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ASYMPTOTIC ERROR ANALYSIS OF A
QUADRATURE METHOD FOR INTEGRAL EQUATIONS

WITH GREEN’S FUNCTION KERNELS
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YUESHENG XU AND YUNHE ZHAO

ABSTRACT. We conduct an asymptotic error analysis of
the trapezoidal quadrature method applied to nonlinear inte-
gral equations with Green’s function kernels and, based on the
asymptotic error expansion of the approximate solution, jus-
tify the Richardson extrapolation method. Following the com-
plete error analysis, numerical examples are given to demon-
strate the theory. The examples are taken from two-point
boundary value problems governed by nonlinear ordinary dif-
ferential equations, which can be transformed into nonlinear
integral equations by using Green’s functions. One of the
examples involves a regular singular operator for which other
well-known numerical techniques such as finite differences may
not be applicable.

1. Introduction. Consider nonlinear integral equations in the form

(1.1) u(s)−
∫ 1

0

G(s, t)ψ (t, u(t)) dt = f(s), s ∈ [0, 1],

where ψ and f are given functions and u is the unknown to be
determined. In this paper, we consider Green’s function type kernels
G(s, t) for equation (1.1). Specifically, we let m be a positive integer
and assume that G(s, t) satisfies the conditions

(1) G(s, t) ∈ C([0, 1]× [0, 1])

(2) G(s, t) ∈ C2m((0, 1)× (0, 1) \D) where

D := {(s, t) ∈ (0, 1)× (0, 1) : s = t}
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(3) G(0,1)(s, 0+), G(0,i)(s, 1−), G(0,i)(s, s−) and G(0,i)(s, s+) exist
for i = 1, 2, . . . , 2m, where G(i,j)(s, t) denotes the partial derivative
(∂i+j/(∂si∂tj))G(s, t), and a similar property holds for the first argu-
ment.

If function G : [0, 1]× [0, 1] → R satisfies these conditions we call it a
Green’s function kernel. We allow the derivatives of the kernels to have
jump discontinuities across the diagonal. These conditions are fulfilled
if G(s, t) is a Green’s function of a differential operator. In particular,
a Green’s function of a linear differential operator of order two satisfies
these conditions with a jump discontinuity in the first derivatives of
the kernel across the diagonal s = t. Although equation (1.1) is
motivated from a two-point boundary value problem of a nonlinear
ordinary differential equation of order two, we do not restrict ourselves
to this special case. Throughout this paper, we assume G(s, t) to be a
function that satisfies the three conditions given above.

We assume that ψ ∈ C2m([0, 1] × R) satisfies a Lipschitz condition
with respect to the second variable and f ∈ C2m[0, 1]. Under the
condition on the kernel, if equation (1.1) has a solution u, this solution
u is in C2m[0, 1]. In many circumstances, equation (1.1) has a unique
solution. However, to extend the scope of applications of the method
developed in this paper, we will not assume that equation (1.1) has
a unique solution. Rather we assume that u0 ∈ C[0, 1] is an isolated
solution of equation (1.1) and consider its numerical approximation.
This will allow the method and theory developed in this paper to be
applicable both to the case when equation (1.1) has a unique solution
in C[0, 1] and to the case when equation (1.1) has multiple isolated
solutions as well.

Integral equations of type (1.1) arise, in particular, when two-point
boundary value problems governed by ordinary differential equations
are converted to integral equations, one of the many known ways to
solve this problem which includes finite difference techniques applied to
the differential equations. Next, we present two examples to illustrate
the reformulation.

As a first example, we consider the two-point boundary value problem

u′′(s) = f(s, u(s)), 0 < s < 1,
u(0) = a, u(1) = b.

Following the theory developed in [18], [19], this boundary value
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problem can be converted into the integral equation

(1.2) u(s)−
∫ 1

0

gk(s, t) [k2u(t)− f(t, u(t))] dt = h(s), 0 ≤ s ≤ 1,

where

gk(s, t) =
1

k sinh k

{
sinh ks sinh k(1− t) 0 ≤ s < t,

sinh k(1− s) sinh kt t ≤ s ≤ 1,

(1.3)

h(x) =
1

sinh k
[a sinh k(1− s) + b sinh ks],(1.4)

and k is a parameter chosen to guarantee convergence of Picard itera-
tion.

The boundary value problem of a regular singular operator also leads
to an integral equation of form (1.1). To explain this, we consider

u′′(s) +
m

s
u′(s) = f(s, u(s)), 0 < s < 1,

u′(0) = 0, u(1) = λ.

Following the theory in [20], this problem can be converted into the
integral equation of the second kind

(1.5) u(s) = h(s) +
∫ 1

0

gk(s, t) [k2u(t)− f(t, u(t))] dt,

where

gk(s, t) =
1

kIl(k)

{
(kt)(m+1)/2Vl(kt)(ks)−(m−1)/2Il(ks) 0 ≤ s < t,

(kt)(m+1)/2Il(kt)(ks)−(m−1)/2Vl(ks) t < s ≤ 1.
,

(1.6)

Vl(ks) = Il(k)Kl(ks)−Kl(k)Il(ks), l =
m− 1
2

,(1.7)

and

(1.8) h(s) =
λIl(ks)
sIl(k)

.
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Here Il and Kl are the lth order modified Bessel functions of the first
and second kind, respectively. Again, k is a parameter chosen to guar-
antee convergence of Picard iteration for the integral equation. Clearly
the Green’s functions gk(s, t) defined by (1.3) and (1.6) satisfy condi-
tions (1) (3) in the definition of Green’s function kernels. Therefore,
the nonlinear integral equations (1.2) and (1.5) are special cases of
equation (1.1).

Since equations (1.2) and (1.5) are special cases of (1.1) derived from
the ordinary differential equations above, methods in this paper can
be used for numerical solutions of these boundary value problems. It
may be argued that approximation of the ordinary differential equa-
tions directly by finite difference methods would lead to more efficient
algorithms because the resulting systems are banded; such is the case
for the example of (1.2) used in Section 4. We would like to emphasize,
however, that the primary purpose of the special case of equation (1.2)
used in Section 6 is a demonstration of the theory. But there may be
situations wherein the integral equation approach is a better approach
numerically. For instance, approximation of differentiation by finite
differences may lead to an unstable algorithm if u varies rapidly over
the range (although we have not explored this issue here). Another
case arises when the ordinary differential equation is regular singular;
direct application of a uniform center difference approximation would
lead to a singular system. The integral equation emerging from the
Green’s function approach may be perfectly regular; this is illustrated
by the special case of (1.5) in Section 6, where a central difference
approximation leads to a system singular near x = 0.

A second advantage of the integral equation method over the finite
difference method applied directly to the original differential equations
is that the discretization of the integral equations using the trapezoidal
quadrature formula leads to a matrix having a bounded condition
number (see, for example, Theorem 14.8 of [13]) while the finite
difference method leads to a matrix with condition number that grows
in the order O(n2), where n is the size of the matrix.

We now return to discussion of the general case. Let C[0, 1] denote the
usual Banach space of continuous functions on [0, 1] with the uniform
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norm ‖ · ‖. We define the operator K : C[0, 1] → C[0, 1] by

(Ku)(s) :=
∫ 1

0

G(s, t)u (t) dt, s ∈ [0, 1].

Because G(s, t) is a continuous kernel, operator K is compact in C[0, 1].
Let Ψ denote the Nemyckii operator for the function ψ. Specifically,

(Ψu)(t) := ψ(t, u(t)), t ∈ [0, 1].

Using the notation given above, we write equation (1.1) in the operator
form as

(1.9) u−KΨu = f.

Integral equations with Green’s function kernels have been studied
by many authors. Projection methods and Nyström methods were
considered in [4], [5], [6] as numerical methods for these equations. A
corrected quadrature method was applied to these equations in [23]
to achieve higher order convergence. An extrapolation method based
on the iterated piecewise linear polynomial collocation method was
proposed in [14].

Asymptotic error analysis and extrapolation methods are classical
numerical analysis topics. Extrapolation methods based on quadra-
ture methods for integral equations with smooth kernels are found in
[16]. Extrapolation methods were studied in [8], [15] for collocation
methods and iterated collocation methods, for integral equations with
smooth kernels. For the case when an integral kernel is sufficiently
smooth, [17] gave an asymptotic error analysis for numerical solutions
of linear operator equations and applied it to the Nyström, collocation
and Galerkin methods for second kind Fredholm integral equations. An
asymptotic analysis was provided in [9] for numerical methods solving
nonlinear operator equations. An asymptotic error expansion was es-
tablished in [27] for approximate solutions obtained from a quadrature
method based on a quadrature formula of [22] for a class of boundary
integral equations, which are the reformulation of third-kind boundary
value problems of the Laplace equation. A generalized extrapolation
method was introduced in [21] using multi-parameters for boundary
integral equations.
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The main purpose of this paper is to derive an asymptotic error
expansion for approximate solutions of equation (1.9) obtained from
a quadrature method using the trapezoidal rule. This asymptotic
expansion will lead to an extrapolation scheme for equations (1.9).
Because Green’s function kernels are not smooth, standard methods
developed in [9], [16], [17] for asymptotic error analysis for smooth
kernels cannot be directly applied to this case. The analysis used to
prove this asymptotic expansion is based on an asymptotic expansion
established in [23] for the trapezoidal rule applied to integral operators
with Green’s function kernels. In developing the asymptotic expansion
for nonlinear equations, we also have to treat the nonlinearity of the
integral operators.

This paper is organized as follows. We present in Section 2 an
analysis of the approximate solvability and order of convergence of
the quadrature method for equation (1.1) using the trapezoidal rule.
In Section 3, we establish a modified Stetter’s theorem [24] which
gives an asymptotic error expansion of the approximate solutions of
nonlinear operator equations. In Section 4 we specialize this result to
the quadrature method for equation (1.1). This asymptotic expansion
shows that the extrapolation scheme accelerates the convergence of the
approximate solution sequence produced by the quadrature method. A
reconstruction of approximate solutions from the extrapolated function
values of the approximate solutions at the quadrature notes is presented
in Section 5. Numerical examples are presented in Section 6 to illustrate
the theoretical results.

2. A quadrature scheme. In this section we describe a quadrature
method for the integral equations (1.1) and provide a complete analysis
of the approximate solvability and order of convergence of the quadra-
ture method. This analysis on one hand serves as a preliminary for the
asymptotic error analysis presented in Section 4 for this quadrature
method and, on the other hand, it has its own independent interest.

We begin with a review of the trapezoidal rule applied to an integral
operator with a Green’s function kernel, upon which our quadrature
method for equation (1.1) is based. To this end, we let tj := (j/n) for
j = 0, 1, . . . , n, and let h := (1/n). The trapezoidal rule Tn applied to
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G̃(s, t) := G(s, t)u(t) for a continuous function u gives

(2.1) Tn(G̃(s, t)) := h

n∑
j=0

′′ G̃(s, tj)

where the double prime in the summation indicates that the first and
last term of this summation are multiplied by 1/2. The points tj are
called quadrature nodes.

We now use the quadrature formula (2.1) to derive our quadrature
method for equation (1.1). For this purpose, we define for each positive
integer n the operator Kn : C[0, 1] → C[0, 1] by

(2.2) (Knu)(s) := h

n∑
j=0

′′G(s, tj)u (tj), s ∈ [0, 1].

This operator is bounded and it approximates the integral operator
K. Using Kn to replace K in equation (1.1) leads to the following
quadrature method for equation (1.1):

(2.3) un(s)− (KnΨun)(s) = f(s), s ∈ [0, 1],

where

(KnΨu)(s) = h
n∑

j=0

′′G(s, tj)ψ (tj , u(tj)), s ∈ [0, 1].

Upon collocating equation (2.3) at the quadrature nodes ti, we obtain
a discrete system of nonlinear equations

(2.4) un(ti)− (KnΨun)(ti) = f(ti), i = 0, 1, . . . , n.

Since the operator Kn has a finite rank, equation (2.3) is equivalent
to system (2.4). Solving this system, we obtain n + 1 values un(ti)
for i = 0, 1, . . . , n, which in turn give an approximate solution un for
equation (1.1), namely,

(2.5) un(s) = h
n∑

j=0

′′G(s, tj)ψ (tj , un(tj)) + f(s), s ∈ [0, 1].
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We next analyze the quadrature method described above. We will
prove that this system has a unique solution in a neighborhood of an
isolated solution u0 of equation (1.1) for sufficiently large n, and that
the approximate solutions un have the convergence order O(h2). For
this purpose, we present some properties of the approximate operators
Kn.

Lemma 2.1. The approximate operators Kn have the properties:

(i) For each u ∈ C[0, 1], ‖Knu−Ku‖ → 0 as n→ ∞.

(ii) The set {‖Kn‖} is bounded.

(iii) The set {Kn} is collectively compact operators on C[0, 1].

(iv) For each u ∈ C2[0, 1], ‖Ku−Knu‖ = O(h2).

Proof. The proof of (i) (iii) follows directly from results in Chap-
ter 2 of [1] because the Green’s function kernel G is a continuous
kernel. It remains to prove (iv). Let s ∈ [0, 1] and suppose that
s ∈ [ti−1, ti] for some i = 0, 1, . . . , n. Write (Ku)(s) as the sum of
four integrals of G(s, t)u(t) with respect to the variable t on inter-
vals [0, ti−1], [ti−1, s], [s, ti] and [ti, 1]. Applying the composite trape-
zoidal rule to the first and last integrals with quadrature nodes tj , for
j = 0, 1, . . . , i− 1 and for j = i, i+1, . . . , n, respectively, and applying
the trapezoidal rule to the second and third integrals with quadrature
nodes ti−1, s and s, ti, respectively, we obtain the formula

(Ku)(s) = (Knu)(s) +
ti − s
2

[G(s, s)u(s)−G(s, ti−1)u(ti−1)]

+
s− ti−1

2
[G(s, s)u(s)−G(s, ti)u(ti)] +E(s),

where

E(s) := − ti−1h
2

12
∂2

∂t2
[G(s, t)u(t)]|t=ξ1

− (1− ti)h2

12
∂2

∂t2
[G(s, t)u(t)]|t=ξ2

− (s− ti−1)3

12
∂2

∂t2
[G(s, t)u(t)]|t=ξ3

− (ti − s)3
12

∂2

∂t2
[G(s, t)u(t)]|t=ξ4
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with ξ1 ∈ [0, ti−1], ξ2 ∈ [ti, 1], ξ3 ∈ [ti−1, s] and ξ4 ∈ [s, ti]. The
assumption on the Green’s function kernel G ensures that E(s) =
O(h2). We use the mean value theorem for the second and third terms
in the formula above to conclude that

(Ku)(s) = (Knu)(s) +O(h2), s ∈ [0, 1].

Thus, the statement in (iv) follows.

To prove the unique solvability of equation (2.3), or equivalently (2.4),
in a neighborhood of an isolated solution u0 of equation (1.1), we study
the invertibility of the linear operator I − (KnΨ)′(u0) where the prime
notation denotes the Fréchet derivative.

Lemma 2.2. Let u0 be an isolated solution of equation (1.1). Sup-
pose that 1 is not an eigenvalue of (KΨ)′(u0). Then, for sufficiently
large n, the inverse operators (I − (KnΨ)′(u0))−1 exist and are uni-
formly bounded on C[0, 1].

Proof. Since K and Kn are bounded linear operators, we have

(KΨ)′(u0) = KΨ′(u0) and (KnΨ)′(u0) = KnΨ′(u0).

By (i) of Lemma 2.1, the sequence of approximate operators (KnΨ)′(u0)
converges pointwise to the linear operator (KΨ)′(u0), that is, for all
u ∈ C[0, 1], there holds

‖(KnΨ)′(u0)u− (KΨ)′(u0)u‖ −→ 0, as n→ ∞.

Using (iii) of Lemma 2.1, we further conclude that the set of operators
{(KnΨ)′(u0)} are collectively compact operators. By assumption, the
operator I − (KΨ)′(u0) is invertible. It follows from Theorem 1.10
of [1] that, for sufficiently large n, (I − (KnΨ)′(u0))−1 exist and are
uniformly bounded in C[0, 1].

We also need a result from [26] for the analysis of the unique
solvability of quadrature scheme (2.3). We state this result in the next
lemma.
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Lemma 2.3. Let A and Â be continuous operators over some open
set Ω ⊂ C[0, 1]. Assume that equation u = Au has a solution u0 ∈ Ω,
Â is Fréchet differentiable in some neighborhood of u0 and I − Â′(u0)
is continuously invertible. Suppose that, for some δ > 0,

B(u0, δ) := {u ∈ C[0, 1] : ‖u− u0‖ ≤ δ} ⊂ Ω

and for 0 < q < 1 the following inequalities hold:

sup
‖u−u0‖≤δ

‖(I − Â′(u0))−1(Â(u)− Â(u0))‖ ≤ q,

and
ε := ‖(I − Â′(u0))−1(A(u0)− Â(u0))‖ ≤ δ(1− q).

Then the equation u = Âu has a unique solution û0 ∈ B(u0, δ).
Moreover,

(2.6)
ε

1 + q
≤ ‖u0 − û0‖ ≤ ε

1− q .

To apply this theorem to the current situation, we identify the
nonlinear operators A and Â in Lemma 2.3 by

Au := KΨu+ f, Âu := KnΨu+ f.

Thus the Fréchet derivatives of the nonlinear operators A and Â are
given, respectively, by the formulas

A′u0 = KΨ′(u0), Â′u0 = KnΨ′(u0).

Using Lemma 2.3 we obtain the following results concerning the solv-
ability of the approximate equation (2.3) and the order of convergence
for the approximate solutions.

Theorem 2.4. Let u0 ∈ C[0, 1] be an isolated solution of (1.1).
Assume that 1 is not an eigenvalue of (KΨ)′(u0). Let ψ(·, u0(·)), f ∈
C2[0, 1]. Then, for sufficiently large n equation (2.3) has a unique
solution un in the ball B(u0, δ) for some δ > 0 having property

‖u0 − un‖ ≤ Ch2 for some constant C > 0.
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Proof. The proof of this theorem is done by verifying the hypotheses
of Lemma 2.3. Lemma 2.2 insures that, for sufficiently large n, inverse
operators (I−KnΨ′(u0))−1 exist and are uniformly bounded on C[0, 1]
by a positive constant C0. Set

Tn(u) := (I − KnΨ′(u0))−1 (KnΨ(u)−KnΨ(u0))

and let C1 be a constant that bounds the norm of operators Kn, that
is, ‖Kn‖ ≤ C1 for all n ≥ 1. It follows that, for any u ∈ C[0, 1] and
sufficiently large n,

‖Tn(u)‖ ≤ ‖(I − KnΨ′(u0))−1‖ ‖Kn‖ ‖Ψ(u)−Ψ(u0)‖
≤ C0C1 ‖Ψ(u)−Ψ(u0)‖.

Let L > 0 be the Lipschitz constant for ψ with respect to the second
variable, that is,

|ψ(t, u1)− ψ(t, u2)| ≤ L |u1 − u2|,
for all u1, u2 ∈ (−∞,∞) and for all t ∈ [0, 1].

Thus we have the estimate

‖Ψ(u)−Ψ(u0)‖ ≤ L ‖u− u0‖.

We choose δ < 1/(2C0C1L) and q = 1/2. Then, combining the
inequalities above yields

sup
‖u−u0‖≤δ

‖Tn(u)‖ ≤ C0C1 L ‖u− u0‖ ≤ C0C1 Lδ <
1
2
= q.

Moreover, by Lemma 2.1 (i), for sufficiently large n,

ε ≤ C0‖KnΨ(u0)−KΨ(u0)‖ < δ(1− q),

where
ε := ‖(I − KnΨ′(u0))−1 (KnΨ(u0)−KΨ(u0))‖.

We have verified that the conditions of Lemma 2.3 are valid. Therefore,
equation (2.3) has a unique solution un in the ball B(u0, δ) for suffi-
ciently large n. Moreover, by Lemma 2.1 (iv) and the estimate (2.6) in
Lemma 2.3, we conclude that

‖u0 − un‖ ≤ 2C0 ‖KnΨ(u0)−KΨ(u0)‖ ≤ Ch2,
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where C > 0 is a constant independent of h.

Theorem 2.4 insures that, for sufficiently large n, the nonlinear system
(2.4) has a unique solution in a neighborhood of u0. The argument used
to prove Lemma 2.2 and Theorem 2.4 has been used in [10], [11] to
deal with the nonlinearity of the operators in a different context.

3. A modified Stetter’s theorem. Stetter’s theorem, Theorem 1
of [24], presents a general result regarding asymptotic error expansions
of discretization algorithms for solving nonlinear functional equations.
However, the theorem is not directly applicable to our current situation,
because the condition (a) of Stetter’s theorem does not hold in our
case and condition (e) of it is not strong enough for deriving our
expansion which is somewhat in a stronger form than the expansion
in that theorem. To derive an asymptotic error expansion for our
approximate solutions un at the quadrature nodes, we are required
to extend Stetter’s theorem so that its modified version is applicable
to our case.

For this purpose, we let E,E1 be Banach spaces F be a nonlinear
operator mapping from a subspace D1 of E into E1. We consider
functional equations

(3.1) F(y) = 0

and assume that equation (3.1) has multiple isolated solutions in D1.

Let h0 > 0 be a fixed real number and h ∈ H := (0, h0]. Let Eh, E
1
h be

families of Banach-spaces, and let ∆h and ∆1
h be linear transformations

which map E,E1 into Eh, E
1
h, respectively. Let Φh : Eh → E1

h be a
family of nonlinear operators which discretize equation (3.1) by

(3.2) Φh(η) = 0.

Let y be an isolated solution of equation (3.1), and we assume that
in a neighborhood D̃ ⊂ D1 of y, equation (3.2) has a unique solution
η(h) in ∆hD̃. Suppose that, for some positive integer N , F and Φh

are M -times Fréchet differentiable at y and ∆hy, respectively, with
M ≥ (N +1). For a nonnegative integer n̂, we further assume that the
µth Fréchet derivative of Φh at ∆hy satisfies the condition

(3.3) ‖Φ(µ)
h (∆hy)‖ = O(hn̂), µ = 1, 2, . . . ,M.
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Let Qp ⊃ Q2p ⊃ · · · ⊃ Q(N+1)p be a sequence of subspaces in D1 with
p ≥ 1. For integer µ := 1, 2, . . . ,M and for a subspace Q of D1, we use
Qµ to denote the tensor product space of µ copies of Q. For integer
p ≥ 1, we let µ̂ be the smallest integer which is greater than or equal
to µ/p, and for 1 ≤ r ≤ N , we let

γ := min{N + 1− µ̂, r}.

Then we assume that the µth Fréchet derivative of F at y is an operator
mapping from Qµ

rp into Qγp. If z := (z1, z2, . . . , zµ) ∈ Qµ
rp, we denote

∆hz := (∆hz1,∆hz2, . . . ,∆hzµ).

We require that there be multilinear operators fν,r,µ, µ = 0, 1, . . . ,M ,
mapping from Qµ

rp into Q(γ−ν)p such that

(3.4) Φh(∆hy) = hn̂

{
∆1

h

( N∑
ν=1

hνpfν,N+1,0(y)
)
+O(h(N+1)p)

}
,

and

(3.5)
(Φ(µ)

h (∆hy))(∆hz) = hn̂∆1
h

{
(F (µ)(y))(z) +

γ−1∑
ν=1

hνpfν,r,µ(z)
}

+O(hn̂+γp).

Similarly to [24], we define n̂-stability. Equation (3.2) is called n̂-
stable for the isolated solution y, if there is a constant S independent
of h such that each solution ε ∈ Eh of

Φ′
h(∆hy)ε = φ

satisfies
‖ε‖ ≤ Sh−n̂‖φ‖1, h ∈ H,

where ‖ · ‖, ‖ · ‖1 are the norms of Eh and E1
h, respectively. For the

unique solution η of equation (3.2), we set ε(h) := η(h) −∆h(y). We
say that η(h) in ∆hD̃ converges to y with order p, if ε(h) satisfies

(3.7) ‖ε(h)‖ ≤ Chp, h ∈ H
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where C is a constant.

We now state the following modified version of Stetter’s theorem.

Theorem 3.1. Let N be a positive integer and M ≥ N +1. Suppose
that the following conditions hold.

(a) F and Φh are M -times Fréchet differentiable at y and ∆hy,
respectively, the µth Fréchet derivative of F is an operator mapping
from Qµ

rp into Qγp and Φ(µ)
h satisfies (3.3).

(b) Expansions (3.4) and (3.5) hold for Φh and F .

(c) Algorithm (3.2) is n̂-stable for the isolated solution y of equation
(3.1).

(d) The unique solution η(h) of (3.2) in ∆hD̃ converges to y with
order p.

(e) F ′(y) e = b ∈ Qrp has a unique solution e ∈ Qrp for all
r = 1, 2, . . . , N . Then there are eν ∈ Q(N+1−ν)p, ν = 1, 2, . . . , N ,
independent of h, such that

(3.8)
∥∥∥∥η(h)−∆hy −∆h

N∑
ν=1

hνpeν

∥∥∥∥ ≤ CNh
(N+1)p, h ∈ H,

where CN is a constant.

Proof. We will determine bν ∈ Q(N+1−ν)p, ν = 1, 2, . . . , N , such that
the solutions eν of the equations

(3.9) F ′(y)eν = bν

satisfy the estimate (3.8). By assumption (e), the functions eν are
uniquely determined and eν ∈ Q(N+1−ν)p. We set

(3.10) sN (h) :=
N∑

ν=1

hνpeν and ε̄N (h) := ε(h)−∆hs
N (h).

Clearly, ‖∆hs
N (h)‖ = O(hp), and hence by assumption (d) and equa-

tion (3.10), we conclude that

(3.11) ‖ε̄N (h)‖ = O(hp).
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We next compute Φ′
h(∆hy)ε̄N (h). In our presentation, for notational

simplicity we will drop the argument ∆hy of the multilinear operators
Φ(µ)

h (∆hy) and the parameter h with ε, ε̄N and sN . Since

Φh(∆hy +∆hs
N + ε̄N ) = Φh(η(h)) = 0,

we have that

Φ′
hε̄

N = − [Φh(∆hy +∆hs
N + ε̄N )− Φh(∆hy)− Φ′

h(∆hs
N + ε̄N )]

− Φh(∆hy)− Φ′
h∆hs

N .

Assumption (a) allows the use of the generalized Taylor expansion. By
using (3.3) and assumption (d), we obtain

Ψh := Φh(η(h))− Φh(∆hy)− Φ′
h(∆hs

N + ε̄N )

=
M−1∑
µ=2

1
µ!

Φ(µ)
h (∆hs

N + ε̄N ) +O(hn̂+MP ).

Again, by using (3.3) and noting that M ≥ N + 1, we conclude that

(3.12) Ψh =
M−1∑
µ=2

1
µ!

Φ(µ)
h (∆hs

N )µ +O(hn̂+p‖ε̄N‖) +O(hn̂+(N+1)p).

For a multiindex iµ := (i1, i2, . . . , iµ) ∈ Nµ
N , where Nµ

N := NN × · · · ×
NN , µ-folds, we define |iµ| :=

∑µ
ν=1 iν . By definition (3.10), it follows

Φ(µ)
h (∆hs

N )µ = Φ(µ)
h

( N∑
ν=1

hνp∆heν

)µ

=
∑

iµ∈Nµ
N

h|iµ|p Φ(µ)
h (∆heiµ),

where eiµ := (ei1 , . . . , eiµ
). We let Mµ := max{i1, . . . , iµ} and

M̂µ := max{i1, . . . , iµ, µ̂}. Since eiν
∈ Q(N+1−iν)p ⊂ Q(N+1−Mµ)p

for 1 ≤ ν ≤ µ,

(3.13) ei1 , . . . , eiµ
∈ Q(N+1−Mµ)p.

Then by (3.5) with r = N +1−Mµ and noticing that γ−1 = N −M̂µ,
we have
(3.14)

Φ(µ)
h (∆heiµ) = hn̂∆1

h

(
F (µ)(eiµ) +

N−M̂µ∑
ν=1

hνp fν,N+1−Mµ,µ(eiµ)
)

+O(hn̂+(N+1−M̂µ)p),
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where fν,N+1−Mµ
, µ : Qµ

(N+1−Mµ)p → Q(N+1−M̂µ−ν)p. Hence, combin-
ing (3.12) and (3.14) yields

(3.15)
Φ(µ)

h (∆hs
N )µ

=
∑

iµ∈Nµ
N

h|iµ|p+n̂∆1
h

(
F (µ)(eiµ) +

N−M̂µ∑
ν=1

hνp fν,N+1−Mµ,µ(eiµ)
)

+O(hn̂+(N+1−M̂µ)p).

Clearly, µ̂ ≤ µ. Hence, by noticing that i1, . . . , iµ ≥ 1, we have
|iµ| ≥ M̂µ. This together with (3.15) yields

(3.16)
Φ(µ)

h (∆hs
N )µ

= hn̂
∑

iµ∈Nµ
N

h|iµ|p∆1
h

(
F (µ)(eiµ) +

N−M̂µ∑
ν=1

hνp fν,N+1−Mµ,µ(eiµ)
)

+O(hn̂+(N+1)p).

Thus, from (3.12) and (3.16), we have

(3.17)
Ψh

= hn̂
M−1∑
µ=2

∑
iµ∈Nµ

N

1
µ!
h|iµ|p∆1

h

(
F (µ)(eiµ) +

N−M̂µ∑
ν=1

hνp fν,N+1−Mµ,µ(eiµ)
)

+O(hn̂+p‖ε̄N‖) +O(hn̂+(N+1)p).

The righthand side of (3.17) can be rewritten as

N∑
ν=2

hνp∆1
hgν(y, e1, . . . , eν−1) +O(h(N+1)p).

It is easily seen that the functions gν depend only on ek for k ≤ ν − 1.
Moreover, gν is a linear combination of F (µ)(ei1 , . . . , eiµ

) for |iµ| = ν,
µ ≥ 2 and iµ ∈ Nµ

N , and fl,N+1−Mµ,µ(eiµ) for |iµ| + l = ν, µ ≥ 2 and
iµ ∈ Nµ

N .
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Notice that if |iµ| = ν, µ ≥ 2 and i1, . . . , iµ ≥ 1, we have 1 ≤
i1, . . . , iµ ≤ ν and 2 ≤ µ ≤ ν. Hence,Mµ ≤ ν and µ̂ ≤ µ ≤ ν. Then by
noticing (3.13) and assumption (a) with r = N + 1−Mµ and letting

γµ := min{N + 1− µ̂, N + 1−Mµ}

we conclude that F (µ)(eiµ) ∈ Qγµp ⊆ Q(N+1−ν)p. When |iµ| + l = ν,
µ ≥ 2 and i1, . . . , iµ ≥ 1, we have that Mµ + l ≤ |iµ| + l = ν
and l ≤ ν − µ. Hence, µ̂ + l ≤ µ + l ≤ ν. Then by noticing
that fl,N+1−Mµ,µ(eiµ) comes from (3.5) with r = N + 1 − Mµ and
(3.13), we conclude that fl,N+1−Mµ,µ(eiµ) ∈ Q(γµ−l)p ⊆ Q(N+1−ν)p

since γµ − l ≥ N + 1− ν. It follows that gν ∈ Q(N+1−ν)p.

For the remaining parts of Φ′
hε̄

N we obtain from (3.4) that

(3.21) Φh(∆hy) = hn̂

(
∆1

h

N∑
ν=1

hνpfν,N+1,0(y) +O(h(N+1)p)
)

and from (3.5), we have that

Φ′
h(∆hs

N ) = hn̂

( N∑
i=1

hip∆1
h

(
F ′(ei) +

N−i∑
ν=1

hνpfν,N+1−i,1(ei)

+O(hmin(N,N+1−i)p)
))
.

We rearrange the terms according to the powers of h and obtain that

(3.22)

Φ′
h(∆hs

N ) = hn̂

( N∑
ν=1

hνp∆1
h

(
bν +

ν−1∑
λ=1

fλ,N+1−ν+λ,1(eν−λ)
))

+O(hn̂+(N+1)p).

Collecting the various expressions and letting g1 = 0, we have

(3.23)

Φ′
hε̄

N = −hn̂

(
∆1

h

N∑
ν=1

hνp(gν(y, e1, . . . , eν−1) + fν,N+1,0(y) + bν

+
ν−1∑
λ=1

fλ,N+1−ν+λ,1(eν−λ)
))

+O(hn̂+p‖ε̄N‖) +O(hn̂+(N+1)p).
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Again, since the term fλ,N+1−ν+λ,1(eν−λ) in (3.23) is from (3.5) and
eν−λ ∈ Q(N+1−ν+λ)p, we conclude that it is in Q(N+1−ν)p. In fact, by
noticing (3.5) and eν−λ ∈ Q(N+1−ν+λ)p and 1 ≤ λ ≤ ν − 1, we have

(3.24)
fλ,N+1−ν+λ,1(eν−λ) ∈ Q(min(N+1−1,N+1−ν+λ)−λ)p

= Q(N+1−ν)p.

Now, for ν = 1, 2, . . . , N , we can recursively choose bν which an-
nihilate the brackets in (3.23) since the corresponding conditions for
the bν are in Q(N+1−ν)p because of (3.20), (3.4) and (3.24) and con-
tain only e′ks with k < ν while the ones for b1 do not contain an ek
at all. Thus, through (3.9), all the bν , eν are uniquely determined for
ν = 1, 2, . . . , N . With this choice of the eν , (3.23) is reduced to

(3.25) Φ′
hε̄

N = O(hn̂+p‖ε̄N‖) +O(hn̂+(N+1)p).

By assumption (c) and (3.11) we conclude from (3.25) inductively
‖ε̄N‖ = O(hjp), j = 2, 3, . . . , until j would surpass N + 1 and final
estimate ‖ε̄N‖ = O(hn̂+(N+1)p) is reached. The proof is now complete.

4. An asymptotic error expansion. In this section we establish
an asymptotic error expansion of the approximate solution un at
quadrature nodes, which leads to an extrapolation scheme.

We first recall a result proved in [23] regarding an asymptotic error
expansion of the trapezoidal rule applied to integral operators with
Green’s function kernels.

Theorem 4.1. Let G be a Green’s function kernel, let u ∈ C2m[0, 1],
and let G̃(s, t) := G(s, t)u(t), s, t ∈ [0, 1]. Then

(4.1)

∫ 1

0

G̃(ti, t) dt = h
n∑

j=0

′′G̃(ti, tj) +
m−1∑
j=1

B2j

(2j)!
α2j−1(ti)h2j

+O(h2m), i = 0, 1, . . . , n,

where Bj are Bernoulli numbers and

(4.2) αj(ti) := G̃(0,j)(ti, 0)− G̃(0,j)(ti, 1) + [G̃(0,j)(ti, ti)],
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with [f(s)] := f(s+)− f(s−).

This formula can be obtained by using the classical Euler-Maclaurin
formula (cf. [7]) on two intervals [0, ti] and [ti, 1] and then simplifying
it. For details of a proof, see [23].

Using the operator notation, we have for u ∈ C2r[0, 1], 1 ≤ r ≤ m
and i = 0, 1, . . . , n, that

(4.3) (Ku)(ti) = (Knu)(ti) +
r−1∑
j=1

B2j

(2j)!
α2j−1(ti)h2j +O(h2m).

Formula (4.3) gives an asymptotic error expansion for Knu approx-
imating Ku at the quadrature nodes. We next use this asymptotic
expansion and Theorem 3.1 to derive an asymptotic expansion for the
approximate solutions un at the quadrature nodes.

To apply Theorem 3.1, we let D1 = E = E1 = C[0, 1] and introduce
nonlinear operators F : D1 → E1 by

F(u) = Iu−KΨu− f.

In this notation equation (1.1) can be written as

(4.4) F(u) = 0.

For any positive integer n, we let h = 1/n and define Eh = Rn+1 with
norm ‖ · ‖h defined by

‖ε‖h = max
0≤i≤n

|εi|, ε ∈ Eh.

Define linear operator ∆h : E → Eh by

(4.5) ∆hu = (u(t0), u(t1), . . . , u(tn))T .

Since E = E1, we let E1
h = Eh and ∆1

h = ∆h. We now choose
Φh : Eh → E1

h to be

(4.6) (Φhη)i = ηi − h
n∑

j=0

′′G(ti, tj)ψ(tj , ηj)−f(ti), i = 0, 1, . . . , n.
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Hence, for any u ∈ E, we have

(4.7) Φh(∆hu) = ∆1
h (Iu−KnΨu− f),

and equation (2.4) is equivalent to

(4.8) Φh η = 0.

Then we have the following theorem which is the main result of this
paper and concerns the asymptotic error expansion of the approximate
solution un at the quadrature nodes.

Theorem 4.2. Suppose that the assumptions on the kernel G(s, t),
ψ, and righthand side function f of (1.1) hold. Let u0 ∈ C[0, 1] be an
isolated solution of equation (1.1). Assume that 1 is not an eigenvalue
of (KΨ)′(u0). Then for a sufficiently large n, equation (2.3) has a
unique solution un ∈ B(u0, δ) for some δ > 0 which has the asymptotic
expansion

(4.9) un(ti) = u0(ti) +
m−1∑
j=1

ej(ti)h2j +O(h2m), i = 0, 1, . . . , n,

where functions ej ∈ C2(m−j)[0, 1] are independent of h.

Proof. We first notice that it follows from Theorem 2.4 that, for
sufficiently large n equation, (2.3) has a unique solution un in the ball
B(u0, δ) for some δ > 0. Hence, it remains to prove (4.9). Since
equation (4.8) is equivalent to (2.4), the existence of the unique solution
un in B(u0, δ) for some δ > 0 for sufficiently large n implies that
equation (4.8) has a unique solution η(h) in ∆hB(u0, δ) for sufficiently
small h and η(h) = ∆hun. Notice that u0 is an isolated solution
of equation (4.4). Thus, it suffices to show that the conditions of
Theorem 3.1 hold for M = N + 1 = m and p = 2.

Since ψ ∈ C2m([0, 1]× R), Ψ is M -times Fréchet differentiable at u0

and, for µ = 1, 2, . . . ,M , u1, . . . , uµ ∈ E, we have

(4.10) Ψ(µ)(u0)(u1, . . . , uµ) = ψ(0,µ)(·, u0(·))(u1 · · ·uµ).
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It follows that F is M -times differentiable at u0 and

F ′(u0) = I − KΨ′(u0),(4.11a)

and

F (µ)(u0) = −KΨ(µ)(u0), µ = 2, . . . ,M.
(4.11b)

It follows again from the fact that ψ ∈ C2m([0, 1] × R) that Φh is
M -times Fréchet differentiable at ∆hu0 and

(4.12a) Φ′
h(∆hu0) η = η −∆1

h

(
h

n∑
j=0

′′G(s, tj)ψ(0,1)(tj , u0(tj))ηj

)

and, for µ = 2, . . . ,M ,
(4.12b)

Φ(µ)
h (∆hu0)(η1, . . . , ηµ)

= ∆1
h

(
− h

n∑
j=0

′′G(s, tj)ψ(0,µ)(tj , u0(tj))(η1)j · · · (ηµ)j

)
.

Hence, for any u ∈ E = C[0, 1], from (4.10) and (4.12a) we have

(4.13a) Φ′
h(∆hu0)(∆hu) = ∆1

h ((I − KnΨ′(u0))u)

and for µ = 2, . . . ,M , and any u1, . . . , uµ ∈ E, we have

(4.13b)
Φ(µ)

h (∆hu0)(∆hu1, . . . ,∆huµ)

= ∆1
h(−KnΨ(µ)(u0)(u1, . . . , uµ)).

Since Φ(µ)
h , µ = 1, . . . ,M , are bounded operators, they satisfy (3.3)

with n̂ = 0. Hence, assumption (a) of Theorem 3.1 holds. Remember
that p = 2 and M = N + 1 = m in this case. Let Qrp = C2r[0, 1],
1 ≤ r ≤ N + 1. Notice that it follows from the hypotheses on
G(s, t), ψ(s, t) and f that u0 ∈ C2m[0, 1] = Q(N+1)p. Then, from (4.7)
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and (4.3) and noticing that F(u0) = Iu0 −KΨu0 − f = 0, we have

Φh(∆hu0) = ∆1
h(Iu0 −KnΨu0 − f)

= ∆1
h

(
Iu0 −KΨu0 − f +

N∑
j=1

β(j,N+1,0)(u0)h2j

)

+O(h(N+1)p)

= ∆1
h

(
F(u0) +

N∑
j=1

β(j,N+1,0)(u0)h2j

)
+O(h(N+1)p)

= ∆1
h

( N∑
j=1

β(j,N+1,0)(u0)h2j

)
+O(h(N+1)p),

where

β(j,N+1,0)(u0)

=
B2j

(2j)!
(
(G(s, t)ψ(t, u(t)))(0,2j−1)|t=0 − (G(s, t)ψ(t, u(t)))(0,2j−1)|t=1

+ (G(s, t)ψ(t, u(t)))(0,2j−1)|t=s+

− (G(s, t)ψ(t, u(t)))(0,2j−1)|t=s−
)

and B2j are Bernoulli numbers. It follows from the assumption on
G(s, t) and ψ(s, t) that β(j,N+1,0)(u0) ∈ C2m−2j+1[0, 1]⊂C2m−2j [0, 1]=
Q(N+1−j)p. Hence, equation (3.4) of Theorem 3.1 holds. Now we show
that (3.6) and (3.5) of Theorem 3.1 also hold for this case. Note
that from (4.10) we have Ψ(µ)(u0) : Qµ

rp → Cmin(2m−µ,rp)[0, 1] =
Cmin(m−µ/p,r)p[0, 1] ⊂ Qmin(N+1−µ̂,r)p. Then it follows from (4.11) and
the assumption on G(s, t) that

F (µ)(u0) : Qµ
rp −→ Qγp, 1 ≤ r ≤ N, 1 ≤ µ ≤M.

That is, F (µ)(u0) satisfies (3.6). To show that equation (3.5) also holds,
we notice from (4.13b) and (4.3) that, for any z1, . . . , zµ ∈ Qrp =
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C2r[0, 1], µ = 2, . . . ,M ,

Φ(µ)(∆hu0)(∆hz1, . . . ,∆hzµ)

= ∆1
h(−Kn(ψ(0,µ)(t, u0(t))z1 · · · zµ))

= ∆1
h(−K(ψ(0,µ)(t, u0(t))z1 · · · zµ) +

γ−1∑
j=1

hjpβ(j,r,µ)(z1 . . . , zµ))

+O(hγp)

= ∆1
h(F (µ)(u0)(z1, . . . , zµ) +

γ−1∑
j=1

hjpβ(j,r,µ)(z1, . . . , zµ)) +O(hγp)

where

β(j,r,µ)(z1, . . . , zµ)

=
B2j

(2j)!
(
(G(s, t)ψ(0,µ)(t, u0(t))z1(t) · · · zµ(t))(0,2j−1)|t=0

− (G(s, t)ψ(0,µ)(t, u0(t))z1(t) · zµ(t))(0,2j−1)|t=1

+ (G(s, t)ψ(0,µ)(t, u0(t))z1(t) · · · zµ(t))(0,2j−1)|t=s+

− (G(s, t)ψ(0,µ)(t, u0(t))z1(t) · · · zµ(t))(0,2j−1)|t=s−
)
.

Notice that it follows from the assumptions on G(s, t) and ψ(s, t)
that β(j,r,µ)(z1, . . . , zµ) ∈ Cmin(2m−µ,2r)−2j+1[0, 1] ⊂ Q(γ−j)p. Hence,
Φ(µ)

h (∆hu0) satisfies (3.5) for µ = 2, . . . ,M . Similarly, it can be
shown that Φ′

h(∆hu0) also satisfies (3.5). Hence, assumption (b) of
Theorem 3.1 also holds.

We will show that Φ′
h(∆hu0) satisfies assumption (c) of Theorem 3.1

with n̂ = 0 by showing that the inverse operators of Φ′
h(∆hu0) ex-

ist and are uniformly bounded for sufficiently small h. Since 1 is not
an eigenvalue of (KΨ)′(u0), it follows from Lemma 2.2 that, for suffi-
ciently small h, the inverse operators (I − (KnΨ)′(u0))−1 exist and are
uniformly bounded on C[0, 1] = E1. We first prove that Φ′

h(∆hu0) is
bijective. Let ε1, ε2 ∈ Eh such that Φ′

h(∆hu0)ε1 = φ ∈ E1
h = Eh and

Φ′
h(∆hu0)ε2 = φ. Then Φ′

h(∆hu0(ε2 − ε1) = 0. From (4.12a), we have

(ε2 − ε1)i − h
n∑

j=0

′′G(ti, tj)ψ(0,1)(tj , u0(tj))(ε2 − ε1)j = 0,

i = 0, . . . , n.
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Let

un(s) = h

n∑
j=0

′′G(s, tj)ψ(0,1)(tj , u0(tj))(ε2 − ε1)j .

Then ∆hun = ε2 − ε1. Moreover, by noticing that (KΨ)′(u0)) =
KΨ′(u0), it can be easily checked that un(t) is a solution of the equation
(I − (KnΨ)′(u0))u = 0. Since (I − KnΨ)′(u0))−1 exist for sufficiently
large n, it follows that for sufficiently large n, that is, for sufficiently
small h, that un(t) = 0. Hence, ε1 = ε1 for sufficiently small h. Thus,
Φ′

h(∆hu0) is injective for sufficiently small h. Let φh ∈ E1
h be an

arbitrary element. Clearly, by the definition of ∆h, we can find a φ ∈ E1

such that ∆hφ = φh. Let εh = ∆h((I −KnΨ′(u0))−1φ) for sufficiently
large n. Then by noticing (4.13a), it follows that for sufficiently large
n,

Φ′
h(∆hu0)εh = ∆h ((I − (KnΨ)′(u0))((I − KnΨ′(u0))−1φ)

= ∆h (φ) = φh.

Hence, Φ′
h(∆hu0) is bijective for sufficiently large n, that is, for suffi-

ciently small h. That is, the inverse operators (Φ′
h(∆hu0))−1 exist for

sufficiently small h. In fact, they are also uniformly bounded for suffi-
ciently small h. To see this, let φh ∈ E1

h be an arbitrary element. It is
clear from the definition of ∆h that there exists a φ ∈ E1 = E = C[0, 1]
such that ∆hφ = φh and ‖φ‖ = ‖φh‖h, for example, we can let φ be the
linear interpolation function of φh in C[0, 1]. Let ε = (I−KnΨ′(u0))−1φ
and εh = ∆hε. Then

(I − KnΨ′(u0)) ε = φ.

Hence, by (4.13a) we have

Φ′
h(∆hu0)(∆hε) = ∆1

h ((I − KnΨ′(u0))ε) = ∆h(φ) = φh.

Thus, (Φ′
h(∆hu0))−1φh = ∆hε. It follows that

‖(Φ′
h(∆hu0))−1φh‖h

‖φh‖h
=

‖∆hε‖h

‖φh‖h

=
‖∆h((I − KnΨ′(u0))−1φ)‖h

‖φh‖h
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≤ ‖(I − KnΨ′(u0))−1φ)‖
‖φ‖

≤ ‖(I − KnΨ′(u0))−1‖
where we have used the fact that ‖φh‖ = ‖φ‖ and ‖∆h‖ ≤ 1. Hence,
(Φ′

h(∆hu0))−1 is uniformly bounded for sufficiently large n. Hence, the
assumption (c) of Theorem 3.1 holds for n̂ = 0.

For the assumption (d) of Theorem 3.1, by Theorem 2.4 and noticing
that η(h) = ∆hun (see the beginning of this proof) and ‖∆h‖ ≤ 1, we
have that for sufficiently large n,

‖η(h)−∆hu0‖h = ‖∆h(un − u0)‖h ≤ ‖un − u0‖ ≤ Ch2

for some constant C > 0. Hence, assumption (d) of Theorem 3.1 holds.

Finally we show that assumption (e) of Theorem 3.1 also holds.
Since 1 is not an eigenvalue of (KΨ)′(u0), F ′(u0) = I − KΨ′(u0)
has inverse. Hence, the equation F ′(u0)e = b has unique solution
e = (F ′(u0))−1b. By the assumption on G(s, t) and φ(s, t), it is clear
that if b ∈ Qrp = C2r[0, 1], 1 ≤ r ≤ N , e = (F ′(u0))−1b ∈ Qrp. Hence,
assumption (e) of Theorem 3.1 also holds. This completes the proof.

The asymptotic error expansion (4.9) suggests the following extrap-
olation scheme for the sequence un(ti). For each ti, i = 0, 1, . . . , n,
define

ui
n,0 := un(ti),

and

(4.14) ui
n,l :=

22l u2i
2n,l−1 − ui

n,l−1

22l − 1
, l = 1, 2, . . . ,m− 1.

Using this extrapolation scheme and Theorem 3.2, we have the next
theorem regarding an asymptotic expansion of the extrapolated values
ui

n,l.

Theorem 4.3. Suppose that the conditions of Theorem 3.2 hold.
Then

ui
n,l = u0(ti) +

m−1∑
j=l+1

el,j(ti)h2j +O(h2m), i = 0, 1, . . . , n,
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where el,j are functions independent of h for l = 1, 2, . . . ,m− 1.

5. A reconstruction. In this section we propose a reconstruction
of a continuous function from the extrapolated discrete values at the
quadrature nodes and show that it approximates the exact solution u0

to higher order in the uniform norm.

Once the extrapolated discrete values at the quadrature nodes are
obtained from the algorithm described in the last section, we can use
a standard way to construct a continuous function from these discrete
values by letting

un,l(s) = h
n∑

j=0

′′G(s, tj)ψ(tj, u
j
n,l) + f(s).

However, even though the extrapolated values ui
n,l approximate u0(ti)

to order O(h2(l+1)), we can only have

‖un,l − u0‖ = O(h2).

This shows that the order of un,l approximating u0 in the uniform norm
is not improved, and therefore, it suggests that we should look for an
alternative method of reconstruction.

We propose a reconstruction method by using interpolation. This
method reconstructs an alternative continuous piecewise polynomial
ûn,l which interpolates the extrapolated values ui

n,l at ti, i = 0, 1, . . . , n,
and has the following order of convergence

‖ûn,l − u0‖ = O(h2(l+1)).

Specifically, when n = (2l + 1)N for some integer N , we construct a
polynomial of degree 2l + 1 on each interval Ii := [(i − 1)/N, (i/N)]
that interpolates the values ui

n,l, i = 0, 1, . . . , n. To describe this
construction, we let k = 2l+2 and let lµ be the fundamental Lagrange
interpolatory polynomials of degree k − 1 on [0, 1] at the interpolation
nodes µ/(k − 1), µ = 0, 1, . . . , k − 1, that is, lµ satisfies the conditions
that

lµ

(
ν

k − 1

)
= δµ,ν , µ, ν = 0, 1, . . . , k − 1,
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where δµ,ν = 1 if µ = ν and 0 if µ �= ν. We will “copy” these k
functions to each of the subintervals Ii. To do this, we introduce for
each i = 1, 2, . . . , N , an affine mapping

Fi(t) :=
1
N
t+

i− 1
N

, t ∈ [0, 1],

which maps [0, 1] bijectively onto Ii. Using these affine maps, we define
for µ = 0, 1, . . . , k − 1, i = 1, 2, . . . , N ,

Li,µ := lµ ◦ F−1
i
χIi
,

and set

ûn,l(t) =
k−1∑
µ=0

u
(i−1)k+µ
n,l Li,µ(t), t ∈ Ii, i = 1, 2, . . . , N.

This function is the continuous piecewise polynomial of degree k − 1
on [0, 1] that interpolates the discrete values uj

n,l at tj , j = 0, 1, . . . , n.
They provide us with extrapolated approximate solutions of equation
(1.1). Moreover, we define the interpolatory projection Pn by the
formula

(Pnf)(t) :=
k−1∑
µ=0

f(t(i−1)k+µ)Li,µ(t), t ∈ Ii,

where f ∈ C[0, 1]. Clearly, the uniform norm of Pn is bounded
independent of n and

(5.1) ‖Pnf − f‖ = O (h2l+2),

when f ∈ C2l+2[0, 1]. The next theorem shows that we have a uniform
norm estimate for order of convergence of ûn,l.

Theorem 5.1. Suppose that the conditions of Theorem 3.2 hold. If
n = (2l + 1)N , then

‖ûn,l − u0‖ = O (h2(l+1)).

Proof. Let

C :=
k−1∑
µ=0

‖lµ‖.
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According to the construction of basis functions Li,µ, i = 1, 2, . . . , N ,
we conclude that

sup
t∈Ii

k−1∑
µ=0

|Li,µ(t)| ≤ C, i = 1, 2, . . . , N.

For t ∈ Ii, for i = 1, 2, . . . , N , we have

|ûn,l(t)− u0(t)| ≤ |ûn,l(t)− (Pnu0)(t)|+ |(Pnu0)(t)− u0(t)|
≤ C max

0≤µ≤k−1
|u(i−1)k+µ

n,l − u0(t(i−1)k+µ)|

+ ‖Pnu0 − u0‖.

By Theorem 3.4, the first term is bounded by O(h2(l+1)) and by
estimate (5.1), the second term is also bounded by the same order.
This concludes the result of this theorem.

6. Numerical examples. In this section we present two numerical
examples to illustrate the theory developed in the previous sections. We
also use these two examples to show the applications of the methods
proposed in this paper to numerical solutions of two-point boundary
value problems of ordinary differential equations.

In these two examples we use the trapezoidal rule for the quadrature
scheme and Picard iteration to solve the discrete system (2.3) of
nonlinear equations and obtain approximate solutions for the special
cases of (1.1). Then, extrapolation scheme (4.14) with l = 1 is used to
demonstrate the acceleration of convergence of the extrapolation. The
unique solvability of the discrete systems of these two examples follows
from the general theory presented in Section 2 (Theorem 2.4). The
existence of a unique discrete solution to the quadrature method for
these two examples was also proved in [23]. It was also shown in [23]
that the Picard iterations for the corresponding nonlinear systems for
these two examples converge.

Example 1. Consider the integral equation

(6.1) u(s)−
∫ 1

0

gk(s, t) [k2u(t)− 2(u(t))3] dt = h(s), 0 ≤ s ≤ 1,
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where gk(s, t) and h(s) are given by (1.3) and (1.4) with a = 2 and
b = 2/3, respectively. This equation can be derived (cf. [18]) from the
boundary value problem

u′′(s) = 2u3(s), 0 < s < 1,(6.2)
u(0) = 2, u(1) = 2/3(6.3)

by subtracting k2u from both sides and inverting the lefthand side.
We note that problem (6.2) (6.3) is easily solved by finite difference
methods yielding essentially the same accuracy.

Ordinary differential equations of the form u′′ = cun with c > 0 and
n ≥ 1 occur in nth order reaction kinetics (see [2]). Normally, u′(0) = 0
and u(1) is given rather than the Dirichlet condition (6.3). We use the
Dirichlet boundary conditions because we can obtain the exact solution

u(s) =
1

s+ (1/2)

to problem (6.2) (6.3) and hence equation (6.1) so that the error in the
approximate solutions can be computed. Even without knowing the
exact solution, Theorem 1 in [18] guarantees the existence of a unique
solution to (6.1) satisfying 0 ≤ u(x) ≤ 2. For k2 = 12, it is given
by the sequence of continuous approximation starting with h(s) as the
first member of the sequence (see [18]). Therefore, for k2 = 12, we
obtain the solution of the nonlinear system (2.3) for equation (6.1) by
computing the Picard iterations given by the discrete sequence,

u0
n(ti) = f(ti), i = 0, 1, . . . , n

um+1
n (ti) = f(ti) + (KnΨum

n )(ti), i = 0, 1, . . . , n, m = 0, 1, . . . .

The following two tables give the error of the approximate solutions
using different step sizes h = (1/n) and of the extrapolated solutions,
respectively. For each value of h, 21 Picard iterations were necessary to
get the difference in successive iterates to be less than 10−12 in absolute
value. In Table 1 we use ei = |u(ti)− un(ti)| to denote the error of the
quadrature scheme solutions corresponding to the specified h = (1/n).
The rate of convergence guaranteed by Theorem 2.4 is of order 2.

In Table 2, we list the error of the extrapolated solutions by using
the extrapolation scheme (4.14). We use e1i to denote the error of
the one step extrapolation obtained by using the approximate solution
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TABLE 1. Error of quadrature solution for Example 1.

ti ei with h=1/20 ei with h=1/40 ei with h=1/80 rate
0.1 0.1079E-02 0.2713E-03 0.6791E-04 1.9
0.2 0.1620E-02 0.4063E-03 0.1016E-03 1.9
0.3 0.1912E-02 0.4791E-03 0.1198E-03 1.9
0.4 0.2047E-02 0.5126E-03 0.1282E-03 1.9
0.5 0.2052E-02 0.5135E-03 0.1284E-03 1.9
0.6 0.1929E-02 0.4825E-03 0.1206E-03 1.9
0.7 0.1672E-02 0.4181E-03 0.1045E-03 1.9
0.8 0.1273E-02 0.3181E-03 0.7954E-04 2.0
0.9 0.7193E-03 0.1797E-03 0.4493E-04 2.0

corresponding to h = 1/20 and h = 1/40, i.e., e1i = |u(ti) − un,1(ti)|
where un,1(ti) is given by (4.14) and n = 20. Likewise, e2i denotes the
error of the one step extrapolation obtained by using the approximate
solution corresponding to h = 1/40 and h = 1/80. The rate of
convergence guaranteed by Theorem 3.4 is of order 4.

TABLE 2. Errors of the extrapolated solution for Example 1.

ti e1i e2i rate
0.1 0.1783E-05 0.1139E-06 3.9
0.2 0.1770E-05 0.1129E-06 3.9
0.3 0.1386E-05 0.8851E-07 3.9
0.4 0.9540E-06 0.6105E-07 3.9
0.5 0.5604E-06 0.3612E-07 3.9
0.6 0.2395E-06 0.1581E-07 3.9
0.7 0.1212E-07 0.1379E-08 3.1
0.8 0.1067E-06 0.6250E-08 4.0
0.9 0.1093E-06 0.6612E-08 4.0
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Clearly, the extrapolation process accelerated the order of conver-
gence by two. This numerical result confirms the theoretic estimate
given in Theorem 4.3 with l = 1.

Example 2. Consider the integral equation

(6.4) u(s)−
∫ 1

0

gk(s, t) [k2u(t) + 16e−u(t)] dt = h(s), 0 ≤ s ≤ 1,

where gk(s, t) and h(s) are given by (1.6) and (1.8), respectively. This
equation can be derived [20] from the boundary value problem of the
regular singular differential operator

u′′(s) +
1
s
u′(s) = −16e−u(s), 0 < s < 1,(6.5)

u′(0) = 0, u(1) = 0(6.6)

by subtracting k2u from both sides and inverting the lefthand side.
This problem is an example of the second boundary value problem
described in Section 1. Problems of this form are encountered in
many areas of applied math such as, for example, in nonlinear diffusion
problems with Michaelis-Menten kinetics and nonlinear behaviors of
plane circular elastic surface under normal pressure [25]. The exact
solution to problem (6.5) (6.6) is given by

u(s) = 2 ln(2− s2).

With a proper choice of k such as k2 = 10, theory in [20] guarantees the
existence of a unique solution to (6.4) via Picard iterates. For each value
of h, the number of Picard iterates performed before the absolute error
between successive iterates becomes less when 10−12 was 19. Tables 3
and 4 display values for the same quantities as those listed in Tables 1
and 2 for Example 1.

Likewise, this numerical result confirms Theorem 4.3.

Finally, the following shows a comparison between the accuracy in
quadrature and the accuracy in interpolation at off-mesh values. This
was discussed in Section 5. Table 5 shows absolute error using the ex-
trapolated values ui

20,2, i = 1, 2, . . . , n when n = 1/20 for Example 1.
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TABLE 3. Errors of quadrature solution for Example 2.

ti ei with h=1/20 ei with h=1/40 ei with h=1/80 rate
0.0 0.1492E-01 0.4387E-02 0.1259E-00 1.8
0.1 0.1419E-02 0.3630E-03 0.9136E-04 1.9
0.2 0.7723E-03 0.1882E-03 0.4670E-04 2.0
0.3 0.1745E-02 0.4327E-03 0.1079E-03 2.0
0.4 0.2149E-02 0.5344E-03 0.1334E-03 2.0
0.5 0.2199E-02 0.5473E-03 0.1366E-03 2.0
0.6 0.1997E-02 0.4974E-03 0.1242E-03 2.0
0.7 0.1610E-02 0.4009E-03 0.1001E-03 2.0
0.8 0.1091E-02 0.2715E-03 0.6679E-04 2.0
0.9 0.5079E-03 0.1261E-03 0.3146E-04 2.0

TABLE 4. Errors of the extrapolated solution for Example 2.

ti e11 e2i rate
0.1 0.1106E-04 0.8018E-06 3.8
0.2 0.6472E-05 0.4683E-06 3.8
0.3 0.4883E-05 0.3476E-06 3.8
0.4 0.3936E-05 0.2751E-06 3.8
0.5 0.3234E-05 0.2223E-06 3.8
0.6 0.2657E-05 0.1800E-06 3.9
0.7 0.2158E-05 0.1442E-06 3.9
0.8 0.1700E-05 0.1122E-06 3.9
0.9 0.1164E-05 0.7611E-07 3.9

Table 6 shows the results for Example 2. The quantity e20,2(s) :=
|u20,2(s)−u(s)| where u20,2(s) is the value obtained by the quadrature
formula suggested in Section 5. The quantity ê20,2(s) := |û20,2(s)−u(s)|
where û20,2(s) is the interpolation suggested in Section 5. The quantity
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TABLE 5. Errors in interpolation vs errors in quadrature

at off mesh values for Example 1.

s e20,2(s) ê20,2(s) e(s)
0.0125 0.1916E-02 0.8704D-05 0.8703E-05
0.0875 0.1515E-02 0.1414E-05 0.1417E-05
0.1625 0.1312E-02 0.1254E-05 0.1256E-05
0.2375 0.1121E-02 0.6050E-05 0.6048E-05
0.3125 0.9701E-03 0.1846E-06 0.1865E-06
0.4627 0.8154E-03 0.2725E-06 0.2712E-06
0.5375 0.8204E-03 0.6512E-07 0.5506E-07
0.6125 0.8171E-03 0.1875E-07 0.1789E-07
0.6875 0.8988E-03 0.2724E-07 0.2793E-07
0.7625 0.9829E-03 0.3031E-07 0.2978E-07
0.8375 0.1160E-03 0.4871E-08 0.5245E-08
0.9125 0.1364E-02 0.4757E-08 0.4967E-08
0.9875 0.1684E-02 0.2531E-07 0.2527E-07

e(s) := |û(s)− u(s)| where û(s) is the interpolation in Section 5 using
the exact value of the solution u at ti instead of ui

20,2.

Consider Table 5. If we compare column 2 of Table 5 to column 2
of Table 1, we see that the accuracy of quadrature at off-mesh values
is no better than the accuracy in ui

20,0 at mesh values which we have
already shown is order 2. Column 3 of Table 5 shows the error in
the interpolation at off-mesh values which is much smaller than the
error in the quadrature. It is also the same order as the interpolation
error using the exact values of the solution u at ti which we know from
Lagrange theory is order 4.

This verifies Theorem 5.1. Similar analysis can be done for Exam-
ple 2.
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TABLE 6. Errors in interpolations vs errors in quadrature

at off mesh values for Example 2.

s e20,2(s) ê20,2(s) e(s)
0.0125 0.1291E-01 0.7812E-04 0.2390E-07
0.0875 0.5865E-02 0.1995E-05 0.4561E-08
0.1625 0.4394E-02 0.1073E-05 0.4683E-08
0.2375 0.3339E-02 0.4148E-05 0.2587E-07
0.3125 0.2895E-02 0.7447E-08 0.1758E-07
0.3875 0.2495E-02 0.3022E-07 0.1117E-07
0.4625 0.2368E-02 0.4870E-07 0.3408E-07
0.5375 0.2251E-02 0.1590E-06 0.1478E-06
0.6125 0.2303E-02 0.6427E-07 0.5561E-07
0.6875 0.2368E-02 0.9411E-07 0.1108E-06
0.7625 0.2576E-02 0.3067E-05 0.3061E-05
0.8375 0.2796E-02 0.6316E-06 0.6354E-06
0.9125 0.3212E-02 0.7136E-06 0.7161E-06
0.9875 0.3577E-02 0.4401E-05 0.4400E-05

All computations were done in double precision on an RS 6000.
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