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THE VALUES OF ADDITIVE FORMS
AT PRIME ARGUMENTS

R.J. COOK AND G. HARMAN

ABSTRACT. New results are proved on additive forms at
prime arguments of the type λ1pk

1 + · · ·λspk
s where the λj are

not all negative and are not all in rational ratio. The improve-
ments come in the number of variables required and the dis-
tribution of the values. The former improvement comes from
using familiar techniques in the Hardy-Littlewood method,
while the latter improvement stems from recent developments
in the theory of exponential sums.

1. Introduction. Given k ≥ 1 and s nonzero real numbers
λ1, . . . , λs (not all in rational ratio, not all negative), we write

F (p) =
s∑

j=1

λjp
k
j

where p = (p1, . . . , ps) with each pj a prime. Various authors have
considered the distribution of values of such forms, for example, see
[14]. Here we continue in the direction started by Brüdern, Cook and
Perelli [3] and followed by Cook and Fox [5], Cook [4] and Harman [9].
We call a set of positive reals V a well-spaced set if there is a c > 0
such that

u, v ∈ V , u �= v, =⇒ |u− v| > c.

In order to get the full-strength of the results under consideration, one
should also assume that

|{v ∈ V : v ≤ X}| � X1−ε,

though our results are nontrivial with a weaker lower bound. Given a
form F as above, let Ek(V , X, δ) denote the number of v ∈ V , v ≤ X,
such that the inequality

(1.1) |F (p) − v| < v−δ
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has no solution in primes p1, . . . , ps. As might be expected, this
problem is related to the Waring-Goldbach problem, and one expects
the number of variables s required to obtain a result, say H∗(k),
to increase with k in line with the values obtained for representing
numbers as sums of prime powers. To be more precise, one might
hope that H∗(k) is equal to the number of prime powers needed to
represent almost all integers allowed by congruence conditions, see [11]
for example.

In [3] the case k = 1 is investigated and it is shown that one may take
s = 2 and thereby obtain E1(V , X, δ) � X(2/3)+2δ+ε, at least in the
case λ1/λ2 algebraic. We shall describe an improvement of this result
(at least for δ > 2/15) in the final section of this paper. In [5] it is
shown that three variables suffice for k = 2, and the upper bound for
E2(V , X, δ) is improved in [9] to � X(6/7)+2δ+ε for infinitely many X.
In [4] it is shown that in general 2k−1+1 variables suffice (7.2k−4+1 for
k ≥ 6), and the bound for Ek(V , X, δ) will depend on the best known
estimates for exponential sums over primes (or for certain double sums
if sieve methods are invoked). The exponent quoted in [4] for X is
1 − (2/3k)41−k + 2δ + ε. The purpose of this note is to reduce the
required number of variables for larger k and use the latest bounds for
the exponential sums which arise [12] (these improve upon the results
in [8] which themselves would have been strong enough to establish
Theorem 1 for k ≥ 5) to give an improved exponent for X. In this
way we establish a general result (Theorem 2 below) from which other
known results (or improvements upon them) follow as corollaries. We
write σ(3) = (14)−1, and in general σ(k) = (3.2k−1)−1 for k ≥ 4. We
also define H∗(k) by:

TABLE 1.

k 3 4 5 6 7 8 9 10
H∗(k) 5 8 13 19 28 38 49 62

The reader will note that these values are [D(k)/2] + 1, where D(k)
is given in [14]. For larger k the values of H∗(k) can be calculated in
a similar manner. Our main result is then as follows.
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Theorem 1. Let k ≥ 3, s = H∗(k), and let λ1, λ2, . . . λs be nonzero
real numbers, not all negative. Suppose that λ1/λ2 is irrational and
algebraic. Let V be a well-spaced sequence. Let δ > 0. Then

(1.2) Ek(V , X, δ) � X1−2σ(k)/k+2δ+ε

for any ε > 0.

This result is nontrivial when δ < σ(k)/k. It will be seen from the
corollaries below that this is the “expected” result (in terms of the
exponent of X in [3]) given our current state of knowledge for other
problems. One might hope that the number of variables could be
reduced a little using the ideas in [10, 11, 13], but there are some
technical problems at present. Theorem 1 follows immediately from
the next general result.

Theorem 2. Let k ≥ 3, s = H∗(k), and let λ1, λ2, . . . λs be nonzero
real numbers, not all negative. Suppose that λ1/λ2 is irrational. Let V
be a well-spaced sequence. Letδ > 0. Then there is a sequence Xj → ∞
such that

(1.3) Ek(V , Xj, δ) � X
1−2σ(k)/k+2δ+ε
j

for any ε > 0. Moreover, if the convergent denominators qj for λ1/λ2

satisfy

(1.4) q1−ω
j+1 � qj for some ω ∈ [0, 1)

then, for all X ≥ 1,

(1.5) Ek(V , X, δ) � X1−2θ/k+2δ+ε

for any ε > 0 with

(1.6) θ = θ(ω, k) = min
(
k(1 − ω)
6 − 4ω

, σ(k)
)
.

Theorem 1 follows immediately from Theorem 2, since in the case of
λ1/λ2 algebraic, we can take ω = ε and then θ = σ(k).
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The reader should have no difficulties in deducing the following
corollaries to Theorem 2.

Corollary 1. Let λj, 1 ≤ j ≤ t = 2H∗(k) − 1, be nonzero real
numbers, not all of the same sign, with λ1/λ2 irrational, η real, and
ε > 0. Then there are infinitely many solutions in primes pj to the
inequality

(1.7) |η +
∑t

j=1λjp
k
j | < (max pj)−σ(k)+ε.

Corollary 2 (Baker and Harman). Let α be an irrational real
number, β real, and ε > 0. Then there are infinitely many solutions in
primes p to the inequality

(1.8) ||αpk + β|| < p−σ(k)+ε.

Here ||x|| denotes the distance from x to a nearest integer.

Corollary 1 improves Theorem 3 of [1], while Corollary 2 is the main
theorem in [2], except that our exponent here is slightly weaker for
k = 3. Corollary 2 has been improved with a sieve method [17], and it
is possible to improve our results a little in a similar manner to Section 8
of [9], but the improvement obtained is not as strong as [17] because
of our need to sieve two variables.

2. Outline of the method. We follow the modification of the
Hardy-Littlewood method first stated by Davenport and Heilbronn [6].
Let 0 < τ < 1. If we write

A(x) = max(0, τ − |x|),
then

(2.1) A(x) =
∫ ∞

−∞
K(α)e(αx) dα

where

e(β) = exp(2πiβ), K(α) =
(

sin πτα
πα

)2

.
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We follow Vaughan’s argument [14], which entails treating certain
variables in a rather different fashion to others, at least for k > 3 which
we henceforth assume. The modifications for k = 3 will be described
at the end. We first define parameters m and r which depend on k as
follows:

TABLE 2.

k 4 5 6 7 8 9 10
m 4 8 13 19 28 40 51
r 3 4 5 8 9 8 10

The reader will note that H∗(k) = m + r + 1. Now let P be
some (large) positive quantity to be chosen later, and write X = P k,
Pj = P |λj |−1/k, Ij = [Pj/s, 2Pj ] for 1 ≤ j ≤ r + 1. We let U be a set
of numbers representable in the form

H∗(k)∑
j=r+2

λjp
k
j

with pj ≤ P as explained in [14]. To be more precise, U is a well spaced
set constructed inductively with successive pj in “diminishing ranges,”
and the number of elements in U is � Xν where ν is the value given
in [14]. For example, on page 398 there we see that for k = 5 we have
ν = 0.911.

Let log p =
∏

j log pj . If we write

Nv =
1
τ

∑
u∈U

∑
pj∈Ij

(log p)A(λ1p
k
1 + λ2p

k
2 + · · ·λr+1p

k
r+1 + u− v),

then 0 ≤ Nv ≤ ψ(v) where ψ(v) counts the number of solutions to

|λ1p
k
1 + λ2p

k
2 + · · ·λr+1p

k
r+1 + u− v| < τ

with u ∈ U , weighted by a term log p. We shall restrict our attention
to those v satisfying X/2 ≤ v ≤ X. In general one can consider
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X2−j ≤ v ≤ X21−j , j = 1, 2, . . . , and obtain a satisfactory bound
for the exceptional set.

By (2.1),

(2.2) Nv =
1
τ

∫ ∞

−∞
S1(α) . . . Sr+1(α)U(α)K(α) dα

where

Sj(α) =
∑

pj∈Ij

(log pj)e(αλjp
k
j ), U(α) =

∑
u∈U

e(αu).

For future convenience we write

Π(α) =
r+1∏
j=1

Sj(α).

The main contribution to the integral (2.2) comes from the major
arc [−φ, φ], where φ is a small positive quantity. In such a region the
exponential sums Sj(α) can be well approximated by integrals. The
limit to the strength of a result of the present type (in terms of how
small τ can be) comes from the region 1 ≤ |α| � τ−1 (the minor arc),
where K(α) � τ2. In this paper we take

φ = P−ε−k+5/12, M = [−φ, φ], m = {α : |α| > φ}.

3. Preliminary lemmas. We assemble here some important results
we need for the analysis of all the regions for α.

Lemma 1. Let k ≥ 3. Suppose that N ≥ 2 and α satisfies

(3.1) |qα− a| ≤ Q−1, (a, q) = 1, q ∈ N, q ≤ Q, a ∈ Z,

where Q = N (k2−2kσ(k))/(2k−1). Then, for any ε > 0,

(3.2)
∑

N/2≤p≤N

(log p) e(αpk) � N1+ε−σ(k) +
N1+ε

(q +Nk|qα− a|)1/2
.
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Proof. This is given by Theorem 3 of [12].

Corollary 3. Suppose that k ≥ 3, P ≥ Z ≥ P 1−σ(k)+ε and
|Sj(α)| > Z. Then there are coprime integers a, q satisfying

(3.3) 1 ≤ q � (P/Z)2P ε, |qαλj − a| � (P/Z)2P ε−k.

Proof. By Dirichlet’s theorem in Diophantine approximation, we can
find a, q satisfying (3.1) by the lemma with ε replaced by ε/2. The
conclusion of (3.3) then follows from (3.2).

Lemma 2. We have, for t = 1 or 2,

(3.4)

∫ ∞

−∞

∣∣∣U(α)
∏
j �=t

Sj(α)
∣∣∣2K(α) dα� τ |U|2P 2r−k+ε,

∫ 1

−1

∣∣∣U(α)
∏
j �=t

Sj(α)
∣∣∣2 dα � |U|2P 2r−k+ε.

Proof. Both of these follow from [14].

4. The major arc. There are no problems in adapting the work
in Section 4 of [9], using Lemma 2 above to prove the following result.
Alternatively, one could adapt the material in Section 3 of [4].

Lemma 3. We have, for all sufficiently large P ,∫
M

K(α)U(α)Π(α) dα� |U|P r+1−kτ2.

5. The minor arc. We now introduce the necessary averaging
over v. The argument (which can be traced back to Watson [16]) is
essentially the same as in [9] with Lemma 1 here replacing Lemma 3
there to provide information when exponential sums are large. We let
a/q be a convergent to λ1/λ2 and choose P so that

q = P k−3ε−4σ(k).
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By a simple argument, see [5, p. 142], we can restrict our attention to
m∗ = {α ∈ m : |α| ≤ τ−2}. Let

m′ = {α ∈ m∗ : min(|S1(α)|, |S2(α)|) < P ρ+ε}.
Then, working as in Lemma 10 of [4], we have

(5.1)
∑
v∈V

∣∣∣∣
∫
m′
U(α)Π(α)K(α)e(−vα) dα

∣∣∣∣
2

� τ

∫
m′

|U(α)Π(α)|2K(α) dα

� τ2|U|P 2ρ+2r−k+2ε.

We shall take ρ = 1 − σ(k) in this argument. We put m̂ = m∗ \ m′.
We then divide m̂ into disjoint sets such that for α ∈ S(Z1, Z2, y) we
have

Zj ≤ |Sj(α)| < 2Zj , y ≤ |α| < 2y,

where Zj = P ρ+ε2t and y = φ2r for some positive integers t, r. Thus,
by (3.3), there are two pairs of coprime integers (a1, q1), (a2, q2) with

a1a2 �= 0, 1 ≤ qj � (P/Zj)2P ε, |qjαλj − aj | � (P/Zj)2P ε−k.

We further subdivide m̂ into sets S(Z1, Z2, y,Q1, Q2) where Qj ≤ qj <
2Qj on each set. Then, by a familiar argument, see [1, p. 207] for
example,

∣∣∣∣a2q1
λ1

λ2
− a1q2

∣∣∣∣ �
(

P 2

Z1Z2

)2

P 2ε−k = o(q−1).

Also
|a2q1| � P 2εy Q1Q2.

Now, if |a2q1| took on R distinct values, we could apply the pigeon-hole
principle to deduce the existence of n with

∥∥∥∥n λ1

λ2

∥∥∥∥ = o(q−1), n� P 2εy Q1Q2

R
.

This would contradict q being a convergent to λ1/λ2 if P is sufficiently
large unless

R � P 2εy Q1Q2

q
.
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Of course, this actually forces R = 0 for many possible combinations
of Q1, Q2, y. Since each value of |a2q1| corresponds to � P ε values of
a2, q1 by the well-known bound on the divisor function, we conclude
that S(Z1, Z2, y,Q1, Q2) is made up of � RP ε intervals of length

� P ε+2−k min
(

1
Q1Z2

1

,
1

Q2Z2
2

)
≤ P ε+2−k

Z1Z2(Q1Q2)1/2
.

Thus, integrating over such a set gives

(5.2)
∫

|U(α)Π(α)|2K(α) dα

� min(τ2, y−2)(Z1Z2)2 P 2r−2 |U|2 Q1Q2P
3εy

q

P ε+2−k

Z1Z2(Q1Q2)1/2

� |U|2 P 2r−k+4ε (Q1Q2)1/2Z1Z2

P k−3ε−4σ(k)
τ

� τ |U|2 P ε+2r+2−k−1/2,

since, by (3.3),
(Q1Q2)1/2Z1Z2 � P 2+ε.

Summing over all possible values of y,Q1, Q2, Z1, Z2, and using (5.1)
we conclude that

(5.3)
∑
v∈V

∣∣∣∣
∫
m

U(α)Π(α)K(α) dα
∣∣∣∣
2

� τ2 |U|2 P 2ρ+2r−k+ε.

6. Completion of the proof. As in previous work in this area,
the number of v ∈ [X/2, X] ∩ V for which Nv = 0 can be estimated by
bounding the number of times

(6.1)
∣∣∣∣
∫
m

U(α)Π(α)K(α) dα
∣∣∣∣ � τ2 |U|P r+1−k.

Comparing (5.3) and (6.1) we conclude that this number is

� τ−2 P 2ρ+ε � τ−2X1−2σ(k)/k+ε.
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Taking τ = X−δ then gives the result. Of course, there are infinitely
many q we could have taken in Section 5 since λ1/λ2 is irrational, and
this gives the sequence Xj → ∞.

If the convergent denominators for λ1/λ2 satisfy (1.4) we can modify
our work in Section 5. We now let P be any sufficiently large number
and assume that

min(Z1, Z2) > P 1−θ+ε

with θ = θ(ω, k) given by (1.6). We then obtain
∣∣∣∣a2q1

λ1

λ2
− a2q1

∣∣∣∣ � P−k+4θ+2ε.

However, we know from (1.4) that there is a convergent a/q to λ1/λ2

with
P (1−ω)(k−4θ−2ε) � q � P k−4θ−2ε.

The expression corresponding to (5.2) is now
∫
m

|U(α)Π(α)|2K(α) dα� τ |U|2 P 2r+2−k+A+ε

where
A ≤ −(k − 4θ)(1 − ω) < − 2θ

by our choice of ω. This quickly leads to the result stated.

7. The case k = 3. When k = 3 we need only use Hua’s inequality
(Lemma 2.5 in [15]) in place of Lemma 2. We now make no use of the
set U , so instead of (2.2) we have

Nv =
1
τ

∫ ∞

−∞

5∏
j=1

Sj(α)K(α) dα.

All the arguments then go through as for k > 3 but with r = 4 and all
terms U and U(α) removed.

8. The case k = 1. We shall briefly outline how to prove the
following result which is nontrivial for δ < 1/5, thus improving upon
δ < 1/6 required in [3].
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Theorem 3. Let λ1, λ2 be nonzero real numbers, not both negative,
in irrational ratio. Let V be a well spaced sequence. Let δ > 0. Then
there is a sequence Xj → ∞ such that

(8.1) E1(V , Xj, δ) � Xε
j min

(
X

(2/3)+2δ
j , X

(4/5)+δ
j

)

for all ε > 0. Moreover (8.1) holds for all Xj if λ1/λ2 is an algebraic
irrational.

Proof. From the work in [3] it is clear that the crucial part is the
estimation of the minor arc contribution

(8.2)
∫
m

|S1(α)S2(α)|2 K(α) dα.

The expression (17) in [3] and the following working there give an upper
bound for (8.2) which is � τX(8/3)+3ε for X chosen correctly in terms
of a convergent denominator to λ1/λ2. However, the Proposition in [7]
gives an upper bound � τP 13/5−cε for some c when τ = X−(1/5)+ε/2.
If the working in that paper were valid for all τ this would lead
to the result for Theorem 3 with X(3/5)+2δ on the right-hand side.
Unfortunately, use is made of the averaging involved in α running up
to τ−1 (and for our application beyond) and so this result cannot be
obtained. A careful examination of the analysis in [7, pp. 221 223]
shows that it is possible to obtain

τ2X14/5+ε + τ X13/5+ε

as an upper bound for (8.2), and the first term of this dominates for
δ < 1/5 while the theorem itself is trivial for δ ≥ 1/5. This quickly
leads to the stated result. It then comes as no surprise that we can
deduce the main theorem of [7] as a corollary to Theorem 3!
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