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AN EIGENVALUE PROBLEM FOR
QUASILINEAR SYSTEMS

JOHNNY HENDERSON AND HAIYAN WANG

ABSTRACT. The paper deals with the existence of positive
solutions for the n-dimensional quasilinear system (Φ(u′))′ +
λh(t)f(u) = 0, 0 < t < 1, with the boundary condition u(0) =
u(1) = 0. The vector-valued function Φ is defined by Φ(u) =
(ϕ(u1), . . . , ϕ(un)), where u = (u1, . . . , un), and ϕ covers
the two important cases ϕ(u) = u and ϕ(u) = |u|p−2u, p > 1,
h(t) = diag [h1(t), . . . , hn(t)] and f(u) = (f1(u), . . . , fn(u)).
Assume that f i and hi are nonnegative continuous. For
u = (u1, . . . , un), let f i

0 = lim‖u‖→0 f i(u)/ϕ(‖u‖), f i∞ =

lim‖u‖→∞ f i(u)/ϕ(‖u‖), i = 1, . . . , n, f0 = max{f1
0 , . . . , fn

0 }
and f∞ = max{f1∞, . . . , fn∞}. We prove that the boundary
value problem has a positive solution, for certain finite inter-
vals of λ, if one of f0 and f∞ is large enough and the other one
is small enough. Our methods employ fixed point theorems in
a cone.

1. Introduction. In this paper we consider the eigenvalue problem
for the system

(1.1) (Φ(u′))′ + λh(t) f(u) = 0, 0 < t < 1,

with one of the following three sets of the boundary conditions,

u(0) = u(1) = 0,(1.2a)
u′(0) = u(1) = 0,(1.2b)
u(0) = u′(1) = 0,(1.2c)

where u = (u1, . . . , un), Φ(u) = (ϕ(u1), . . . , ϕ(un)), h(t) = diag ×
[h1(t), . . . , hn(t)] and f(u) = (f1(u1, . . . , un), . . . , fn(u1, . . . , un)). We
understand that u, Φ and f(u) are (column) n-dimensional vector-
valued functions. Equation (1.1) means that

(1.3)

⎧⎪⎨
⎪⎩

(ϕ(u′1))′ + λh1(t) f1(u1, . . . , un) = 0, 0 < t < 1
...

(ϕ(u′n))′ + λhn(t) fn(u1, . . . , un) = 0, 0 < t < 1
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By a solution u to (1.1) (1.2), we understand a vector-valued function
u ∈ C1([0, 1],Rn) with Φ(u′) ∈ C1((0, 1),Rn), which satisfies (1.1)
for t ∈ (0, 1) and one of (1.2). A solution u(t) = (u1(t), . . . , un(t)) is
positive if, for each i = 1, . . . , n, ui(t) ≥ 0 for all t ∈ (0, 1) and there
is at least one nontrivial component of u. In fact, we shall show that
such a nontrivial component of u is positive on (0, 1).

When n = 1, (1.1) reduces to the scalar quasilinear equation

(1.4) (ϕ(u′))′ + λh(t) f(u) = 0.

Further, when ϕ(u) = u, (1.4) reduces to the classical equation of
Emden-Fowler type

(1.5) u′′ + λh(t) f(u) = 0.

The existence of positive solutions of boundary value problems for
(1.4) and (1.5) originates from a variety of different areas of applied
mathematics and physics, and has been intensively studied, see e.g.,
Agarwal, O’Regan and Wong [2] and Wong [24].

In connection with the existence of positive radial solutions of partial
differential equations in annular regions, Bandle, Coffman and Marcus
[4] and Lin [17] established the existence of positive solutions of
boundary value problems for (1.5) under the assumption that f is
superlinear, i.e., f0 = limu→0 f(u)/u = 0 and f∞ = limu→∞ f(u)/u =
∞. On the other hand, one of the authors [20] obtained the existence
of positive solutions boundary value problems for (1.5) under the
assumption that f is sublinear, i.e., f0 = ∞ and f∞ = 0.

When ϕ(u) = |u|p−2u, p > 1, and for even more general functions
ϕ, the problems have been received much attention in the past several
decades; see e.g., [1 3, 11, 14, 19 and their references].

If 0 < f0, f∞ <∞, we [13] were able to treat the existence problem,
at the expense of a restriction of λ. Roughly, we showed that (1.5) with
(1.2) (n = 1) has a positive solution for certain finite intervals of λ if
one of f0 and f∞ is large enough and the other one is small enough.
This result was later sharpened by Graef and Yang [9] yielding better
intervals of λ, but yet for the case when one of f0 and f∞ is large
enough and the other one is small enough.
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In several recent papers [21, 22], one of the authors imposed an
assumption (see A1) on the function ϕ(u), which covers the two
important cases ϕ(u) = u and ϕ(u) = |u|p−2u, p > 1. Under such an
assumption, it is shown that appropriate combinations of superlinearity
and sublinearity of f(u) with respect to ϕ at zero and infinity guarantee
the existence, multiplicity and nonexistence of positive solutions of
(1.1).

The main purpose of this paper is to extend the results in [13] to the
n-dimensional system (1.1). For this purpose, we use notation in (1.6),
f0 and f∞, to characterize superlinearity and sublinearity with respect
to ϕ for (1.1). These are natural extensions of f0 and f∞ defined above
for the scalar equation (1.5). We are able to show that (1.1) with (1.2)
has a positive solution for certain finite intervals of λ if one of f0 and
f∞ is large enough and the other one is small enough. We employ a
fixed point theorem in a cone due to Krasnoselskii, which is essentially
the same as Lemma 2.1.

Let R = (−∞,∞), R+ = [0,∞) and Rn
+ = Πn

i=1R+. Also, for
u=(u1, . . . , un) ∈ Rn

+, let ‖u‖=
∑n

i=1 |ui|. We make the assumptions:

(A1) ϕ is an odd, increasing homeomorphism of R onto R, and there
exist two increasing homeomorphisms of (0,∞) onto (0,∞) such that

ψ1(σ)ϕ(x) ≤ ϕ(σx) ≤ ψ2(σ)ϕ(x), for all σ and x > 0.

(A2) f i : Rn
+ → R+ is continuous, i = 1, . . . , n.

(A3) hi(t) : [0, 1] → R+ is continuous and hi(t) �≡ 0 on any
subinterval of [0, 1], i = 1, . . . , n.

Let

γi(t) =
1
8

[ ∫ t

1/4

ψ−1
2

( ∫ t

s

hi(τ ) dτ
)
ds+

∫ 3/4

t

ψ−1
2

( ∫ s

t

hi(τ ) dτ
)
ds

]
,

t ∈
[
1
4
,
3
4

]
, i = 1, . . . , n.

It follows from (A1) (A3) that

Γ = min
{
γi(t) :

1
4
≤ t ≤ 3

4
, i = 1, . . . , n

}
> 0,

χ =
n∑

i=1

ψ−1
1

( ∫ 1

0

hi(τ ) dτ
)
> 0.
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In order to state our results we introduce the notation

(1.6)
f i
0 = lim

‖u‖→0

f i(u)
ϕ(‖u‖) , f i

∞ = lim
‖u‖→∞

f i(u)
ϕ(‖u‖) ,

u ∈ Rn
+, i = 1, . . . , n,

f0 = max{f1
0 , . . . , f

n
0 }, f∞ = max{f1

∞, . . . , f
n
∞}.

Although we will not provide its proof until Section 3, we state at this
point our main result of the paper:

Theorem 1.1. Let (A1) (A3) hold. Assume 0 < f0 < ∞ and
0 < f∞ <∞.

(a) If

ψ2

(
1

Γψ−1
2 (f0)

)
< λ < ψ1

(
1

χψ−1
1 (f∞)

)
,

then (1.1) (1.2) has a positive solution.

(b) If

ψ2

(
1

Γψ−1
2 (f∞)

)
< λ < ψ1

(
1

χψ−1
1 (f0)

)
,

then (1.1) (1.2) has a positive solution.

2. Preliminaries. The following well-known result from the fixed
point index theory is crucial in our arguments.

Lemma 2.1 ([6, 10, 15]). Let E be a Banach space and K a
cone in E. For r > 0, define Kr = {u ∈ K : ‖x‖ < r}. Assume
that T : Kr → K is completely continuous such that Tx �= x for
x ∈ ∂Kr = {u ∈ K : ‖x‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr, then

i(T,Kr,K) = 0.

(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr, then

i(T,Kr,K) = 1.
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In order to apply Lemma 2.1 to (1.1) (1.2), let X be the Banach
space Πn

i=1C[0, 1] and, for u = (u1, . . . , un) ∈ X,

‖u‖ =
n∑

i=1

sup
t∈[0,1]

|ui(t)|.

For u ∈ X or Rn
+, ‖u‖ denotes the norm of u in X or Rn

+, respectively.

Define K to be a cone in X by

K =
{
u = (u1, . . . , un) ∈ X : ui(t) ≥ 0, t ∈ [0, 1], i = 1, . . . , n,

and min
1/4≤t≤3/4

n∑
i=1

ui(t) ≥ 1
4
‖u‖

}
.

Also, define, for r a positive number, Ωr by

Ωr = {u ∈ K : ‖u‖ < r}.

Note that ∂Ωr = {u ∈ K : ‖u‖ = r}.
Let Tλ : K → X be a map with components (T 1

λ , . . . , T
n
λ ). We define

T i
λ, i = 1, . . . , n, by

(2.7) T i
λu(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ t

0

ϕ−1

( ∫ σi

s

λhi(τ ) f i(u(τ )) dτ
)
ds 0 ≤ t ≤ σi,∫ 1

t

ϕ−1

(∫ s

σi

λhi(τ ) f i(u(τ )) dτ
)
ds σi ≤ t ≤ 1,

where σi = 0 for (1.1) (1.2b) and σi = 1 for (1.1) (1.2c). For
(1.1) (1.2a), σi ∈ (0, 1) is a solution of the equation

(2.8) Θiu(t) = 0, 0 ≤ t ≤ 1,

where the map Θi : K → C[0, 1] is defined by

(2.9)
Θiu(t) =

∫ t

0

ϕ−1

( ∫ t

s

λhi(τ ) f i(u(τ )) dτ
)
ds

−
∫ 1

t

ϕ−1

( ∫ s

t

λhi(τ ) f i(u(τ )) dτ
)
ds, 0 ≤ t ≤ 1.
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By virtue of Lemma 2.2, the operator Tλ is well defined.

Lemma 2.2. Assume (A1) (A3) hold. Then, for any u ∈ K and
i = 1, . . . , n, Θiu(t) = 0 has at least one solution in (0, 1). In addition,
if σ1

i < σ2
i ∈ (0, 1), i = 1, . . . n, are two solutions of Θiu(t) = 0, then

hi(t)f i(u(t)) ≡ 0 for t ∈ [σ1
i , σ

2
i ] and any σi ∈ [σ1

i , σ
2
i ] is also a solution

of Θiu(t) = 0. Furthermore, Ti
λu(t), i = 1, . . . , n, is independent of

the choice of σi ∈ [σ1
i , σ

2
i ].

Proof. Let αi(τ ) = λhi(τ ) f i(u(τ )). If
∫ 1

0
αi(τ ) dt = 0, we may

choose any σi ∈ (0, 1). Let’s assume
∫ 1

0
αi(τ ) dt > 0. Therefore,

Θiu(0) < 0 and Θiu(1) > 0. It follows from the continuity of Θiu(t)
that Θiu(t) = 0 has at least one solution on (0,1). In addition, Θiu(t) is
a nondecreasing function on [0, 1]. If σ1

i < σ2
i ∈ (0, 1) are two solutions

of Θiu(t) = 0, it is not hard to show that
∫ σ2

i

σ1
i
ϕ−1(

∫ σ2
i

s
αi(τ ) dτ ) ds = 0.

Therefore, αi(τ ) ≡ 0 on [σ1
i , σ

2
i ]. Let σi ∈ [σ1

i , σ
2
i ]. Then it is easy to

verify that σi is a solution of Θiu(t) = 0. Hence, (2.7) implies

(2.10) T i
λu(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0

ϕ−1

(∫ σ1
i

s

αi(τ ) dτ
)
ds 0 ≤ t ≤ σ1

i ,

∫ σ1
i

0

ϕ−1

( ∫ σ1
i

s

αi(τ ) dτ
)
ds σ1

i ≤ t ≤ σi,∫ 1

σ2
i

ϕ−1

(∫ s

σ2
i

αi(τ ) dτ
)
ds σi ≤ t ≤ σ2

i ,

∫ 1

t

ϕ−1

( ∫ s

σ2
i

αi(τ ) dτ
)
ds σ2

i ≤ t ≤ 1,

which is independent of σi ∈ [σ1
i , σ

2
i ].

The following lemma is a standard result due to the concavity of a
real-valued function u(t) on [0, 1], see e.g., [21 23].

Lemma 2.3. Assume ϕ is an odd, increasing homeomorphism of R
onto R. Let 0 ≤ u(t) ∈ C1[0, 1] and ϕ(u′(t)) be nonincreasing on [0, 1].
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Then
u(t) ≥ min{t, 1 − t} sup

t∈[0,1]

u(t) for t ∈ [0, 1].

In particular, min1/4≤t≤3/4 u(t) ≥ 1/4 supt∈[0,1] u(t).

We remark that, according to Lemma 2.3, any nontrivial component
of nonnegative solutions of (1.1) (1.2) is positive on (0, 1).

Lemma 2.4. Assume (A1) (A3) hold. Then Tλ(K) ⊂ K and
Tλ : K → K is compact and continuous.

Proof. Lemma 2.3 implies that Tλ(K) ⊂ K. It is not hard to show
that Tλ : K → K is compact and continuous.

Lemma 2.5 [21, 22]. Assume (A1) holds. Then for all σ, x ∈ (0,∞)

ψ−1
2 (σ)x ≤ ϕ−1(σ ϕ(x)) ≤ ψ−1

1 (σ)x.

Proof. Since σ = ψ1(ψ−1
1 (σ)) = ψ2(ψ−1

2 (σ)) and ϕ(ϕ−1(σ ϕ(x))) =
σ ϕ(x), it follows that

ψ2(ψ−1
2 (σ))ϕ(x) = ϕ(ϕ−1(σ ϕ(x))) = ψ1(ψ−1

1 (σ))ϕ(x).

On the other hand, we have by (A1)

ψ1(ψ−1
1 (σ))ϕ(x) ≤ ϕ(ψ−1

1 (σ)x) and ψ2(ψ−1
2 (σ))ϕ(x) ≥ ϕ(ψ−1

2 (σ)x).

Hence, ϕ(ψ−1
2 (σ)x) ≤ ϕ(ϕ−1(σ ϕ(x))) ≤ ϕ(ψ−1

1 (σ)x).

Thus, we obtain ψ−1
2 (σ)x ≤ ϕ−1(σ ϕ(x)) ≤ ψ−1

1 (σ)x.

Lemma 2.6. Assume (A1) (A3) hold. Let u = (u1, . . . , un) ∈ K
and η > 0. If there exists a component f i of f such that

f i(u(t)) ≥ ϕ

(
η

n∑
i=1

ui(t)
)

for t ∈
[
1
4
,
3
4

]
,
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then
‖Tλu‖ ≥ ψ−1

2 (λ) Γ η‖u‖.

Proof. Note, from the definition of Tλu, that T i
λu(σi) is the maximum

value of T i
λu on [0,1]. If σi ∈ [1/4, 3/4], we have

‖Tλu‖ ≥ sup
t∈[0,1]

|T i
λu(t)|

≥ 1
2

[ ∫ σi

1/4

ϕ−1

(∫ σi

s

λhi(τ ) f i(u(τ )) dτ
)
ds

+
∫ 3/4

σi

ϕ−1

(∫ s

σi

λhi(τ ) f i(u(τ )) dτ
)
ds

]

≥ 1
2

[ ∫ σi

1/4

ϕ−1

(∫ σi

s

λhi(τ )ϕ(η
n∑

j=1

uj(τ )) dτ
)
ds

+
∫ 3/4

σi

ϕ−1

(∫ s

σi

λhi(τ )ϕ(η
n∑

j=1

uj(τ )) dτ
)
ds

]
,

and in view of Lemma 2.3 and condition (A1), we find

‖Tλu‖ ≥ 1
2

[ ∫ σi

1/4

ϕ−1

( ∫ σi

s

ψ2(ψ−1
2 (λ))hi(τ )ϕ

(
η

4
‖u‖

)
dτ

)
ds

+
∫ 3/4

σi

ϕ−1

( ∫ s

σi

ψ2(ψ−1
2 (λ))hi(τ )ϕ

(
η

4
‖u‖

)
dτ

)
ds

]

≥ 1
2

[ ∫ σi

1/4

ϕ−1

( ∫ σi

s

hi(τ ) dτ ϕ
(
ψ−1

2 (λ)
η

4
‖u‖

))
ds

+
∫ 3/4

σi

ϕ−1

( ∫ s

σi

hi(τ ) dτ ϕ
(
ψ−1

2 (λ)
η

4
‖u‖

))
ds

]
.

Now, because of Lemma 2.5, we have

‖Tλu‖

≥ ψ−1
2 (λ)η‖u‖

8

[ ∫ σi

1/4

ψ−1
2

( ∫ σi

s

hi(τ ) dτ
)
ds+

∫ 3/4

σi

ψ−1
2

( ∫ s

σi

hi(τ ) dτ
)
ds

]
≥ ψ−1

2 (λ) Γ η ‖u‖.
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For σi > 3/4, it is easy to see

‖T i
λu‖ ≥

∫ 3/4

1/4

ϕ−1

( ∫ 3/4

s

λhi(τ ) f i(u(τ )) dτ
)
ds.

On the other hand, we have

‖T i
λu‖ ≥

∫ 3/4

1/4

ϕ−1

(∫ s

1/4

λhi(τ ) f i(u(τ )) dτ
)
ds if σi <

1
4
.

Similar arguments show that ‖Tλu‖ ≥ ψ−1
2 (λ) Γ η ‖u‖ if σi > 3/4 or

σi < c 1/4.

For each i = 1, . . . , n, define a new function f̂ i(t) : R+ → R+ by

f̂ i(t) = max{f i(u) : u ∈ Rn
+ and ‖u ≤ t}.

Note that f̂ i
0 = limt→0 f̂

i(t)/ϕ(t) and f̂ i
∞ = limt→∞ f̂ i(t)/ϕ(t).

Lemma 2.7 [21, 22]. Assume (A1) (A2) hold. Then f̂ i
0 = f i

0 and
f̂ i
∞ = f i

∞, i = 1, . . . , n.

Proof. It is easy to see that f̂ i
0 = f i

0. For the second part, we consider
the two cases, (a) f i(u) is bounded, and (b) f i(u) is unbounded. For
case (a), it follows from limt→∞ ϕi(t) = ∞, that f̂ i

∞ = 0 = f i
∞. For

case (b), for any δ > 0, let M i = f̂ i(δ) and

N i
δ = inf{‖u‖ : u ∈ Rn

+, ‖u‖ ≥ δ, f i(u) ≥M i} ≥ δ.

Then

max{f i(u) : ‖u‖ ≤ N i
δ, u ∈ Rn

+}
= M i = max{f i(u) : ‖u‖ = N i

δ, u ∈ Rn
+}.

Thus, for any δ > 0, there exists an N i
δ ≥ δ such that

f̂ i(t) = max{f i(u) : N i
δ ≤ ‖u‖ ≤ t, u ∈ Rn

+} for t > N i
δ.
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Hence, the definitions of f̂ i
∞ and f i

∞ imply that f̂ i
∞ = f i

∞.

Lemma 2.8. Assume (A1) (A3) hold, and let r > 0. If there exists
an ε > 0 such that

f̂ i(r) ≤ ψ1(ε)ϕ(r), i = 1, . . . , n,

then
‖Tλu‖ ≤ ψ−1

1 (λ) ε χ‖u‖ for u ∈ ∂Ωr.

Proof. From the definition of Tλ, for u ∈ ∂Ωr, we have

‖Tλu‖ =
n∑

i=1

sup
t∈[0,1]

|T i
λ u(t)|

≤
n∑

i=1

ϕ−1

( ∫ 1

0

λhi(τ ) f i(u(τ )) dτ
)

≤
n∑

i=1

ϕ−1

( ∫ 1

0

hi(τ ) dτ λ f̂ i(r)
)

≤
n∑

i=1

ϕ−1

( ∫ 1

0

hi(τ ) dτ λψ1(ε)ϕ(r)
)
.

Note that λ = ψ1(ψ−1
1 (λ)). Then (A1) and Lemma 2.5 imply that

‖Tλu‖ ≤
n∑

i=1

ϕ−1

( ∫ 1

0

hi(τ ) dτ ϕ(ψ−1
1 (λ) εr)

)

≤ ψ−1
1 (λ) εr

n∑
i=1

ψ−1
1

( ∫ 1

0

hi(τ ) dτ
)

= ψ−1
1 (λ) ε χ ‖u‖.

3. Proof of Theorem 1. We now provide the proof for this paper’s
main result.

Proof. Part (a). Let f i
0 = f0 > 0 for some fixed i. It follows that

ψ2

(
1

Γψ−1
2 (f i

0)

)
< λ < ψ1

(
1

χψ−1
1 (f∞)

)
.
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Condition (A1) implies that there exists an 0 < ε < f i
0 such that

ψ2

(
1

Γψ−1
2 (f i

0 − ε)

)
< λ < ψ1

(
1

χψ−1
1 (f∞ + ε)

)
.

Beginning with f i
0, there is an r1 > 0 such that

f i(u) ≥ (f i
0 − ε)ϕ(‖u‖)

for u = (u1, . . . , un) ∈ Rn
+ and ‖u‖ ≤ r1. Note that

(f i
0 − ε)ϕ(‖u‖) = ψ2(ψ−1

2 (f i
0 − ε))ϕ(‖u‖).

If u ∈ ∂ Ωr1 , then

f i(u(t)) ≥ ψ2(ψ−1
2 (f i

0 − ε))ϕ
( n∑

j=1

uj(t)
)

≥ ϕ

(
ψ−1

2 (f i
0 − ε)

n∑
j=1

uj(t)
)

for t ∈ [0, 1]. Lemma 2.6 implies that

‖Tλu‖ ≥ ψ−1
2 (λ) Γψ−1

2 (f i
0 − ε)‖u‖ > ‖u‖ for u ∈ ∂ Ωr1 .

It remains to consider f∞. It follows from Lemma 2.7 that f̂ j
∞ = f j

∞,
j = 1, . . . , n. Therefore, there is an r2 > 2r1 such that, for j = 1, . . . , n,

f̂ j(r2) ≤ (f j
∞ + ε)ϕ(r2) ≤ (f∞ + ε)ϕ(r2) = ψ1(ψ−1

1 (f∞ + ε))ϕ(r2).

Lemma 2.8 implies that, for u ∈ ∂ Ωr2 , we have

‖Tλu‖ ≤ ψ−1
1 (λ)χψ−1

1 (f∞ + ε)‖u‖
< ‖u‖.

By Lemma 2.1,

i(Tλ,Ωr1 ,K) = 0 and i(Tλ,Ωr2 ,K) = 1.

It follows from the additivity of the fixed point index that i(Tλ,Ωr2 \
Ωr1 ,K) = 1. Thus, Tλ has a fixed point in Ωr2 \ Ωr1 , which is the
desired positive solution of (1.1) (1.2).
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Part (b). Let f i
∞ = f∞ > 0 for some fixed i. It follows that

ψ2

(
1

Γψ−1
2 (f i∞)

)
< λ < ψ1

(
1

χψ−1
1 (f0)

)
.

Condition (A1) implies that there exists an 0 < ε < f i
∞ such that

ψ2

(
1

Γψ−1
2 (f i∞ − ε)

)
< λ < ψ1

(
1

χψ−1
1 (f0 + ε)

)
.

Since f̂ j
0 = f j

0 , j = 1, . . . , n, there exists a r3 > 0 such that

f̂ j(r3) ≤ (f j
0 + ε)ϕ(r3) ≤ (f0 + ε)ϕ(r3), j = 1, . . . , n.

Lemma 2.8 implies that

‖Tλu‖ ≤ ψ−1
1 (λ)χψ−1

1 (f0 + ε)‖u‖ < ‖u‖ for u ∈ ∂ Ωr3 .

Next, considering f i
∞, there is an Ĥ > 0 such that

f i(u) ≥ (f i
∞ − ε)ϕ(‖u‖)

for u = (u1, . . . , un) ∈ Rn
+ and ‖u‖ ≥ Ĥ . Let r4 = max{2r3, 4Ĥ}. If

u = (u1, . . . , un) ∈ ∂ Ωr4 , then

min
1/4≤t≤3/4

n∑
j=1

uj(t) ≥ 1
4
‖u‖ ≥ Ĥ,

and hence,

f i(u(t)) ≥ (f i
∞ − ε)ϕ

( n∑
j=1

uj(t)
)

≥ ϕ

(
ψ−1

2 (f i
∞ − ε)

n∑
j=1

uj(t)
)

for t ∈
[
1
4
,
3
4

]
.

Lemma 2.6 implies that

‖Tλu‖ ≥ ψ−1
2 (λ) Γψ−1

2 (f i
∞ − ε)‖u‖ > ‖u‖ for u ∈ ∂ Ωr4 .
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Again it follows from Lemma 2.1 that

i(Tλ,Ωr3 ,K) = 1 and i(Tλ,Ωr4 ,K) = 0.

Hence, i(Tλ,Ωr4\Ωr3 ,K) = −1. Thus, Tλ has a fixed point in Ωr4\Ωr3 ,
which is the desired positive solution of (1.1) (1.2).
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