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CYCLIC VECTORS IN THE α-BLOCH SPACES

SHANLI YE

ABSTRACT. In this paper we try to identify the functions
whose polynomial multiples are weak∗ dense in the βα spaces.
We obtain that if |f(z)| ≥ |g(z)| in the open unit disk and g is
cyclic in βα, then f is cyclic in βα. Especially, for 0 < α < 1,
f is cyclic in βα if and only if f has no zeros in the closed unit
disc.

Introduction. Let D be the open unit disk in the complex plane
C. For each α > 0, the α-Bloch space of D, denoted by βα, consists of
analytic functions f on D such that

‖f‖βα
= sup{(1 − |z|2)α|f ′(z)| : z ∈ D} < ∞.

We give a norm in βα as follows

(1) ‖f‖α = |f(0)| + ‖f‖βα
.

With this norm, βα is a Banach space and βα,0 a closed subspace. Here
βα,0 denotes the set of those f in βα for which (1 − |z|2)α|f ′(z)| → 0
as |z| ↑ 1. The space βα with the norm (1) is isometric to the second
dual β∗∗

α,0, see [9]. Furthermore, the polynomials are norm dense in βα,0

and in β∗
α,0, and are weak∗ dense in βα. We refer to [1, 9] for more

information about βα and βα,0.

In this paper, we study (weak∗) cyclic vectors in βα. These are the
function f in βα whose polynomial multiples are weak∗ dense in βα,
i.e., they are cyclic vectors in the weak∗ topology for the operator of
multiplication by z on βα. If f ∈ βα, let [f ] be the weak∗ closure in
βα of the polynomial multiples of f . Thus, f is cyclic if and only if
[f ] = βα. Note that a duality argument yields the fact that, if f is in
βα,0, then f is (norm) cyclic in βα,0 if and only if it is weak∗ cyclic in βα.
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When we refer to cyclic vectors in βα, the weak∗ is always understood.
In a special case of α = 1, Brown and Shields have shown the following
theorems.

Theorem A [3, Theorem 2]. If f , g ∈ β1, |f(z)| ≥ |g(z)| in D, and
g is cyclic in β1, then f is cyclic in β1.

Theorem B [3, Theorem 3]. If f ∈ β1, f is an outer function, then
f is cyclic in β1.

The main results in this paper are

Theorem 1. For α > 0, f, g ∈ βα, |f(z)| ≥ |g(z)| in D, and g is
cyclic in βα, then f is cyclic in βα.

Theorem 2. For α ≥ 1, f is an outer function in βα, then f is
cyclic in βα.

Theorem 3. For 0 < α < 1, f ∈ βα, then f is cyclic in βα if and
only if f has no zeros in the closed unit disc.

Throughout this paper, C’s are positive constants which are not
necessarily the same in each appearance.

1. Some sufficient conditions for cyclic. In this section we
shall prove Theorems 1 and 2. For this purpose, we need the following
lemmas.

Lemma 1. Let f ∈ βα, |z| = r, then

(a) |f(z)| ≤ (1 + (1/2) ln(1 + r/1 − r))‖f‖α, α = 1,

(b) |f(z)| ≤ (1 + (1/(α − 1)(1 − r)α−1))‖f‖α, α > 1,

(c) |f(z)| ≤ (1 + (1/1 − α))‖f‖α, 0 < α < 1,

(d) |f(z) − f(tz)| ≤ (1/1 − α)‖f‖βα
[(1 − tr)1−α − (1 − r)1−α], 0 <

α < 1, 0 ≤ t < 1.
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The proof follows from a direct calculation; we omit the details.

Lemma 2. For each α > 0,

(a) If {fn} ⊂ βα, then fn → 0 weak∗ if and only if fn(z) → 0 for all
z in D, and sup ‖fn‖α < ∞,

(b) If {ft} ⊂ βα, 0 < t ≤ 1, then limt→1− ft = 0 weak∗ if and only
if limt→1− ft(z) = 0 for all z in D, and sup ‖ft‖α < ∞.

Proof. For each z ∈ D, the linear functional of evaluation at z is weak∗

continuous by Lemma 1, βα is isometric to the (L1
a)∗, L1

a (denote the
set of analytic functions that are in L1 with respect to the area measure
in D) is a Banach space. Using these facts, the proof can be obtained
from [4, Proposition 2].

Lemma 3. If f ∈ βα, then ‖ft‖βα
≤ ‖f‖βα

, 0 < t ≤ 1, where
ft(z) = f(tz) for all z ∈ D.

The proof follows from a direct calculation; we omit the details.

Lemma 4. For α > 1, if f ∈ βα, then sup(1− |z|2)α−1|f(z)| ≤ C <
∞.

Proof. For f ∈ βα, then f ′ ∈ L1(D, (1−|z|2)α dA(z)). By [10, Section
4.2.1], we have

f ′(z) = (α + 1)
∫

D

(1 − |w|2)αf ′(w)
(1 − zw)2+α

dA(w).

Taking the line integral from 0 to z,

f(z) − f(0) =
∫

D

(1 − |w|2)αf ′(w)
w

[
1

(1 − zw)1+α
− 1

]
dA(w).

Using Taylor expansion, we get
∫

D

(1 − |w|2)αf ′(w)
w

dA(w) = 0.
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So

|f(z) − f(0)| ≤ ‖f‖βα

∫
D

dA(w)
|w|(1 − zw)1+α

= ‖f‖βα

[ ∫
D/2

dA(w)
|w|(1−zw)1+α

+
∫

D\D/2

dA(w)
|w|(1−zw)1+α

]

≤ ‖f‖βα

[
2

∫ 1/2

0

dr

(1 − r)1+α
+

∫
D\D/2

2dA(w)
(1−zw)1+α

]

≤ ‖f‖βα

[
(2α − 1)

2
α

+ 2
∫

D

dA(w)
(1−zw)1+α

]
.

However, by [10 Lemma 4.2.2],
∫

D

dA(w)
(1 − zw)1+α

≤ C

(1 − |z|2)α−1
.

Thus,
sup(1 − |z|2)α−1|f(z)| ≤ C < ∞.

Lemma 5. If g ∈ H∞, α > 0, f ∈ βα and fg ∈ βα, then fg ∈ [f ].

Proof. For 0 < t < 1, gt(z) = g(tz), we can easily show that if Pn is
the partial sum of the power series for gt, then Pnf → gtf (norm) as
n → ∞. Thus, we have gtf is in the weak∗ closure of polynomial of
f , which implies gtf ∈ [f ]. For z ∈ D, limt→1− gt(z)f(z) = g(z)f(z),
if sup ‖gtf‖α < ∞, then gtf → gf weak∗ by Lemma 2, thus fg ∈ [f ].
Now we are going to show that sup ‖gtf‖α < ∞.

For α > 1, using Lemma 4, we see that

(1 − |z|2)α|(gtf)′| ≤ (1 − |z|2)α|f ′||gt| + (1 − |z|2)α|g′t||f |
≤ ‖g‖∞‖f‖βα

+ (1 − |z|2)α−1|f |(1 − |z|2)|g′t|
≤ ‖g‖∞‖f‖βα

+ C(1 − |z|2) 1
(1 − |tz|)‖g‖∞

< ∞.

Hence,
sup ‖gtf‖α < ∞.
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For 0 < α < 1, we have

(1 − |z|2)α|(gtf)′| ≤ ‖g‖∞‖f‖βα
+ (1 − |z|2)α|fg′t|.

Then

(1 − |z|2)α|fg′t| ≤ (1 − |z|2)α|f − ft||g′t| + (1 − |z|2)α|ftg
′
t|

= ϕ1 + ϕ2.

By Lemma 1, we have

ϕ1 ≤ 1
1 − α

(1 − r2)α‖f‖βα
[(1 − tr)1−α − (1 − r)1−α]

1
(1 − tr)

‖g‖∞

≤ C(α)‖f‖βα

[(
1 − r

1 − tr

)α

− 1 − r

1 − tr

]
‖g‖∞

≤ 2C(α)‖f‖βα
‖g‖∞ < ∞.

From Lemma 3,

ϕ2 = (1 − |z|2)α|(ftgt)′ − f ′
tgt|

≤ (1 − |z|2)α|(fg)′t| + (1 − |z|2)α|f ′
t ||gt|

≤ ‖(fg)t‖βα
+ ‖g‖∞‖ft‖βα

≤ ‖fg‖βα
+ ‖g‖∞‖f‖βα

< ∞.

Thus,
sup ‖gtf‖α < ∞.

For α = 1, one can obtain the proof from [3, Lemma 4]. The proof is
completed.

Proof of Theorem 1. We have g/f ∈ H∞ and (g/f)f = g ∈ [f ], which
implies that f is cyclic.

Corollary 1. For α > 0, f ∈ βα and |f(z)| ≥ C > 0 in D, then f
is cyclic in βα.

To give the proof Theorem 2, we need the following proposition.
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Proposition 1. (a) f is cyclic in H∞ (with the weak∗ topology) if
and only if f is an outer function.

(b) For α > 1, f is cyclic in H∞, then f is cyclic in βα.

Proof. (a) is in [8, Theorem 5.5], we only need to prove (b).

Let f be cyclic in H∞. Then there exists a sequence of polynomials
Pn such that Pnf → 1 weak∗; this implies that Pn(z)f(z) → 1 for all
z in D and sup ‖Pnf‖H∞ < ∞.

Moreover, for α ≥ 1, H∞ ⊂ βα, gives that identity i: H∞ → βα is
bounded. So sup ‖Pnf‖α < ∞. Hence, by Lemma 2, f is cyclic in βα.

Proof of Theorem 2. Let

g(z) = exp
{

1
2π

∫ 2π

0

eit + z

eit − z
log |g∗(t)| dt

}
,

where f∗(t) = limr→1 f(reit) almost everywhere and

g∗(t) =
{

1 |f∗(t)| ≥ 1,
|f∗(t)| |f∗(t)| < 1.

We see that g ∈ H∞ ⊂ βα is an outer function and therefore cyclic
in H∞; by Proposition 1, g is cyclic in βα. Furthermore,

|g(z)| = exp
{∫ 2π

0

Pz(t) log |g∗(t)| dt

}

≤ exp
{∫ 2π

0

Pz(t) log |f∗(t)| dt

}

= |f(z)|, z ∈ D,

where Pz is the Poisson kernel for the point z, so f is cyclic by
Theorem 1.

2. A sufficient and necessary condition for 0 < α < 1. As
usual, by the disc algebra A we mean the space of functions continuous
on the closed unit disc and analytic in D, with the supremum norm.
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Lemma 6. For every 0 < α < 1, βα ⊂ A.

Proof. See [5, p. 74].

Lemma 7. For f ∈ A, then f is cyclic in A, with the norm topology,
if and only if f(z) has no zeros in the closed unit disc.

Proof. For A a Banach algebra, it can be shown that maximal ideal
space is the closed unit disc, see [6, p. 189]. One shows that f is cyclic
if and only if it lies in no proper closed ideal. Thus the cyclic vectors
are precisely the invertible elements in the Banach algebra A, so f is
cyclic in A if and only if f(z) has no zeros in the closed unit disc.

Proof of Theorem 3. For 0 < α < 1, f ∈ βα, f is cyclic in βα. Let
t = (1 + α)/2; then α < t < 1. From Lemma 2, we can easily show
that f is cyclic in βt. However, f ∈ βt,o, shows f is cyclic in βt,o.
Thus, there exists a sequence of polynomials Pn(z) such that Pnf → 1
(norm) as n → ∞. By Lemma 1, we have

‖Pnf − 1‖A ≤
(

1 +
1

1 − t

)
‖Pnf − 1‖t,

thus f is cyclic in A. Hence, by Lemma 7, f has no zeros in the closed
unit disc.

On the other hand, since f is continuous in the closed unit disc, there
exists C > 0 such that |f(z)| ≥ C for all z in D. Thus, f is cyclic by
Corollary 1.

Acknowledgment. The author thanks the referee for helpful com-
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