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TWO-GRID METHODS FOR THE SOLUTION
OF NONLINEAR WEAKLY SINGULAR

INTEGRAL EQUATIONS BY PIECEWISE
POLYNOMIAL COLLOCATION

ENN TAMME

ABSTRACT. To solve nonlinear weakly singular integral
equations by the piecewise polynomial collocation method,
it is necessary to solve large nonlinear systems. This can
be done straightforwardly only for comparatively rough dis-
cretizations. In this paper a two-grid iteration method is pre-
sented which enables us to find the solution of such systems
for fine discretizations. We prove the convergence and estab-
lish the convergence rate of this method. So we generalize
for nonlinear equations the results proved in [10] for linear
equations.

1. Introduction. We shall deal with the nonlinear weakly singular
integral equation

(1) u(x) =
∫

G

K(x, y, u(y)) dy + f(x), x ∈ G,

where

G = {x = (x1, . . . , xn) : 0 < xk < bk, k = 1, . . . , n}

is an n-dimensional parallelepiped. The piecewise polynomial colloca-
tion method for the solution of such equations is considered in [1, 5,
8, 12]. In order to calculate the approximate solution by collocation
method, large nonlinear systems must be solved. In the present paper a
two-grid iteration scheme is presented for the solution of such systems.
Fast convergence of this method is shown. Analogous results have been
established for linear equations in [10] and for nonlinear equations in
the case of piecewise constant collocation method in [9].
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2. Integral equation. We shall make the following assumptions
(A1) (A3).

(A1) The kernel K(x, y, u) is m times, m ≥ 1, continuously differen-
tiable with respect to x, y and u for x ∈ G, y ∈ G, x �= y, u ∈ (−∞,∞),
whereby there exists a real number ν ∈ (−∞, n) such that, for any non-
negative integer l ∈ Z+ and multi-indices α = (α1, . . . , αn) ∈ Zn

+ and
β = (β1, . . . , βn) ∈ Zn

+ with l+ |α|+ |β| ≤ m, the following inequalities
hold:

|Dα
xD

β
x+y

(
∂

∂u

)l

K(x, y, u)|

≤ ψ1(|u|)

⎧⎪⎨
⎪⎩

1 ν + |α| < 0

1 + | log |x− y|| ν + |α| = 0

|x− y|−ν−|α| ν + |α| > 0

,

|Dα
xD

β
x+y

(
∂

∂u

)l

K(x, y, u1) −Dα
xD

β
x+y

(
∂

∂u

)l

K(x, y, u2)|

≤ ψ2(max{|u1|, |u2|})|u1 − u2|

⎧⎪⎨
⎪⎩

1 ν + |α| < 0

1 + | log |x− y|| ν + |α| = 0

|x− y|−ν−|α| ν + |α| > 0.

Here |α| = α1+ . . .+αn for α ∈ Zn
+, |x| = (x2

1+ . . .+x2
n)1/2 for x ∈ Rn,

Dα
x =

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn

,

Dβ
x+y =

(
∂

∂x1
+

∂

∂y1

)β1

. . .

(
∂

∂xn
+

∂

∂yn

)βn

,

and the functions ψ1: [0,∞) → [0,∞) and ψ2: [0,∞) → [0,∞) are
assumed to be monotonically increasing.

(A2) The righthand term f ∈ Cm,ν(G) with the same m and ν as
in (A1), i.e., f(x) is m times continuously differentiable on G and the
estimates

|Dαf(x)| ≤ const

⎧⎨
⎩

1 |α| < n− ν

1 + | log ρ(x)| |α| = n− ν

ρ(x)n−ν−|α| |α| > n− ν

,
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∣∣∣∣∂
lf(x)
∂xl

k

∣∣∣∣ ≤ const

⎧⎨
⎩

1 l < n− ν

1 + | log ρk(x)| l = n− ν

ρk(x)n−ν−l l > n− ν

hold for x ∈ G, |α| ≤ m, l = 1, . . . ,m, k = 1, . . . , n, where
ρk(x) = min{xk, bk − xk} and ρ(x) = min1≤k≤n ρk(x) is the distance
from x to ∂G, the boundary of G.

(A3) Integral equation (1) has a solution u0 ∈ L∞(G) and the
linearized integral equation

v(x) =
∫

G

K0(x, y)v(y) dy, K0(x, y) =
[
∂K(x, y, u)

∂u

]
u=u0(y)

,

has only the trivial solution v = 0 in L∞(G).

Note that the assumption (A1) holds, for example, for the kernels
K(x, y, u) = K1(x, y, u)|x − y|−ν , 0 < ν < n, and K(x, y, u) =
K1(x, y, u) log |x − y|, ν = 0, where K1(x, y, u) is an m + 1 times
continuously differentiable function with respect to x, y, u for x, y ∈ G,
u ∈ (−∞,∞).

From (A1) (A3) it follows that the solution u0 of (1) belongs to the
space Cm,ν(G) [7, 12].

3. Collocation method. We use the same non-uniform grid as
in [10, 12]. To define the partition of G into cells we choose a vector
N = (N1, . . . , Nn) of natural numbers and introduce in the interval
[0, bk], k = 1, . . . , n, the following 2Nk + 1 grid points:

(2)
xjk

k,N =
bk
2

(
jk
Nk

)r

, jk = 0, 1, . . . , Nk,

xNk+jk

k,N = bk − xNk−jk

k,N , jk = 1, . . . , Nk.

Here r ∈ R, r ≥ 1, characterizes the non-uniformity of the grid. If
r = 1, then the grid points (2) are uniformly located. Using the points
(2) we introduce the partition of G into closed cells Gj

N :

Gj
N = {x = (x1, . . . , xn) : xjk−1

k,N ≤ xk ≤ xjk

k,N , k = 1, . . . , n} ⊂ G,

j ∈ JN = {j = (j1, . . . , jn) : jk = 1, . . . , 2Nk, k = 1, . . . , n}.
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We determine the collocation points in the following way. We choose
m points η1, . . . , ηm in the interval [−1, 1]:

−1 ≤ η1 < η2 < · · · < ηm ≤ 1.

By affine transformations we transfer them into the interval
[xjk−1

k,N , xjk

k,N ], jk = 1, . . . , 2Nk, k = 1, . . . , n,

ξjk,qk

k,N = xjk−1
k,N +

ηqk
+ 1
2

(xjk

k,N − xjk−1
k,N ), qk = 1, . . . ,m.

Note that ξjk,m
k,N = ξjk+1,1

k,N = xjk

k,N if η1 = −1 and ηm = 1, jk =
1, . . . , 2Nk − 1. We assign the collocation points

ξj,q
N = (ξj1,q1

1,N , . . . , ξjn,qn

n,N ), q ∈ Q,

Q = {q = (q1, . . . , qn) : qk = 1, . . . ,m, k = 1, . . . , n},

to the cells Gj
N , j ∈ JN .

We define the interpolation projector PN by the formula

(3) (PNu)(x) =
∑
q∈Q

u(ξj,q
N )ϕj,q

N (x), x ∈ Gj
N , j ∈ JN ,

where
ϕj,q

N (x) = ϕj1,q1
1,N (x1) · · ·ϕjn,qn

n,N (xn)

and ϕjk,qk

k,N (xk), k = 1, . . . , n, are the polynomials of one variable of
degree m− 1 such that

(4) ϕjk,qk

k,N (ξjk,pk

k,N ) =
{

1 if pk = qk
0 if pk �= qk

, pk = 1, . . . ,m.

Let us denote by EN the range of the projection PN . This is the finite
dimensional space of piecewise polynomial functions uN on G which on
any cell Gj

N , j ∈ JN , are polynomials of the degree not exceeding m−1
with respect to any of arguments x1, . . . , xn.

We determine the approximate solution uN ∈ EN of the integral
equation (1) by the collocation method from the following conditions:

(5)
[
uN (x)−

∫
G

K(x, y, uN (y)) dy−f(x)
]

x=ξi,p
N

= 0, p ∈ Q, i ∈ JN .
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By the representation (3), we can find uN ∈ EN in the form

uN (x) =
∑
q∈Q

cj,qϕj,q
N (x) if x ∈ Gj

N , j ∈ JN ,

where, as it follows from (4),

cj,q = uN (ξj,q
N ).

Now the collocation conditions (5) will take the following form of a
nonlinear system which determines the coefficients cj,q = uN (ξj,q

N ):

(6)
uN (ξi,p

N ) =
∑

j∈JN

∫
Gj

N

K

(
ξi,p
N , y,

∑
q∈Q

uN (ξj,q
N )ϕj,q

N (y)
)
dy + f(ξi,p

N ),

p ∈ Q, i ∈ JN .

If η1 > −1 or ηm < 1, then this system has (2m)nN1 . . . Nn = dimEN

equations and the same number of unknowns. If η1 = −1 and
ηm = 1, then some collocation points coincide. The number of different
collocation points is [2N1(m − 1) + 1] . . . [2Nn(m − 1) + 1] = dimEN

and the system (6) has the same number of equations and unknowns.

In [12] the following result about the convergence of such collocation
methods is proved.

Theorem 1. Let the assumptions (A1) (A3) hold. Then there exist
N0 > 0 and δ0 > 0 such that, for Nk ≥ N0, k = 1, . . . , n, the collocation
conditions (5) define a unique approximation uN ∈ EN to u0 satisfying

sup
x∈G

|uN (x) − u0(x)| < δ0.

The following error estimate holds:

max
j∈JN

max
q∈Q

|uN (ξj,q
N ) − u0(ξ

j,g
N )|

≤ consthm
N for

⎧⎪⎨
⎪⎩
r > m/(2(n−ν)) if n−ν ≤ 1

r > m/(n−ν+1) if 1<n−ν ≤ m−1

r ≥ 1 if n−ν > m−1
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where

hN = max
1≤k≤n

bk
Nk

.

It is shown in [8] that for special collocation points a more rapid
convergence, the superconvergence, takes place.

To apply the collocation method it is necessary to solve the nonlinear
system (6). We write this system in the form

(7) ūN = TN ūN + f̄N

where ūN = (uN (ξj,q
N ))j∈JN ,q∈Q, f̄N = (f(ξj,q

N ))j∈JN ,q∈Q are vectors
and

(TN ūN )(ξi,p
N ) =

∑
j∈JN

∫
Gj

N

K

(
ξi,p
N , y,

∑
q∈Q

uN (ξj,q
N )ϕj,q

N (y)
)
dy,

i ∈ JN , p ∈ Q.

Usually the number of equations in (7) is large which makes solving the
system directly rather costly if not impossible. An effective method for
solving this system is a two-grid iteration method.

4. Two-grid method. In addition to the original grid corre-
sponding to N = (N1, . . . , Nn), we define another grid, the coarse
grid, corresponding to M = (M1, . . . ,Mn) where Mk, k = 1, . . . , n,
are integers such that Nk/Mk are integers greater than 1. Then every
cell Gj

N , j ∈ JN , of the original grid is fully contained in some cell Gi
M

of the coarse grid.

For solving the system (7) the following two-grid iteration method is
used:

(8)

v̄l
N = TN ū

l
N + f̄N ,

w̄l
M − TM w̄l

M = RNM f̄N + RNMTN v̄
l
N − TMRNM v̄l

N ,

ūl+1
N = v̄l

N + PMN (w̄l
M −RNM v̄l

N ), l = 0, 1, . . . ,
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where u0
N is the initial guess of uN , PMN :RdM → RdN (dN = dimEN )

and RNM :RdN → RdM are the operators defined by the formulas:

(PMN w̄
l
M )(ξi,p

N ) =
∑
q∈Q

wl
M (ξj,q

M )ϕj,q
M (ξi,p

N ) if ξi,p
N ∈ Gj

M ,

(RNM f̄N )(ξi,p
M ) = f(ξi,p

M ),

(RNMTN ū
l
N )(ξi,p

M ) =
∑

j∈JN

∫
Gj

N

K(ξi,p
M , y,

∑
q∈Q

ul
N (ξj,q

N )ϕj,q
N (y)) dy,

RNM v̄l
N = RNMTN ū

l
N + RNM f̄N .

For linear integral equations, method (8) coincides with the two-
grid method in [10]. For nonlinear integral equations similar methods
are considered in [4, 9]. Iteration method (8) resembles the two-grid
method in [9]. An essentially new idea in the present two-grid method
is the restriction operator RNM as the collocation points of the coarse
grid may not coincide with the collocation points of the fine grid.

To apply method (8), it is necessary for every l, to solve the nonlinear
system in the form

(9) w̄M − TM w̄M = ḡM

where

ḡM = RNM f̄N + RNMTN (TN ūN + f̄N ) − TMRNM (TN ūN + f̄N ).

Note that, compared to the system (7) which corresponds to a fine
discretization, system (9) corresponds to coarse discretization, and thus
the dimension dM = dimEM of this system is essentially less than the
dimension dN of (7). To solve the system (9), one can use some iterative
methods, for example, Newton’s method with initial guess RNM v̄l

N for
w̄l

M . If ūl
N is a sufficiently good approximation of the solution ūN,0

of (7), we can use only one step of Newton’s method [9]. Note that
efficient two-grid methods for solving nonlinear integral equations are
obtained using first Newton’s method to solve system (7) and second
exploiting at each step a coarse grid also [1, 3, 6].

For the convergence analysis of the two-grid method (8) we use the
approach of [2] and consider the iteration method corresponding to (8)
in function spaces.
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We write the integral equation (1) in the form

(10) u = T u+ f

where
(T u)(x) =

∫
G

K(x, y, u(y)) dy.

It is easy to see that the approximate solution uN ∈ EN of (1),
determined from the collocation conditions (5), is the solution of the
equation

(11) uN = PNT uN + PNf.

Define the operators R∞N :EN → RdN and PN∞:RdN → EN by the
equalities:

(R∞Nu)(ξ
j,q
N ) = u(ξj,q

N ), j ∈ JN , q ∈ Q,

(PN∞ūN )(x) =
∑
q∈Q

uN (ξj,q
N )ϕj,q

N (x), x ∈ Gj
N , j ∈ JN .

These operators define one-to-one correspondence between elements of
EN and RdN . From now on we use the operator R∞N for all functions
defined in the collocation points ξj,q

N .

Denote

ul
N = PN∞ūl

N , vl
N = PN∞v̄l

N , wl
M = PM∞w̄l

M .

Then

ūl
N = R∞Nu

l
N , v̄l

N = R∞Nv
l
N , w̄l

M = R∞Mwl
M .

Making use of the identities

R∞NPN∞ = I, PN∞R∞N = PN ,

TN = R∞NT PN∞, PN∞PMN = PM∞,

we rewrite the formulas (8) as follows:

(12)

vl
N = PNT ul

N + PNf,

wl
M − PMT wl

M = PMf + PMT vl
N − PMT PM (T ul

N + f),

ul+1
N = vl

N + wl
M − PM (T ul

N + f), l = 0, 1, . . .
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Whereas u0
N = PN∞ū0

N ∈ EN we also have vl
N ∈ EN , wl

M ∈ EM ⊂ EN

and ul+1
N ∈ EN , l = 0, 1 . . . Therefore the methods (8) and (12) are

equivalent. At the same time the method (12) is an iteration method
to solve (11).

The equation (9) is equivalent to the equation

(13) wM − PMT wM = gM

where wM = PM∞w̄M and

gM = PMf + PMT PN (T uN + f) − PMT PM (T uN + f).

In the discussion of solvability of equations (11) and (13) we use the
following result which is proved in a more general setting, for example,
in [11]. We consider the equations (10) and (13) in Banach space E
and assume that T :E → E is a nonlinear operator and PM ∈ L(E,E)
are linear uniformly bounded operators, i.e., ||PM || ≤ const.

Lemma 1. Let the following conditions hold.

(B1) Equation (10) has a solution u0 ∈ E and

||PMT u0 − T u0|| → 0 as min
1≤k≤n

Mk → ∞.

(B2) There is a positive δ such that the operator T is Fréchet differ-
entiable in the ball Sδ = {u: ||u − u0|| ≤ δ} and for any ε > 0 there is
a δε, 0 < δε < δ, such that

||T ′(u) − T ′(u0)|| ≤ ε whenever u ∈ Sδε
.

(B3) The derivative T ′(u0) is a compact operator,

||PMT ′(u0) − T ′(u0)|| −→ 0 as min
1≤k≤n

Mk → ∞

and the homogeneous equation v = T ′(u0)v has only the trivial solution
in E.
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(B4) ||gM − f || → 0 as min1≤k≤nMk → 0.

Then there exist M0 > 0 and δ0, 0 < δ0 ≤ δ, such that for
Mk ≥ M0, k = 1, . . . , n, the equation (13) has a unique solution
wM,0 = (I − PMT )−1gM in the ball Sδ0 . Besides ||uM,0 − u0|| → 0
if min1≤k≤nMk → ∞ with the error estimate

||wM,0 − u0|| ≤ const ||(PMT u0 − T u0) + (gM − f)||.

We can consider the method (12) as an iterative method

(14) ul+1
N = Φul

N , l = 0, 1, . . . ,

for solving the equation

(15) u = Φu.

To study the convergence of this iterative method, the following well-
known result is used.

Lemma 2. Let equation (15) have a solution uN,0 ∈ E, and let
SN,δ = {u: ||u− uN,0|| ≤ δ}. If Φ:SN,δ → E and

||Φ′(u)|| ≤ q < 1 as u ∈ SN,δ

then uN,0 is the unique solution of equation (15) in SN,δ. For every
initial guess u0

N ∈ SN,δ the iterative method (14) converges to uN,0 with
the rate

||ul+1
N − uN,0|| ≤ q||ul

N − uN,0||, l = 0, 1, . . . .

In the following we take E = L∞(G) with norm

||u|| = sup
x∈G

|u(x)|.
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From assumption (A1) it follows that T :L∞(G) → L∞(G) and that
the Fréchet derivative

(T ′(u)Δu)(x) =
∫

G

∂K(x, y, u(y))
∂u

Δu(y) dy

exists for any u ∈ L∞(G). We use the following estimates for studying
of the convergence of the two-grid iteration method.

Lemma 3. Let assumptions (A1) and (A2) hold and u ∈ {u: ||u|| ≤
const}. Then

||PNf − f || ≤ const εν,hN
,(16)

||PNT u− T u|| ≤ const εν,hN
,(17)

and

(18) ||PNT ′(u) − T ′(u)|| ≤ const εν,hN
,

where
hN = max

1≤k≤n

bk
Nk

and

εν,hN
=

⎧⎨
⎩
hN ν < n− 1
hN (1 + | log hN |) ν = n− 1
hn−ν

N ν > n− 1
.

Proof. Let x ∈ Gj
N . Then

(PNf)(x) − f(x) =
∑
q∈Q

f(ξj,q
N )ϕj,q

N (x) − f(x)

=
∑
q∈Q

ϕj,q
N (x)[f(ξj,q

N ) − f(x)].

Note that, see [10] and Lemma 2.4 in [12],

sup
x∈Gj

N

|f(ξj,q
N ) − f(x)| ≤ const εν,hN
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and

(19) max
x∈Gj

N

|ϕj,q
N (x)| ≤ cn

where

c = max
1≤qk≤m

max
−1≤η≤1

∣∣∣∣
m∏

s=1
s �=qk

η − ηs

ηqk
− ηs

∣∣∣∣.

Thus
sup

x∈Gj
N

|(PNf)(x) − f(x)| ≤ const εν,hN
, j ∈ JN ,

from which follows the estimate (16). The proof of (17) is analogous
using a generalization of Lemma 2.3 in [12] for nonlinear operators.
The estimate (18) follows from the lemma in [10].

Remark. From (19) it follows that ||PN || ≤ cn = const.

We are now ready to prove the following result about the convergence
of the two-grid method (8).

Theorem 2. Let the assumptions (A1) (A3) hold. Then there exist
M0 > 0 and δ0 > 0 such that, for Nk ≥ M0, k = 1, . . . , n, the system
(7) has a unique solution ūN,0 satisfying ||PN∞ūN,0 − u0|| ≤ δ0. The
two-grid iteration method (8) converges for Mk ≥ M0, k = 1, . . . , n,
and for sufficiently good initial guess u0

N to this solution with the rate

(20) ||ūl+1
N − ūN,0|| ≤ c1εν,hM

||ūl
N − ūN,0||, l = 0, 1, . . . ,

where
||ūN || = max

j∈JN

max
q∈Q

|uN (ξj,q
N )|.

Proof. We get by Lemma 3 that the conditions (B1) (B3) of Lemma 1
are fulfilled with E = L∞(G). On the grounds of Lemma 1 there exist
M ′

0 > 0 and δ0 > 0 such that for Nk ≥M ′
0, k = 1, . . . , n, equation (11)

has a unique solution uN,0 in the ball Sδ0 . From this the first assertion
of the theorem follows because uN,0 ∈ EN and ūN,0 = R∞NuN,0 is the
solution of (7).



TWO-GRID METHODS 267

Method (12) is an iterative method of the form (14) where

Φu = (PN − PM )(T u+ f) + (I − PMT )−1[PMf

+ PMT PN (T u+ f) − PMT PM (T u+ f)].

It is easy to check that the solution uN,0 of equation (11) is the solution
of equation (15) too. The derivative of Φ is expressed

Φ′(u)Δu = (PN − PM )T ′(u)Δu
+ [I − PMT ′(w)]−1[PMT ′(PN (T u+ f))PN

− PMT ′(PM (T u+ f))PM ]T ′(u)Δu

where w is the solution of the equation

(21) w − PMT w = g

with
g = PMf + PMT PN (T u+ f) − PMT PM (T u+ f).

Denote vN = PN (T u+ f). Then

g = PMf + PMT vN − PMT vM .

Let ||u|| ≤ const. Then by Lemma 3 we get

||g − f || ≤ ||PMf − f || + ||PMT vN − PMT vM ||
≤ const εν,hM

+ const ||vN − vM || ≤ const εν,hM
.

On the grounds of Lemma 1 there exists M ′′
0 ≥ M ′

0 such that for
Mk ≥ M ′′

0 , k = 1, . . . , n, equation (21) has a unique solution w in the
ball Sδ0 and

(22) ||w − u0|| ≤ const εν,hM
→ 0 as min

1≤k≤n
Mk → ∞.

Analogously we get that the formulas (12) and (8) define sequences
ul

N ∈ EN and ūl
N = R∞Nu

l
N , l = 1, 2, . . . , for Mk ≥M ′′

0 , k = 1, . . . , n,
and for sufficiently good initial guess u0

N ∈ EN to uN,0.
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Due to (A1) and (A3) there exists the inverse operator [I−T ′(u0)]−1.
By Lemma 3 and (22) we get

||PMT ′(w) − T ′(u0)|| ≤ ||PMT ′(w) − PMT ′(u0)||
+ ||PMT ′(u0) − T ′(u0)|| ≤ const εν,hM

−→ 0

as min
1≤k≤n

Mk → ∞.

Therefore we can find M ′′′
0 ≥M ′′

0 so that for Mk ≥M ′′′
0 , k = 1, . . . , n,

there exist the inverse operators [I −PMT ′(w)]−1 which are uniformly
bounded:

||[I − PMT ′(w)]−1|| ≤ const.

For Mk ≥M ′′′
0 , k = 1, . . . , n, we can estimate

||Φ′(u)|| ≤ ||(PN − PM )T ′(u)||
+ const ||PMT ′(vN )PNT ′(u) − PMT ′(vM )PMT ′(u)||

≤ const [εν,hM
+ ||PM [T ′(vN ) − T ′(vM )]PNT ′(u)||

+ ||PMT ′(vM )(PN − PM )T ′(u)||]
≤ c0εν,hM

if u ∈ SN,δ

where δ > 0 and SN,δ ⊂ Sδ0 . We choose M0 ≥M ′′′
0 so that c0εν,hM

< 1
as Mk ≥ M0, k = 1, . . . , n. Then from Lemma 2 it follows that
the iteration method (12) converges, for x0

N ∈ SN,δ and Mk ≥ M0,
k = 1, . . . , n, and

(23) ||ul+1
N − uN,0|| ≤ c0εν,hM

||ul
N − uN,0||, l = 1, 2, . . . .

The estimate (20) with c1 = cnc0 follows from (23) because

||ūl+1
N − ūN,0|| = ||R∞N (ul+1

N − uN,0)|| ≤ ||ul+1
N − uN,0||

and

||ul
N − uN,0|| = ||PN∞(ūl

N − ūN,0)|| ≤ cn||ūl
N − ūN,0||.

The last inequality is a consequence of (19). Theorem 2 is proved.
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From the estimate (20) we see that the two-grid iteration method
(8) converges quite quickly provided that Mk, k = 1, . . . , n, are chosen
sufficiently large. Thus we get for the nonlinear equations the same
rate of convergence as is proved for linear equations in [10]. In
[9] a two-grid iteration method for the solution of nonlinear weakly
singular integral equations on arbitrary bounded domainG by piecewise
constant collocation method is considered. In the special case when the
domain G and the cells Gj

N are parallelepipeds the main result of [9]
follows from Theorem 2 proved above.

Example. Consider the integral equation

u(x) =
∫ 1

0

|x− y|−1/2u2(y)dy + f(x), 0 < x < 1,

where f(x) is selected so that u0(x) =
√
x(1 − x) is the solution to be

approximated, see [8]. It is easy to see that the assumptions (A1) (A3)
hold for this equation with ν = 1/2. Tables 1 4 present the norm εN of
the errors of the approximate solutions uN calculated by the collocation
method:

εN = ||ūN − ū0|| = max
j∈JN ,q∈Q

|uN (ξj,q
N ) − u0(ξ

j,q
N )|.

TABLE 1.

r = 1 r = 2
N εN ρN εN ρN

2 1.0 E-1 8.7 E-2
4 3.0 E-2 3.4 2.2 E-2 4.0
8 8.7 E-3 3.4 5.3 E-3 4.1

16 2.4 E-3 3.6 1.3 E-3 4.0
32 6.8 E-4 3.6 3.3 E-4 4.0
64 2.5 E-4 2.8 8.2 E-5 4.0

128 8.8 E-5 2.8 2.0 E-5 4.0
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TABLE 2.

r = 1 r = 2
M N l0 εN l0 εN

4 8 4 8.7 E-3 4 5.5 E-3
4 16 5 2.5 E-3 5 1.4 E-3
8 16 3 2.4E-3 3 1.3E-3
4 64 6 2.5E-4 8 8.2 E-5
8 64 4 2.5E-4 5 8.0E-5

16 64 3 2.5E-4 3 8.3E-5
32 64 3 2.5E-4 2 8.3E-5
4 256 8 3.2E-5 12 4.9 E-6
8 256 5 3.1E-5 8 5.1 E-6

16 256 3 3.2E-5 5 5.1 E-6
32 256 3 3.1E-5 4 5.1 E-6
64 256 3 3.1E-5 3 5.1 E-6

TABLE 3.

r = 1 r = 2 r = 4
N εN ρN εN ρN εN ρN

2 7.8E-4 1.9E-3 6.7E-3
4 1.9E-4 4.0 2.2E-4 8.9 1.5E-3 4.5
8 7.0E-5 2.8 3.4 E-5 6.5 2.1E-4 7.0

16 2.3E-5 3.0 5.2 E-6 6.5 2.7E-5 8.0
32 7.7E-6 3.0 1.0 E-6 5.2 6.7E-6 4.0
64 2.6E-6 2.9 1.7 E-7 5.9 1.4E-6 4.8

The results of Tables 1 and 3 have been obtained by the solution of
the nonlinear system (6) with Newton’s method and of Tables 2 and
4 by the solution of this system with the two-grid method (8) using
l0 iterative steps. The number of steps l0 is chosen so that the er-
rors in Tables 2 and 4 are within 3% at the error of the corresponding
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TABLE 4.

r = 1 r = 2 r = 4
M N l0 εN l0 εN l0 εN

4 8 4 6.9E-5 11 3.4E-5 13 2.2 E-4
4 16 4 2.4 E-5 11 5.1 E-6 12 2.6 E-5
8 16 3 2.3 E-5 7 5.1 E-6 11 2.7 E-5
4 32 6 7.9 E-6 13 1.0 E-6 13 6.8 E-6
8 32 3 7.7 E-6 8 1.0 E-6 10 6.3 E-6

16 32 3 7.7 E-6 4 1.0 E-6 6 6.5 E-6
4 64 7 2.7 E-6 16 1.7 E-7 18 1.3 E-6
8 64 4 2.7 E-6 10 1.7 E-7 12 1.3 E-6

16 64 2 2.5 E-6 7 1.7 E-7 8 1.4 E-6
32 64 2 2.6 E-6 4 1.7 E-7 3 1.4 E-6

collocation method. All the integrals needed for the construction of the
system (6) were found analytically.

We have chosen m = 2 and −η1 = η2 = 1 in the case of Tables 1 and
2 and −η1 = η2 = 1/

√
3 in the case of Tables 3 and 4 (the last values

of η1 and η2 determine the collocation points of the superconvergence).
The number of the equations and unknowns in system (6) is in the
first case 2N + 1 and in the second case 4N . The ratio ρN = εN/2/εN

characterizes the rate of the convergence of the collocation method. It is
proved [8, 12] that the error of the collocation method εN = O(N−2)
in the first case for r > 2 and εN = O(N−5/2) in the second case
for r > 4. Thus the value of the ratio ρN ought to be respectively
22 = 4 and 25/2 ≈ 5.7. From Tables 1 and 3 we see that such rate of
convergence is achieved already for r = 2. For r = 4 the errors of the
collocation method are bigger and the rate of the convergence of the
two-grid iteration method is slower than for r = 2.

The initial guess of the two-grid method has been taken ū0
N =

PMN ūM in the case of Table 2 and ū0
N = RMNTM ūM + f̄N in the

case of Table 4. In the case of Table 4 one can also use the initial guess
ū0

N = PMN ūM but then in most cases we need one extra approximation
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step of the two-grid method to get the same precision. Such initial
guesses are so good that it is sufficient to make only one step of
Newton’s method with initial guess RNMvl

N for wl
M for the solution of

the system (9).

From numerical examples it follows that the estimate (20) of Theo-
rem 2 expresses quite well the convergence rate of the two-grid method.
This method converges approximately with the rate of the geometric
progression, which factor essentially behaves like constM−1/2. It ap-
pears that one can use rather coarse grids even for a quite fine initial
grid. A good strategy will be M ≈

√
N .
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