 ≤ s ≤ 0. Now, using the decay rate
of solutions of the fast diffusion equation given above, [14], we obtain
φM (r, s) ≥ cr−2/(1−m), r > 0, s0 ≤ s ≤ 0.

The uniform bounds for φM in compact sets allow us to use standard
parabolic estimates to conclude the upper bound for (φM )s(0, 0), see
[21].

To obtain the lower estimate assume by contradiction that there exists
a sequence Mj → ∞ such that

(φMj
)s(0, 0) −→ 0.

Again the uniform bounds for φM give that every sequence φMj
(r, s)

is equicontinuous in compact sets. Then, for some subsequence, which
we write again as Mj → ∞, we get

φMj
(r, s) −→ Φ(r, s)

uniformly on compact sets. Our assumption implies for the limit

Φs(0, 0) = 0.

On the other hand, since ut ≥ 0, the function w = Φs is nonnegative
and satisfies

ws = (mΦm−1w)rr.
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Moreover, at r = 0,

−(mΦm−1w)r(0, s) = pΦp−1w(0, s).

Observe that Φ(0, 0) = 1 > 0 and that w has a minimum at (0, 0). So
by Hopf’s lemma we obtain that w ≡ 0. Then Φ is a stationary solution
of the fast diffusion equation, i.e.,

Φm = c1r + c2.

The boundary conditions imply Φm(r) = 1−r, which is a contradiction
with the fact that Φ is a nonnegative function in all R+. The claim is
proved and the theorem follows.

4. The self-similar profile. In this section we construct the self-
similar profile giving the asymptotic behavior. The construction is
based in the following lemma.

Lemma 4.1. Let 0 < m < 1, α, β > 0 with α/β < 2/(1 − m),
V ∈ R, and consider the problem




(Fm)′′ − βξF ′ − αF = 0 ξ ∈ R+,
F (0) = 1,
−(Fm)′(0) = V.

There exists a unique value V = V∗ > 0 such that this problem has a
classical bounded solution. The solution is unique, strictly decreasing
and satisfies the decay rate (1.6).

The existence of a unique self-similar profile for our problem with the
proper decay is now immediate.

Proof of Theorem 1.4. Let F1 be the solution to problem (4.1) with
V = V∗ for α and β as in (4.1). For this choice of α and β the condition
α/β < 2/(1−m) reads p > (m+ 1)/2. Then the scaled function

Fλ(ξ) = λF1(λ(1−m)/2ξ)
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satisfies the equation for the profile plus the boundary conditions

Fλ(0) = λ, −(Fm
λ )′(0) = λ(m+1)/2V∗.

Therefore it suffices to choose λ = V 2/(2p−m−1)
∗ .

Proof of Lemma 4.1. We introduce the variables

X =
ξF ′

F
, Y =

1
m
ξ2F 1−m, η = log ξ.

This kind of transformation goes back to [2] and [18], and is used for
instance in [17, 25]. The resulting system is


dX

dη
= X(1−mX) + Y (α+ βX) ,

dY

dη
= Y (2 + (1−m)X).

We look for nonnegative profiles F , so we consider only the upper plane
{Y > 0}. As we are interested in solutions with F (0) = 1 and (Fm)′(0)
finite, the orbits we are looking for start at the critical point A = (0, 0).
The local analysis of this point is straightforward.

Proposition 4.1. The linearization of (4.2) around A = (0, 0) has
matrix (

1 α
0 2

)
with eigenvalues λ1 = 1 and λ2 = 2 and corresponding eigenvectors
e1 = (1, 0) and e2 = (α, 1). Thus A is a repeller.

To study the point at infinity in this phase-plane, we perform the
inversion change of variables

H =
1
Y
.

We arrive at 

dX

dη
= X(1−mX) +

α+ βX
H

,

dH

dη
= −H(2 + (1−m)X).
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In order to eliminate the singularity we perform the nonlinear change
of variable given implicitly by

dη

dτ
= H(η).

Observe that this change preserves the direction of the flow on the
upper half-plane {H > 0}, which is the same, {Y > 0}. Then X, H
satisfy 


dX

dτ
= HX(1−mX) + (α+ βX) ,

dH

dτ
= −H2(2 + (1−m)X).

The proper behavior in these variables corresponds to the critical
point B = (−α/β, 0). The local analysis around this point is again
straightforward.

Proposition 4.2. The critical point B = (−α/β, 0) is a saddle-node
of system (4.3). The linearization of (4.3) around B = (−α/β, 0) has
matrix (

β − α
β2

(β +mα)

0 0

)

with eigenvalues λ1 = β and λ2 = 0 and corresponding eigenvectors
e1 = (1, 0) and e2 = (1, β3/(α(β+mα))). The point B is a repeller on
the half-plane {H < 0} and a saddle on the half-plane {H > 0}.

Existence of the connection. We are looking for an orbit connecting
the critical points A and B. As there is a unique orbit σ∗ arriving
at B, we just have to trace back where it comes from. In the XY -
plane the critical point B corresponds to (−α/β,+∞). We observe
that dY/dη > 0 for X > −2/(1 − m), Y > 0 and that dX/dη > 0
for X = 0, Y > 0. Since 2/(1 − m) > α/β (this is equivalent to the
condition p > (m+ 1)/2), then the orbit σ∗ necessarily comes from A.

We now have to look more carefully at the behavior of this trajectory
near the point A. From Proposition 4.1, we have that in the second
quadrant, {X < 0, Y > 0}, all the trajectories exit the origin tangent
to the horizontal axis. Moreover, it is easy to check that they do this
quadratically. In particular our trajectory exits A like Y ∼ ΛX2 for
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FIGURE 1. The trajectories in the XY -plane.

some Λ > 0. This gives the value V∗ = 1/
√
mΛ . Even more, X < 0

implies that the profile F∗ corresponding to the orbit σ∗ is strictly
decreasing.

In order to give a complete understanding of the picture in the upper
plane {Y > 0}, and prove that σ∗ gives the unique profile, we consider
all the trajectories starting at the origin (X,Y ) = (0, 0) and check that
other choices of V give profiles that are either unbounded or defined
only in a bounded interval.

First of all, from the equation of the profile (4.1), it is easy to see that
once the function F satisfies F ′(ξ0) ≥ 0 for some ξ0 ≥ 0, then F ′(ξ) > 0
for every ξ > ξ0. Therefore, integrating (4.1) we get the inequality

(Fm)′ ≥ c1F,
which implies that F becomes unbounded for a finite value of ξ. This
corresponds to the trajectories in the XY -plane that exit the origin in
the first quadrant, V ≤ 0, and also those in the second quadrant that
cross the vertical axis, 0 < V < V∗.

We also observe that the trajectory σ∗ is a separatrix in the second
quadrant between those trajectories that cross the vertical axis and
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FIGURE 2. Solutions of (4.1) for different values of V .

those trajectories that cross the vertical line X = −2/(1−m). We now
prove that these last trajectories, which correspond to taking V > V∗,
give profiles that vanish at a finite value of ξ, thus not being defined
in the whole R+. To see this, let Y = Y (X) be a trajectory passing
through a point (−2/(1 −m), D), D > 0, at a time η0 ∈ R. The first
equation in (4.2) gives, for η > η0,

dX

dη
≤ −mX2,

since α + βX < 0, Y > 0. This implies that there exists a finite η∞
such that

(4.4) lim
η→η∞

X(η) = −∞.

Also, since dY/dη < 0 and dX/dη < 0 for η > η0, we have that there
exists the limit

lim
η→η∞

Y (η) = Y∞ ≥ 0.

If Y∞ > 0 and (4.4), we get F (η∞) > 0 and F ′(η∞) = −∞, a con-
tradiction with the regularity of positive solutions of (4.1). Therefore,
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from the relation between η and ξ, we deduce that there exists a finite
ξ∞ such that,

lim
ξ→ξ∞

F (ξ) = 0.

This completes the proof.

5. Asymptotic behavior. In this section we prove the stabilization
result for the rescaled problem (1.7).

Proof of Theorem 1.5. Thanks to the blow-up rate (1.2) we know
that g is bounded. The behavior of u near t = T is translated into the
behavior of g as τ → ∞. As expected, stationary solutions will play an
outstanding role.

Using arguments similar to those in the proof of Theorem 1.3, we
have that there exists a sequence τj → ∞ such that

(5.1) lim
j→∞

g(ξ, τ + τj) = g∗(ξ, τ)

uniformly in compact sets of R+. We want to prove that the function
g∗ does not depend on τ and therefore it coincides with the unique
stationary solution F constructed in the previous section.

We now construct a Lyapunov function for g following the ideas of
[27] and [11], taking note of the boundary condition. Putting h = gm,
we get the problem{

hτ = a(h)(hξξ + b(ξ, h, hξ)), (ξ, τ) ∈ R+ × R+,
−hξ(0, τ ) = hp/m(0, τ ), τ ∈ R+,

where

a(h) = mh(m−1)/m, b(ξ, h, z) = − β
m
ξh(1−m)/m z − αh1/m.

We remark that the boundedness of h, together with 0 < m < 1, imply
a(h) ≥ a0 > 0.

Consider the function

Lh(τ ) =
∫ ∞

0

Φ(ξ, h(ξ, τ), hξ(ξ, τ)) dξ − m

m+ p
h(m+p)/m(0, τ ).
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Differentiating and integrating by parts, we get

d

dτ
Lh(τ ) = − (hp/m(0, τ ) + Φz(0, h, hξ))hτ (0, τ )−

∫ ∞

0

1
a
Φzz(hτ )2 dξ

+
∫ ∞

0

(Φh − Φξz − Φhzhξ + bΦzz)hτ dξ.

We can eliminate the last integral by choosing appropriately the func-
tion Φ using the method of characteristics. It is given by

Φ(ξ, h, z) =
∫ z

0

(z − s) ρ (ξ, h, s) ds−
∫ h

0

b(ξ, s, 0) ρ (ξ, s, 0) ds,

where

ρ(ξ, h, z) = exp
(∫ ξ

0

bz(η) dη
)
,

and bz is evaluated along the characteristic φ(η, ξ, h, z), solution to{
φ′′ + b(η, φ, φ′) = 0 0 < η < ξ,
φ(ξ) = h, φ′(ξ) = z,

see [11]. Thus

ρ(ξ, h, z) = exp
(
− β
m

∫ ξ

0

ηφ(1−m)/m(η, ξ, h, z) dη
)
.

Therefore, ρ is defined only on the domain spanned by characteristic
lines. The calculation above allows to generate a global function ρ if
equation φ′′ = −b(η, φ, φ′) allows to pass in a homeomorphic way from
data at η = 0 to data at η = ξ. It is then clear that whenever β ≥ 0,
as in our case, we have ρ ≤ 1. A lower estimate for ρ is crucial in our
Lyapunov argument. If we could assert that all solutions φ involved
in bz are bounded then the last formula would imply a lower estimate
for ρ of the form ρ ≥ exp(−Cξ2). This is in principle not the case for
problem (5.2) and we meet problems if there are blow up solutions. This
difficulty will be dealt with below, so we assume that ρ ≥ exp(−Cξ2).
We now calculate

Φz(0, h, hξ) =
∫ hξ

0

ρ(0, h, s) ds = hξ(0, τ ) = −hp/m(0, τ ).



BLOW-UP PROFILE FOR A FAST DIFFUSION EQUATION 143

Putting it all together we get

d

dτ
Lh(τ ) = −

∫ ∞

0

1
a(h)

ρ(ξ, h, hξ)(hτ )2 dξ.

Since b(ξ, h, z) ≤ 0 and the function h is bounded, we have that

Lh(τ ) ≥ −C.

On the other hand, if we restrict ourselves to 0 < ξ < L for any given
L, we get ρ ≥ C(L) > 0. These estimates imply

4m
(m+ 1)2

∫ τ2

τ1

∫ L

0

((h(m+1)/(2m))τ )2 dξ dτ

≤ 1
C(L)

∫ τ2

τ1

∫ ∞

0

1
a(h)

ρ(ξ, h, hξ)(hτ )2 dξ dτ

=
1
C(L)

(Lh(τ1)− Lh(τ2)) ≤ C.

We conclude in a rather standard way the convergence of the orbits
to a stationary solution to the limit problem, (1.7), see for instance [1,
11]. Indeed,

∥∥∥h(m+1)/(2m)(·, τj + τ )− h(m+1)/(2m)(·, τj)
∥∥∥2

L2([0,L])

=
∫ L

0

∣∣∣h(m+1)/(2m)(ξ, τj + τ )− h(m+1)/(2m)(ξ, τj)
∣∣∣2 dξ

≤ τ
∫ L

0

∫ τj+τ

τj

∣∣∣∣ ddτ h(m+1)/(2m)(ξ, s)
∣∣∣∣
2

ds dξ → 0

as j → ∞, uniformly for bounded τ . Therefore, the sequence
h(m+1)/2m(ξ, τj + τ ) converges in the space L∞([0, τ ] : L2([0, L])) for
every τ > 0 and every L > 0. The limit does not depend on τ and is a
stationary solution of (1.7). The uniqueness of the stationary solution
to that problem, cf. Theorem 1.4, implies that the limit function g∗ in
(5.1) does not depend on τ . Hence (1.8).
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Justification of the computation. If there exist solutions of equation
(5.2) which blow up, the justification of the above process implies the
study of the approximate problem

(5.3)
{
hτ = a(h)(hξξ + b̃(ξ, h, hξ)) in R+ × R+,
(hm)ξ(0, τ ) = hp/m(0, τ ),

where as before a(h) = mh(m−1)/m, and b̃ is b corrected only for large
values of h, h ≥ M , so that the stationary solutions φ(η; ξ, h, z) are
uniformly bounded for bounded data ξ > 0, h > 0, z < 0 and depend
continuously on the data ξ, h, z. Now, if we take a particular solution
of the original evolution problem, from Theorem 1.3 we have that the
function h is globally bounded, h(ξ, τ) ≤ C for all ξ ∈ R+ and τ > 0.
Taking a constant M ≥ C in the correction performed above, we see
that the solution under consideration is also a solution of the corrected
problem (5.3). Therefore, the use of the corrected problem is justified
and the calculations given above hold.

The problem in a bounded interval. We define the Lyapunov func-
tional as before, but now integrating in the interval (0, R(τ )), where
R(τ ) = L(T − t)−β, (recall that τ = − log(T − t)). Then we have

Lh(τ ) =
∫ R(τ)

0

Φ(ξ, h(ξ, τ), hξ(ξ, τ)) dξ − m

m+ p
h(m+p)/m(0, τ ).

We must show that the extra term that appears in the expression for
the derivative of Lh(τ ), namely

Φ
(
R(τ ), h(R(τ ), tau), hξ(R(τ ), τ )

)
R′ (τ ),

is integrable. To this purpose we observe that φ(η,R(τ ), s, 0) is
decreasing for η ∈ (0, R(τ )) and that v(ξ, τ) ≤ C. Hence∫ τ2

τ1

Φ
(
R(τ ), h(R(τ ), τ ), hξ(R(τ ), τ )

)
R′ (τ ) dτ

=
∫ τ2

τ1

∫ h(R(τ),τ)

0

R′(τ )s1/m

· exp
(
− β
m

∫ R(τ)

0

η (φ(η,R(τ ), s, 0))(1−m)/m dη

)
ds dτ

≤
∫ C

0

∫ τ2

τ1

R′(τ )s1/m exp
(
− c s(1−m)/mR(τ )2

)
dτ ds ≤ C,
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where the last constant is independent of τ1, τ2. Therefore, following
the same argument given above we conclude that (1.8) holds also in
the case of a bounded interval.
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