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A SINC QUADRATURE METHOD FOR THE
DOUBLE-LAYER INTEGRAL EQUATION
IN PLANAR DOMAINS WITH CORNERS

RAINER KRESS, IAN H. SLOAN AND FRANK STENGER

ABSTRACT. A convergence and error analysis is given for
a Nyström method on a graded mesh based on sinc quadrature
for an integral equation of the second kind with a Mellin
type singularity. An application to the double-layer integral
equation for planar domains with corners is described.

1. Introduction. Sinc approximation methods have been success-
fully employed for problems where the solution has singularities, for
example for partial differential equations and associated integral equa-
tions in domains with corners (see [8, Chapter 5], and [12, Sections 6.5,
6.6, and 7.4]). Given this success, we felt a need to explain theoreti-
cally the numerical performance by an error and convergence analysis
for a particular situation. For this we have chosen the application of a
sinc quadrature method for the solution of the integral equation of the
second kind arising from the double-layer approach to solve the Dirich-
let problem for the Laplace equation in planar domains with corners.
Since the solution of the integral equation develops a singularity of the
derivatives at the corner, in the discretization of this integral equation
a graded mesh must be used in order to achieve a satisfactory accuracy.
Quadrature or Nyström methods for the double-layer integral equation
using graded meshes have been previously considered by Graham and
Chandler [4], Atkinson and Graham [2], Kress [7], Jeon [5] and Elliott
and Prössdorf [3].

Because of the Mellin type singularity of the double-layer kernel for
domains with corners, the double-layer integral operator is no longer
compact in the space of continuous functions. Therefore the Riesz
theory cannot be immediately employed for establishing existence of
a solution. Following the classical work of Radon [11], this difficulty
can be remedied by splitting the operator into an operator with norm
less than one, reflecting the singular behavior at the corner, and
a compact operator (see also [6, p. 76]). It appears natural that
for a convergence and error analysis for corresponding quadrature
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or Nyström methods in the framework of Anselone’s [1] theory of
collectively compact operators one should mimic this approach, and
also split the approximating operators such that of the two resulting
operator sequences one is uniformly bounded with norms uniformly less
than one, and the other is collectively compact. In previous work (see
[4, 2, 7, 5, 3]) it turned out that, due to the grading of the mesh,
establishing the uniform boundedness with norm less than one posed a
major difficulty in the analysis, which could be overcome only through
the introduction of some cut-off procedures in the vicinity of the corner.
In the present paper the grading is achieved by way of a sinc quadrature.
As will become evident later in the paper, for this particular grading
uniform boundedness with norm less than one can be established quite
straightforwardly, and without any need for additional modifications of
the approximation method. Besides the fact that the sinc quadrature
can be easily implemented by a simple parameter transformation, and
that it yields rapid convergence for domains which are smooth (with
the exception of the corner), we consider this simplification as a major
advantage for theoretical reasons. In particular, this makes us believe
that eventually a similar error analysis for sinc quadrature applied to
other related integral equations, such as Symm’s integral equation of
the first kind, should be manageable. For a comprehensive review of
approximation methods for Mellin type equations we refer to [10].

The plan of the paper is as follows. In Section 2 we will review the
basic properties of the special form of the sinc quadrature rule which we
shall use in our approximation and analysis. In Section 3 we introduce
a class of integral equations with Mellin type singularities which we
want to solve approximately, and recall their basic properties from [7].
Section 4, the main part of the present paper, is devoted to establishing
uniform convergence of the approximate solution. In addition, it
is shown here that the fast convergence of the sinc quadrature for
analytic functions carries over to the approximate solution of the
integral equation. The final section, Section 5, describes the application
of these results to the suitably parametrized form of the double-layer
integral equation. It concludes with two numerical examples.

2. The quadrature formula. For d > 0, let Hd denote the Hardy
space of holomorphic functions f on the strip

Dd := {z = x+ iy : x ∈ R, |y| < d} ⊂ C
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which are real valued for real z, and for which the integral

‖f‖Hd
:=

∫ ∞

−∞
|f(x+ id)| dx

:= lim
a↗d

∫ ∞

−∞
|f(x+ ia)| dx

is finite. Then for the error in the trapezoidal rule

(2.1)
∫ ∞

−∞
f(x) dx ≈ h

∞∑
j=−∞

f(hj)

with step width h > 0, i.e., for

(2.2) Rh(f) :=
∫ ∞

−∞
f(x) dx− h

∞∑
j=−∞

f(hj),

we have the estimate, due to Martensen,

(2.3) |Rh(f)| ≤ 2
e2πd/h − 1

‖f‖Hd

(see [9, 12]). Note that the trapezoidal rule can be obtained through
integrating Whittaker’s cardinal series, i.e., the sinc function series.
Therefore it is legitimate to consider the trapezoidal rule (2.1) as a sinc
function approximation.

For d ≤ π/2, the function

(2.4) w(z) :=
1

1 + e−z
, z ∈ C,

maps the strip Dd bijectively onto an eye-shaped domain Ed := {w(z) :
z ∈ Dd} centered around the interval (0, 1); the latter interval is the
image of the real line under the map w. The domain Ed is symmetric
with respect to the real axis and the line Rew = 1/2. At the end points
of (0, 1) the domain Ed has corners with interior angle 2d. The width
of Ed is tan(d/2), and Ed is contained in the cone

Wd := {reiθ : r ≥ 0, −d ≤ θ ≤ d}.
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We proceed by employing the trapezoidal rule to derive a numerical
quadrature rule for the integral

∫ 1

0

g(t) dt,

where the real valued integrand g is continuous in (0, 1) but is allowed
to have integrable singularities at the two endpoints t = 0 and t = 1.
Since w maps R bijectively and strictly monotonically increasing onto
the interval (0, 1), we can substitute t = w(x) and consequently obtain

∫ 1

0

g(t) dt =
∫ ∞

−∞
f(x) dx,

where
f(x) := w′(x)g(w(x)), −∞ < x <∞.

Applying the trapezoidal rule to the transformed integral now yields
the approximation

(2.5)
∫ 1

0

g(t) dt ≈ h
∞∑

j=−∞
w′(jh)g(w(jh)),

with the error given by (2.3), provided g can be extended to a holo-
morphic function in Ed such that the Hardy norm ‖w′g ◦ w‖Hd

of the
transformed function exists.

Of course, for actual numerical calculations the infinite series in (2.5)
has to be truncated, i.e., we will finally approximate by the quadrature
rule

(2.6)
∫ 1

0

g(t) dt ≈ h
n∑

j=−n

w′(jh)g(w(jh)),

for some n ∈ N. In order to be able to estimate the error caused by
this truncation, for α > 0 we denote by Sα,d the space of all functions
g which are holomorphic in Ed, real valued on (0, 1), and which satisfy

|t(1 − t)|1−α|g(t)| ≤ c, t ∈ Ed,
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for some constant c. On Sα,d we define a norm by

‖g‖Sα,d
:= sup

t∈Ed

|t(1 − t)|1−α|g(t)|.

The transformation w solves the differential equation

(2.7) w′ = w(1 − w),

and from
w(z)[1 − w(z)] =

1
1 + e−z

1
1 + ez

it can be easily seen, since d ≤ π/2, that

(2.8) |w(z)[1 − w(z)]| ≤ e−|Re z|, z ∈ Dd.

Using (2.7) and (2.8) we can estimate

∞∑
|j|=n+1

|w′(jh)g(w(jh))|

≤
∞∑

|j|=n+1

w′(jh){w(jh)[1 − w(jh)]}α−1 ‖g‖Sα,d

≤ 2
∞∑

j=n+1

e−jhα ‖g‖Sα,d
=

2e−(n+1)hα

1 − e−hα
‖g‖Sα,d

for α > 0. From this, with the aid of the inequality

he−hα

1 − e−hα
≤ 1
α
,

we conclude that

(2.9) h
∞∑

|j|=n+1

|w′(jh)g(w(jh))| ≤ 2
α
e−nhα ‖g‖Sα,d

for g ∈ Sα,d and α > 0.
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Using (2.7) and (2.8) we also have that

(2.10) |w′(z)g(w(z))| ≤ e−α|Re z|‖g‖Sα,d
, z ∈ Dd.

Therefore the Hardy norm of w′g ◦ w can be estimated through

(2.11) ‖w′g ◦ w‖Hd
≤ 2
α
‖g‖Sα,d

for g ∈ Sα,d and α > 0. Now from (2.3), (2.9) and (2.11) we conclude
that the error

(2.12) En,h(g) :=
∫ 1

0

g(t) dt− h

n∑
j=−n

w′(jh)g(w(jh))

for the quadrature (2.6) for h ≤ 2πd can be estimated through

(2.13) |En,h(g)| ≤ (C1e
−nhα + C2e

−2πd/h)‖g‖Sα,d

for g ∈ Sα,d and some constants C1 and C2 depending only on α and
d.

Provided we choose the step width h according to the relation

(2.14) h =
λ

n1/2

for some constant λ > 0, from (2.13) we obtain the following theorem
indicating faster than polynomial convergence.

Theorem 2.1. For g ∈ Sα,d with α > 0 and 0 < d < π/2 the error
in the quadrature (2.6) with step width (2.14) can be estimated by

(2.15) |En,h(g)| ≤ Ce−μ n1/2‖g‖Sα,d

for some positive constants C and μ depending on d, α and λ.

Roughly speaking, the estimate (2.15) says that increasing the num-
ber of quadrature points by a factor of four doubles the number of
correct digits in the approximate value of the integral.



A SINC QUADRATURE METHOD 297

Obviously, the optimal choice for the constant λ is given through

(2.16) h =
(

2πd
αn

)1/2

in which case μ = (2πdα)1/2. However, its actual numerical imple-
mentation would require the knowledge of both the parameters d and
α.

In our convergence analysis for integral operators we will also need
the following estimate of the error in the nontruncated quadrature

(2.17) E∞,h(g) :=
∫ 1

0

g(t) dt− h
∞∑

j=−∞
w′(jh)g(w(jh))

for integrands g which are merely differentiable.

Theorem 2.2. For g ∈ C1[0, 1] the error (2.17) can be estimated by

(2.18) |E∞,h(g)| ≤ h

2

∫ 1

0

|t(1 − t) g′(t) + (1 − 2t) g(t)| dt.

Proof. Define a function B : R → R with period h by

B(x) := x− h

2
, 0 ≤ x < h.

Then for f = w′g ◦w by partial integration over subintervals of length
h we obtain

(2.19)

∫ mh

−mh

f(x) dx− h
m∑

j=−m

f(jh) = −h
2
[f(−mh) + f(mh)]

−
∫ mh

−mh

B(x)f ′(x) dx.

(Of course, (2.19) is just the Euler-Maclaurin summation formula of
lowest order.) From (2.19) and (2.10) for the case α = 1 (and d = 0),
by passing to the limit m→ ∞, we find that

|E∞,h(g)| ≤ h

2

∫ ∞

−∞

∣∣∣∣ ddx [w′(x)g(w(x))]
∣∣∣∣dx,
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provided the integral exists. Elementary calculations, based on the
differential equation (2.7), yield the relation

[w′g ◦ w]′ = w′[w(1 − w)g′ ◦ w + (1 − 2w)g ◦ w].

From this, on substituting t = w(x) we find that

∫ ∞

−∞
|[w′(x)g(w(x))]′| dx =

∫ 1

0

|t(1 − t)g′(t) + (1 − 2t)g(t)| dt,

which completes the proof of (2.18).

For further analysis it is more convenient to renumber the quadrature
points in (2.6) and write

(2.20)
∫ 1

0

g(t) dt ≈
2n+1∑
j=1

a
(n)
j g(s(n)

j )

with the weights and mesh points given by

a
(n)
j = hw′(jh− nh− h),

s
(n)
j = w(jh− nh− h), j = 1, . . . , 2n+ 1.

Corollary 2.3. The quadrature rule (2.20) has positive weights and
converges for all continuous functions ϕ ∈ C[0, 1].

Proof. Since w is strictly monotonically increasing the weights are
positive. By Theorem 2.1 the quadratures converge for all polynomials,
whence convergence for all ϕ ∈ C[0, 1] follows from Steklow’s theorem
(see [6, Theorem 12.4]).

3. A Mellin type integral equation. We consider integral
equations of the second kind in the form

(3.1)
ϕ(t) −

∫ 1

0

K(t, τ )[ϕ(τ )− ϕ(0)] dτ + γ(t)ϕ(0) = f(t),

0 ≤ t ≤ 1.
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This form and the following assumptions on the kernel are motivated by
the double-layer integral equation of the second kind for the Dirichlet
problem of potential theory in planar domains with corners. We look
for 1-periodic continuous solutions, i.e., ϕ(0) = ϕ(1), with possible
singularities of the derivatives at the endpoints t = 0 and t = 1. The
functions γ and the righthand side f are both assumed to be 1-periodic
and continuous. The kernel K is assumed to have period one with
respect to t and to be continuous for 0 ≤ t, τ ≤ 1, with the exception
of the four corners of the square [0, 1] × [0, 1]. In these corners K has
Mellin type singularities which, for notational brevity, we describe in
detail for the case of singularities at only the corners t = τ = 0 and
t = τ = 1. However, we note that our analysis can be readily carried
over to the case of singularities at all four corners of [0, 1] × [0, 1].

For convenience we set

Q := {(t, τ ) ∈ [0, 1] × [0, 1] : 0 < t+ τ < 2},

i.e., Q coincides with the square [0, 1]×[0, 1] except that the two corners
t = τ = 0 and t = τ = 1 are excluded. We assume K to be a sum of
two functions

K(t, τ ) = L(t, τ ) +M(t, τ ),

which both are continuous on Q. In addition we require L to be either
nonnegative or nonpositive and M to be bounded. Furthermore we
assume that there exists a bounded differentiable function k : [0,∞) →
[0,∞) with bounded derivative k′ and the properties

(3.2) k(0) = 0

and

(3.3)
∫ ∞

0

k(s)
s

ds < 1

such that

(3.4)
|L(t, τ )| ≤ 1

τ
k

(
t

τ

)
, (t, τ ) ∈ Q, t ≤ 1/2,

|L(t, τ )| ≤ 1
1 − τ

k

(
1 − t

1 − τ

)
, (t, τ ) ∈ Q, t ≥ 1/2.
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Using (3.4), for 0 < t ≤ 1/2 we can estimate

∫ 1

0

|L(t, τ )| dτ ≤
∫ 1

0

1
τ
k

(
t

τ

)
dτ ≤

∫ ∞

t

k(s)
s

ds.

Analogously, for 1/2 ≤ t < 1 we have

∫ 1

0

|L(t, τ )| dτ ≤
∫ 1

0

1
1 − τ

k

(
1 − t

1 − τ

)
dτ ≤

∫ ∞

1−t

k(s)
s

ds.

Therefore the assumption (3.4) implies that

(3.5)
∫ 1

0

|L(t, τ )| dτ ≤
∫ ∞

0

k(s)
s

ds < 1, 0 < t < 1.

We write the integral equation (3.1) in operator notation as

ϕ−Aϕ−Bϕ = f

with the two integral operators defined by

(Aϕ)(t) :=
∫ 1

0

L(t, τ )[ϕ(τ )− ϕ(0)] dτ, t ∈ [0, 1],

and

(Bϕ)(t) :=
∫ 1

0

M(t, τ )[ϕ(τ )− ϕ(0)] dτ − γ(t)ϕ(0), t ∈ [0, 1].

Note that the conditions (3.2) and (3.4) imply that

(3.6) L(0, ·) = L(1, ·) = 0,

and consequently

(3.7) (Aϕ)(0) = (Aϕ)(1) = 0.

We introduce an additional norm

‖ϕ‖∞,0 := max
0≤t≤1

|ϕ(t) − ϕ(0)| + |ϕ(0)|
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on C[0, 1] which is equivalent to the usual maximum norm on C[0, 1].
Recall that the corresponding operator norm is given by ‖A‖∞,0 :=
sup‖ϕ‖∞,0�1 ‖Aϕ‖∞,0. Then the following theorem, from [7], is easily
proved.

Theorem 3.1. Under the assumptions (3.2) (3.4) the integral oper-
ator A is bounded from C[0, 1] into C[0, 1] with

‖A‖∞,0 ≤
∫ ∞

0

k(s)
s

ds < 1.

Foreshadowing the subsequent error analysis, let ψ ∈ C[0, 1] be a
nonnegative function such that 1 − ψ vanishes in a neighborhood of
t = 0 and t = 1, and consider the operator B̃ defined by

(3.8) (B̃ϕ)(t) :=
∫ 1

0

M(t, τ )ψ(τ )[ϕ(τ )− ϕ(0)] dτ, t ∈ [0, 1].

Since the kernel M is assumed to be bounded, we can choose ψ such
that the norm of B̃ is small enough to ensure that ‖A‖∞,0+‖B̃‖∞,0 < 1.
Then I − A − B̃ has a bounded inverse on C[0, 1]. The integral term
of B − B̃ is continuous and therefore B − B̃ : C[0, 1] → C[0, 1] is a
compact operator. Hence the Riesz theory (see [6]) can be applied to
the operator I −A−B = (I −A− B̃)[I − (I −A− B̃)−1(B − B̃)]. In
particular, this implies that if I − A − B is injective then the inverse
operator (I−A−B)−1 : C[0, 1] → C[0, 1] exists and is bounded. Hence
we can state the following theorem.

Theorem 3.2. Provided the homogeneous equation

ϕ−Aϕ−Bϕ = 0

has only the trivial solution ϕ = 0, then for each continuous 1-periodic
function f the inhomogeneous equation

ϕ−Aϕ−Bϕ = f

has a unique continuous 1-periodic solution ϕ.
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4. A Nyström method. In the Nyström or quadrature method
we approximate the integral in (3.1) by the quadrature formula (2.20),
i.e., we approximate the integral equation (3.1) by

(4.1)
ϕn(t) −

2n+1∑
j=1

a
(n)
j K(t, s(n)

j )[ϕn(s(n)
j )−ϕn(0)]+γ(t)ϕn(0) = f(t),

0 ≤ t ≤ 1.

Solving (4.1) reduces to solving a finite dimensional linear system. For
any solution of (4.1) the values ϕn,i = ϕn(s(n)

i ), i = 1, . . . , 2n + 1,
at the quadrature points and ϕn,0 = ϕn(0) associated with s

(n)
0 = 0

trivially satisfy the linear system

(4.2)
ϕn,i −

2n+1∑
j=1

a
(n)
j K(s(n)

i , s
(n)
j )[ϕn,j−ϕn,0]+γ(s

(n)
i )ϕn,0 = f(s(n)

i ),

i = 0, . . . , 2n+ 1.

And, conversely, given a solution ϕn,i, i = 0, . . . , 2n+ 1, of the system
(4.2), then the function ϕn defined by

ϕn(t) :=
2n+1∑
j=1

a
(n)
j K(t, s(n)

j )[ϕn,j − ϕn,0] − γ(t)ϕn,0 + f(t),

0 ≤ t ≤ 1,

is readily seen to satisfy (4.1).

We write the approximating equation (4.1) in operator notation as

ϕn −Anϕn −Bnϕn = f

with the approximating operators An and Bn defined by

(Anϕ)(t) :=
2n+1∑
j=1

a
(n)
j L(t, s(n)

j )[ϕ(s(n)
j ) − ϕ(0)], 0 ≤ t ≤ 1,
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and

(Bnϕ)(t) :=
2n+1∑
j=1

a
(n)
j M(t, s(n)

j )[ϕ(s(n)
j ) − ϕ(0)] − γ(t)ϕ(0),

0 ≤ t ≤ 1.

Note that

(4.3) (Anϕ)(0) = (Anϕ)(1) = 0

as a consequence of (3.6).

In accordance with the existence analysis of the previous section,
we will base our error analysis on showing that under appropriate
assumptions the operators An are uniformly bounded with norm less
than one for sufficiently large n. To accomplish this, we want to apply
the error analysis of Section 2 for the quadrature rule. For this we need
additional assumptions on the regularity of the kernels. We assume that
L(t, τ ) is continuously differentiable with respect to the variable τ for
each fixed t ∈ [0, 1]. In addition, analogously to (3.4), we require that
there exists a continuous nonnegative function k1 : [0,∞) → [0,∞)
with the property

(4.4)
∫ ∞

0

k1(s)
s

ds <∞

such that

(4.5)

∣∣∣∣ ∂∂τ L(t, τ )
∣∣∣∣ ≤ 1

τ2
k1

(
t

τ

)
, (t, τ ) ∈ Q, t ≤ 1/2,

∣∣∣∣ ∂∂τ L(t, τ )
∣∣∣∣ ≤ 1

(1 − τ )2
k1

(
1 − t

1 − τ

)
, (t, τ ) ∈ Q, t ≥ 1/2.

Proceeding as in the proof of the estimate (3.5) it can be seen that the
assumption (4.5) implies that

(4.6)
∫ 1

0

τ (1 − τ )
∣∣∣∣ ∂∂τ L(t, τ )

∣∣∣∣dτ ≤
∫ ∞

0

k1(s)
s

ds, 0 < t < 1.
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Lemma 4.1. Under the assumptions (3.2) (3.4), (4.4) and (4.5), for
ψ ∈ C1[0, 1] we have

h

∞∑
j=−∞

w′(jh)L(t, w(jh))ψ(w(jh)) −→
∫ 1

0

L(t, τ )ψ(τ ) dτ, h→ 0,

with the convergence uniform for all t ∈ (0, 1).

Proof. By Theorem 2.2 it suffices to show that the integral

I(t) :=
∫ 1

0

∣∣∣∣τ (1 − τ )
∂L(t, τ )ψ(τ )

∂τ
+ (1 − 2τ )L(t, τ )ψ(τ )

∣∣∣∣dτ
is uniformly bounded for all t ∈ (0, 1). Using (3.5) and (4.6) we can
estimate

I(t) ≤ ‖ψ‖∞
∫ 1

0

τ (1 − τ )
∣∣∣∣∂L(t, τ )

∂τ

∣∣∣∣ dτ
+ {‖ψ‖∞ + ‖ψ′‖∞}

∫ 1

0

|L(t, τ )| dτ

≤ ‖ψ‖∞
∫ ∞

0

k1(s)
s

ds+ {‖ψ‖∞ + ‖ψ′‖∞}
∫ ∞

0

k(s)
s

ds

for all t ∈ (0, 1). In view of (3.3) and (4.4) the proof is finished.

Lemma 4.2. Under the assumptions (3.2) (3.4), (4.4) and (4.5) the
operators An are uniformly bounded. Moreover, for each ε > 0 we have
that

(4.7) ‖An‖∞,0 ≤
∫ ∞

0

k(s)
s

ds+ ε

for all sufficiently large n.

Proof. Since (Anϕ)(0) = 0, the norm of the operator An is easily seen
to be given by

‖An‖∞,0 = max
0≤t≤1

2n+1∑
j=1

a
(n)
j |L(t, s(n)

j )|.
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Substituting for the quadrature points and weights in terms of w, we
can estimate

2n+1∑
j=1

a
(n)
j |L(t, s(n)

j )| = h

n∑
j=−n

w′(jh)|L(t, w(jh))|

≤ h
∞∑

j=−∞
w′(jh)|L(t, w(jh))|.

Applying the previous Lemma 4.1 with ψ = 1 and using the fact that
L is either nonnegative or nonpositive it follows that for each ε and all
t ∈ (0, 1) we have

h
∞∑

j=−∞
w′(jh)|L(t, w(jh))| ≤

∫ 1

0

|L(t, τ )| dτ + ε

for all sufficiently large n. In view of (3.5), the proof is complete.

Lemma 4.3. Under the assumptions (3.2) (3.4), (4.4) and (4.5) the
approximate operators An are pointwise convergent,

‖Anϕ−Aϕ‖∞,0 −→ 0, n→ ∞,

for all functions ϕ ∈ C[0, 1] satisfying ϕ(0) = ϕ(1).

Proof. Because C1[0, 1] is dense in C[0, 1], it follows from the uniform
boundedness of the operators An (Lemma 4.2) that it suffices to show
the pointwise convergence for ϕ ∈ C1[0, 1]. For this, by Lemma 4.1 we
only need to show that the truncation error converges

h
∞∑

|j|=n+1

w′(jh)L(t, w(jh))[ϕ(w(jh))− ϕ(0)] −→ 0, n→ ∞,

uniformly for all t ∈ (0, 1). As a consequence of (3.4), by using the
mean value theorem, we can estimate

|L(t, τ )[ϕ(τ )− ϕ(0)]| = |L(t, τ )[ϕ(τ )− ϕ(1)]|
≤ ‖k‖∞‖ϕ′‖∞, 0 < t, τ < 1.
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This implies that

h

∞∑
|j|=n+1

|w′(jh)L(t, w(jh))[ϕ(w(jh)) − ϕ(0)]|

≤ h‖k‖∞‖ϕ′‖∞
∞∑

|j|=n+1

w′(jh),

and from (2.9) with α = 1 we have the estimate

h

∞∑
|j|=n+1

w′(jh) ≤ 2e−hn = 2e−λ n1/2 −→ 0, n→ ∞,

which finishes the proof.

Now recall the definition (3.8) of the operator B̃ with the help
of a nonnegative function ψ ∈ C[0, 1] for which 1 − ψ vanishes in
a neighborhood of t = 0 and t = 1. Define the corresponding
approximation operator B̃n by

(4.8)
(B̃nϕ)(t) :=

2n+1∑
j=1

a
(n)
j M(t, s(n)

j )ψ(s(n)
j )[ϕ(s(n)

j ) − ϕ(0)],

0 ≤ t ≤ 1.

Then we can state the following lemma on the properties of the
approximate operators Bn.

Lemma 4.4. Assume that M is continuous and bounded on Q.
Then the sequence (Bn − B̃n) is pointwise convergent to B − B̃ and
collectively compact. The sequence (B̃n) is pointwise convergent to B̃
and uniformly bounded, with

‖B̃n‖∞,0 ≤ 4 sup
(t,τ)∈Q

|M(t, τ )|
∫ 1

0

ψ(τ ) dτ

for all sufficiently large n.
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Proof. That the sequence (Bn − B̃n) is pointwise convergent to
B−B̃ and collectively compact follows from the continuity of the kernel
M(t, τ )[1 − ψ(τ )] on [0, 1] × [0, 1] (see [1] or [6, Theorem 12.8]). The
norm of the operator B̃n can be estimated by

‖B̃n‖∞,0 ≤ 3 sup
(t,τ)∈Q

|M(t, τ )|
2n+1∑
j=1

a
(n)
j ψ(s(n)

j ).

This implies the statement on the uniform boundedness, since from
Corollary 2.3 we have

2n+1∑
j=1

a
(n)
j ψ(s(n)

j ) −→
∫ 1

0

ψ(τ ) dτ, n→ ∞.

The pointwise convergence can be seen analogously.

In order to establish a convergence order analogous to Theorem 2.1
we need to assume that the kernels L and M are analytic with respect
to τ . More precisely we assume that for each 0 < t < 1 there
exist holomorphic extensions of L(t, ·) and M(t, ·) onto the eye-shaped
domain Ed such that L and M are continuous on [0, 1] × Ed with the
exception of t = τ = 0 and t = τ = 1. We also require that the function
k of the conditions (3.2) (3.4) can be extended as a bounded function
on the cone Wd, such that

(4.9)
|L(t, τ )| ≤ 1

|τ |
∣∣∣∣k

(
t

τ

)∣∣∣∣, 0 < t ≤ 1/2, τ ∈ Ed,

|L(t, τ )| ≤ 1
|1 − τ |

∣∣∣∣k
(

1 − t

1 − τ

)∣∣∣∣, 1/2 ≤ t < 1, τ ∈ Ed.

Lemma 4.5. Under the assumption (4.9) let ϕ − ϕ(0) ∈ Sα+1,d for
α > 0. Then

‖(A−An)ϕ‖∞ ≤ C e−μn1/2‖ϕ− ϕ(0)‖Sα+1,d

for some positive constants C and μ.
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Proof. Using (4.9) and denoting by b a bound for the function k on
Wd, we can estimate

|τ1−αL(t, τ )[ϕ(τ )− ϕ(0)]| ≤ |τ−α|
∣∣∣∣k

(
t

τ

)∣∣∣∣|ϕ(τ ) − ϕ(0)|

≤ b|τ−α[ϕ(τ ) − ϕ(0)]|

for all 0 < t ≤ 1/2. Here, we have used the fact that t/τ ∈ Wd for
t > 0 and τ ∈ Ed. Since |1− τ | ≤ 1 on Ed (in the limiting case d = π/2
the domain Ed is a disk of radius 1/2 centered at τ = 1/2) the latter
inequality implies that

|τ (1 − τ )|1−α|L(t, τ )[ϕ(τ )− ϕ(0)]| ≤ b|τ (1 − τ )−α[ϕ(τ ) − ϕ(0)]|

for all 0 < t ≤ 1/2. Analogously it can be shown that this inequality
also holds for all 1/2 ≤ t < 1. Therefore

‖L(t, ·)[ϕ− ϕ(0)]‖Sα,d
≤ b‖ϕ− ϕ(0)‖Sα+1,d

for all 0 < t < 1. Now the statement of the lemma is a consequence of
Theorem 2.1, applied to g = L(t, ·)[ϕ− ϕ(0)].

Now we are ready to formulate our main result.

Theorem 4.6. Let L be continuous on {(t, τ ) ∈ [0, 1] × [0, 1] :
0 < t + τ < 2} such that L(t, ·) is continuously differentiable with
respect to τ for each t ∈ [0, 1] and that the conditions (3.2) (3.4),
(4.4) and (4.5) are satisfied, and let M be continuous and bounded on
{(t, τ ) ∈ [0, 1] × [0, 1] : 0 < t+ τ < 2}. Then, if I −A−B is injective,
for sufficiently large n the operators I − An − Bn are invertible and
their inverses are uniformly bounded. For the solutions of

ϕ−Aϕ−Bϕ = f

and
ϕn −Anϕn −Bnϕn = f

we have that
‖ϕn − ϕ‖∞ → 0, n→ ∞.
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If, in addition, L(t, ·) and M(t, ·) for each t ∈ [0, 1] can be extended
to holomorphic functions on Ed such that L and M are continuous
on [0, 1] × Ēd and (4.9) is satisfied, and if ϕ − ϕ(0) ∈ S1+α,d with
0 < d ≤ π/2 and α > 0, the error estimate

(4.10) ‖ϕn − ϕ‖∞ ≤ C e−μn1/2‖ϕ− ϕ(0)‖S1+α,d

holds for some constants C and μ and all sufficiently large n.

Proof. By assumption (3.3) we can select a constant q such that
∫ ∞

0

k(s)
s

ds < q < 1.

Then, from Lemmas 4.2 and 4.4 it follows that we can choose the
support of the function ψ in the definitions (3.8) and (4.8) of B̃ and
B̃n small enough such that

‖An + B̃n‖∞,0 ≤ q

for all sufficiently large n. Hence, by the Neumann series, the inverse
operators (I − An − B̃n)−1 exist and are uniformly bounded. By
Lemmas 4.3 and 4.4 the operators An + B̃n are pointwise convergent
and by Lemma 4.4 the operators Bn − B̃n are collectively compact and
pointwise convergent. These properties ensure the existence and the
uniform boundedness of the inverse (I − An − Bn)−1 (see [1] or [6,
Problem 10.3]).

Now, writing

ϕn − ϕ = (I −An −Bn)−1(An +Bn −A−B)ϕ,

we obtain an estimate

(4.11) ‖ϕn − ϕ‖∞,0 ≤ C1‖(An +Bn −A−B)ϕ‖∞,0

with some constant C1. This implies convergence since the sequence
(An +Bn) is pointwise convergent.

For ϕ − ϕ(0) ∈ S1+α,d, the error estimate (4.10) follows from
Lemma 4.5, together with the corresponding estimate for Bn−B, which
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is also valid since the kernel of B satisfies the assumption (4.9) with k
a constant function.

5. The double-layer integral equation. Let Ω ⊂ R2 be a
bounded domain with a connected boundary Γ = ∂Ω. By ν we denote
the unit normal to Γ directed into the exterior of Ω. We consider the
Dirichlet problem for the Laplace equation

�u = 0 in Ω

with boundary condition

u = g on Γ.

We assume Γ to be analytic with the exception of a corner at a point
x0 with interior angle 0 < β < 2π.

The classical approach to solve this boundary value problem is to seek
the solution in the form of a double-layer potential which we modify
into the form
(5.1)

u(x) =
1
2π

∫
Γ

[ψ(y) − ψ(x0)]
∂

∂ν(y)
ln

1
|x−y| ds(y) − ψ(x0), x ∈ Ω,

which is more convenient for dealing with the corner singularity. By the
potential theoretic jump relations, this double-layer potential solves the
Dirichlet problem provided the density ψ ∈ C(Γ) satisfies the integral
equation
(5.2)

ψ(x) − 1
π

∫
Γ

[ψ(y)−ψ(x0)]
∂

∂ν(y)
ln

1
|x− y| ds(y) + ψ(x0) = −2g(x),

x ∈ Γ.

Note that there is no change in the residual term in the jump relation
at the corner since the density ψ − ψ(x0) vanishes in the corner.

Following the uniqueness proof for the classical double-layer integral
equation of the second kind (see [6, Theorem 6.16]), it can be seen
that (5.2) has at most one continuous solution. A classical existence
proof for the double-layer integral equation for a planar domain with
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corners is due to Radon (see [11] and [6, p. 76]). Its main idea is
to decompose the integral operator into a compact operator and a
bounded operator with norm less than one reflecting the behavior at
the corner. (This classical proof motivated our analysis in Section 3.)
Consequently, existence can be concluded with the aid of Theorem 3.1
from the following parametrized version of (5.2).

We assume that the boundary curve Γ is given in parametric form

x(t) = (x1(t), x2(t)), 0 ≤ t ≤ 1,

in counter-clockwise orientation satisfying x′(t) �= 0 for all 0 < t < 1.
We assume that the parameter t is equivalent to arc length s on the
boundary in the sense that there exist positive constants c1 and c2 such
that c1t ≤ s ≤ c2t. The corner x0 of Γ corresponds to the parameter
t = 0. Then, by straightforward calculations, the boundary integral
equation (5.2) can be transformed into the parametric form

(5.3) ϕ(t) −
∫ 1

0

K(t, τ )[ϕ(τ )− ϕ(0)] dτ + ϕ(0) = f(t), 0 ≤ t ≤ 1,

where we have set ϕ(t) := ψ(x(t)) and f(t) := −2g(x(t)), and where
the kernel is given by
(5.4)

K(t, τ ) =
{

(1/π)([x′(τ )]⊥ · [x(t) − x(τ )])/|x(t) − x(τ )|2, t �= τ ,
(1/(2π))([x′(t)]⊥x′′(t))/|x′(t)|2, t = τ .

Here, we have set a⊥ := (a2,−a1) for vectors a = (a1, a2) ∈ R2. It can
be seen that this kernel is analytic for (t, τ ) ∈ Q since Γ\x0 is analytic.
Singularities occur when t→ 0 and τ → 1 and when t→ 1 and τ → 0,
i.e., when t and τ approach the corner of Γ on the two different arcs
intersecting at the corner.

We want to approximately solve the integral equation (5.3) using the
method (4.1). Hence, we need to establish that the kernel (5.4) satisfies
the assumptions of the previous two sections.

Consider the two tangent lines at the corner. Without loss of
generality we may assume that they are given in parametric form by

ξ0(t) = (t, 0), 0 ≤ t ≤ 1,
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and
ξ1(t) = ((1 − t) cosβ, (1 − t) sinβ), 0 ≤ t ≤ 1.

Denoting the kernel (5.4) for the case of these two straight lines by K0,
we obtain that

K0(t, τ ) = H(t, 1 − τ )

in a neighborhood of t = 0 and τ = 1 and

K0(t, τ ) = H(1 − t, τ )

in a neighborhood of t = 1 and τ = 0. Here we have set

(5.5) H(t, τ ) =
1
π

t sinβ
t2 − 2tτ cosβ + τ2

.

This kernel is of the form

H(t, τ ) =
1
τ
k

(
t

τ

)

with
k(s) =

1
π

s sinβ
1 − 2s cosβ + s2

and it can be checked that (5.5) has the properties (3.2) (3.4), (4.4),
(4.5) and (4.9) required in the analysis of the two previous sections
above, with the integral of k(s)/s bounded by

∫ ∞

0

k(s)
s

ds = 1 − β

π
< 1.

Moreover,
∂

∂τ
H(t, τ ) =

1
τ2
k1

(
t

τ

)

where
k1(s) := −k(s) − sk′(s).

The function k has poles in the complex plane. However, the parameter
d obviously can be chosen such that k is bounded on the cone Wd.

To investigate the kernel for the curve Γ itself we note that

(5.6) |x(t) − ξ0(t)| ≤ ct2, |x′(t) − ξ′0(t)| ≤ ct
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and

(5.7) |x(t) − ξ1(t)| ≤ c(1 − t)2, |x′(t) − ξ′1(t)| ≤ c(1 − t)

for some constant c. The kernel K can be expressed in the form

K(t, τ ) =
1
π

t sinβ + a(t, τ )
t2 − 2t(1 − τ ) cosβ + (1 − τ )2 + b(t, τ )

in the neighborhood of t = 0 and τ = 1. Here we have set

a(t, τ ) := [ξ′1(τ )]
⊥ · [x(t) − ξ0(t) − x(τ ) + ξ1(τ )]

+ [x′(τ ) − ξ′1(τ )]
⊥ · [x(t) − x(τ )]

and

b(t, τ ) := 2[ξ0(t) − ξ1(τ )] · [x(t) − ξ0(t) − x(τ ) + ξ1(τ )]
+ |x(t) − ξ0(t) − x(τ ) + ξ1(τ )|2.

From (5.6) and (5.7) it follows that

|a(t, τ )| ≤ C[t2 + (1 − τ )2]

and

|b(t, τ )| ≤ C[t3 + (1 − τ )3]

for some constant C and all sufficiently small t and 1 − τ . From the
arithmetic-geometric mean inequality we have that

t2 − 2t(1 − τ ) cosβ + (1 − τ )2 ≥ (1 − cosβ)[t2 + (1 − τ )2].

These estimates now can be used to show that the difference K−K0 is
bounded for t→ 0 and τ → 1. Analogously we also have boundedness
of this difference for t→ 1 and τ → 0.

Now we choose a nonnegative function χ ∈ C[0, 1] such that χ(t) = 1
for t ≤ 1/4 and χ(t) = 0 for t ≥ 1/3. Then we define

L(t, τ ) := χ(t)H(t, 1 − τ ) + χ(1 − t)H(1 − t, τ )
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FIGURE 1. Shape of domains for examples (5.8) and (5.9).

and
M(t, τ ) := K(t, τ ) − L(t, τ )

and can show that for this decomposition all assumptions of the
previous two sections are satisfied (with the singularities at the two
corners t = 0, τ = 1 and t = 1, τ = 0 of [0, 1] × [0, 1]).

We conclude the paper with two numerical examples. The first
example is a drop-shaped domain with the boundary curve given by
the parametric representation

(5.8) x(t) = ((2/
√

3) sinπt,− sin 2πt), 0 ≤ t ≤ 1.

It is illustrated on the lefthand side of Figure 1 and has a corner at
t = 0 with interior angle 2π/3. The boundary data are given through
the harmonic function

u(r, θ) = r3/2 cos(3θ/2)

in polar coordinates r, θ.

Table 1 gives the values of the approximate solution ϕn at the
parameter points t = j/8, j = 0, . . . , 4, for the coupling parameter
in (2.14) chosen to be λ = 1 and for various n.
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TABLE 1. Numerical results for integral equation for the domain (5.8).

n t=0 t=1/8 t=1/4 t=3/8 t=1/2
2 0.85758726 0.85579494 -0.21431687 -1.93338248 -3.59701072
8 0.84586785 0.91699448 -0.23866274 -1.95721622 -3.62355053

32 0.84910651 0.91501436 -0.24106009 -1.96396598 -3.63804282
128 0.84911047 0.91500668 -0.24106446 -1.96397292 -3.63805727

4 0.83877322 0.91531915 -0.23505716 -1.93699652 -3.58397848
16 0.84885770 0.91530087 -0.24083257 -1.96349324 -3.63703350
64 0.84911046 0.91500670 -0.24106445 -1.96397291 -3.63805725

256 0.84911047 0.91500668 -0.24106446 -1.96397292 -3.63805727

Table 2 illustrates the convergence behavior through the difference
between the exact solution u and the approximate solution un at four
interior points. Of course, the approximation un is obtained from
ϕn via (5.1) by the corresponding quadrature (2.20). Through the
estimate (2.15) the error order (4.10) from Theorem 4.6 carries over to
the approximation un for the solution u to the boundary value problem.
Clearly, both tables exhibit the predicted fast convergence: the number
of correct digits at least doubles when the number of quadrature points
is increased by a factor of four.

TABLE 2. Errors in computed results for the potential for the domain (5.8).

n x=(0.2, 0) x=(0.4, 0) x=(0.6, 0) x=(0.2, 0.2)
2 0.06148882 0.10384493 0.20515512 0.06784151
8 0.02730672 0.01876371 0.01692735 0.03812156

32 0.00005193 0.00001788 0.00002043 0.00000473

4 0.04503861 0.05334105 0.07593531 0.05904907
16 0.00382860 0.00142027 0.00118257 0.00098782
64 0.00000008 0.00000003 0.00000007 0.00000014
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Inspired by the environment in which the present work was done, the
second example is a boomerang shaped domain, which is illustrated
on the righthand side of Figure 1 and for which the boundary curve is
given by

(5.9) x(t) =
(
− 2

3
sin 3πt,− sin 2πt

)
, 0 ≤ t ≤ 1.

It has a re-entrant corner at t = 0 with interior angle 3π/2. Table 3
gives the corresponding numerical values for the difference between u
and un with the exact solution given by

u(r, θ) = r2/3 cos
(

2
3
θ

)
.

TABLE 3. Errors in computed results for the potential for the domain (5.9).

n x=(0.15, 0) x=(0.3, 0) x=(0.45, 0) x=(0.2, 0.2)
4 -0.10169820 -0.02574033 0.67211123 -0.18349193

16 -0.02857248 -0.01668120 0.05518239 -0.01892663
64 -0.00023420 -0.00011317 0.00079967 -0.00010927

8 -0.06005745 -0.04048135 0.22146399 -0.03776889
32 -0.00482370 -0.00240384 0.00935449 -0.00233919

128 -0.00000290 -0.00000140 0.00002398 -0.00000133
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