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ON TOPOLOGICAL SPACES THAT HAVE
A BOUNDED COMPLETE DCPO MODEL

ZHAO DONGSHENG AND XI XIAOYONG

ABSTRACT. A dcpo model of a topological space X
is a dcpo (directed complete poset) P such that X is
homeomorphic to the maximal point space of P with the
subspace topology of the Scott space of P . It has been
previously proved by Xi and Zhao that every T1 space has
a dcpo model. It is, however, still unknown whether every
T1 space has a bounded complete dcpo model (a poset
is bounded complete if each of its upper bounded subsets
has a supremum). In this paper, we first show that the
set of natural numbers equipped with the co-finite topology
does not have a bounded complete dcpo model and then
prove that a large class of topological spaces (including all
Hausdorff k-spaces) have a bounded complete dcpo model.
We shall mainly focus on the model formed by all of the
nonempty closed compact subsets of the given space.

Introduction. In domain theory, one of the most useful intrinsic
order topologies on a poset is the Scott topology. Although the
definition of this topology was originally motivated mainly by problems
in computer science, it soon found deep links with other mathematical
structures. One of the classic results on the Scott topology was
discovered by Dana Scott: the injective objects of the category of
all T0 spaces are exactly the continuous lattices equipped with their
Scott topologies [18]. A modern link between the Scott topology and
general topological spaces was established via the maximal point spaces
of Scott spaces. A poset model of a topological space X is a poset P
such that Max(P ) is homeomorphic to X [11]. Every space that has a
poset model must be T1. Edalat and Heckmann [2] proved that every
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complete metric space has a poset model that is a domain (continuous
dcpo). Lawson [11] proved that a space has a domain model with a
countable base and satisfies the Lawson condition if and only if it is
a Polish space. Kopperman, Künzi and Waszkiewicz [10] proved that
every complete metric space has a bounded complete domain model.

Spaces with other special types of poset models have also been
considered by many other authors [1, 12, 15, 16, 17, 19, 20].

A natural question which then arises is: which spaces have a poset
model? Erné [4] and Zhao [22] proved that every T1 space has a
bounded complete algebraic poset model. Thus the T1 spaces are
exactly those spaces which have a poset model.

Recently, Zhao and Xi [21, 23] further proved that every T1 space
has a dcpo model.

A subset A of a poset P is upper bounded if there is an element
b ∈ P such that x ≤ b for all x ∈ A. A poset is bounded complete if all
of its upper bounded nonempty subsets have a supremum. The dcpo
model constructed in [21, 23] for a T1 space is not bounded complete
in general.

Hence, we have the following problem: does every T1 topological
space have a bounded complete dcpo model?

In this paper, we first prove that, if P is a bounded complete dcpo,
then, for any x ∈ P ,

↓((↑x) ∩Max(P ))

is a Scott closed set and then deduce that the T1 space of the set all
positive integers equipped with the co-finite topology does not have a
bounded complete dcpo model. Next, we prove that a large class of
topological spaces, including all Hausdorff k-spaces, have a bounded
complete dcpo model.

Given a T1 space X, the set CK(X) of all nonempty closed compact
subsets of X is a bounded complete dcpo with respect to the reverse
inclusion order, and the set Max(CK(X)) of maximal points of CK(X)
consists of all singletons. Furthermore, there is a natural mapping

ηX : X −→ Max(CK(X)),

where ηX(x) = {x} for each x ∈ X. In this paper, we shall investigate
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the topological spaces X where ηX is a homeomorphism; such spaces X
have CK(X) as a bounded complete dcpo model.

1. Not every T1 space has a bounded complete dcpo model.
For any subset A of a poset P , let

↓A = {x ∈ P : x ≤ y for some y ∈ A}

and

↑A = {x ∈ P : x ≥ y for some y ∈ A}.

A nonempty subsetD of a poset P is a directed set if every two elements
in D have an upper bound in D. A poset P is called a directed complete
poset, or dcpo for short, if, for any directed subset of D ⊆ P ,

supD =
∨

D

exists in P .

A subset U of a poset P is Scott open if:

(i) U = ↑U (called an upper set) and

(ii) for any directed subset D,
∨
D ∈ U implies D∩U ̸= ∅, whenever∨

D exists.

All Scott open sets of poset P form a topology on P , denoted by σ(P )
and called the Scott topology on P . The space (P, σ(P )) is denoted by
ΣP , and called the Scott space of P . It follows that a subset F of P is
Scott closed if:

(i) F = ↓F (called a lower set), and

(ii) for any directed subset D of P , D ⊆ F implies
∨
D ∈ F if

∨
D

exists.

For more about the Scott topology and related structures, see [7, 8].

In the following, we shall always assume that the topology on the
set Max(P ) of maximal points of a poset P is the inherited subspace
topology from ΣP , and we call the space Max(P ) the maximal point
space of P .

A poset model of a topological space X is a poset P such that
Max(P ) is homeomorphic to X [11]. Every space having a poset model
is T1.
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The poset of all nonempty closed intervals of real numbers with
the reverse inclusion order is a dcpo model of the real line with the
Euclidean topology (see [7, Example V-6.8] for a more general result).

In [23], it was proven that every T1 space X has a dcpo model.
However, the dcpo model of X constructed in [23] is generally not
bounded complete. It is still unknown whether every T1 space has
a bounded complete dcpo model. We give a negative answer to this
question. Firstly, we prove a general result on bounded complete dcpos.

Lemma 1.1. If P is a bounded complete dcpo, then for any x ∈ P ,
the set ↓((↑x) ∩Max(P )) is Scott closed.

Proof. Let
D ⊆↓((↑x) ∩Max(P ))

be a directed set. For each d ∈ D, the subset {d, x} has an upper bound
in (↑x) ∩Max(P ); thus, d ∨ x exists. Then,

{d ∨ x : d ∈ D}

is a directed set, and clearly,∨
D ≤

∨
{d ∨ x : d ∈ D}.

The element
∨
{d∨x : d ∈ D} is below some maximal element v, which

is clearly in (↑x) ∩Max(P ). Thus,∨
{d ∨ x : d ∈ D} ∈ ↓((↑x) ∩Max(P )),

implying ∨
D ∈↓((↑x) ∩Max(P )).

Since ↓(↑x) ∩Max(P ) is clearly a lower set, it is Scott closed. �

For any element x in a dcpo P ,

↑x ∩Max(P ) = (↓((↑x) ∩Max(P ))) ∩Max(P ).

Thus, by Lemma 1.1, we deduce the following.

Corollary 1.2. For any element x in a bounded complete dcpo P ,
↑x ∩Max(P ) is a closed subset of Max(P ).
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Remark 1.3. By Zorn’s lemma, every element in a dcpo P is below
some maximal point. It thus follows that, in any dcpo P ,

↓(↑x) = ↓((↑x) ∩Max(P ))

holds for every x ∈ P . Therefore, for any x in a bounded complete
dcpo P , ↓(↑x) is a Scott closed subset of P .

Example 1.4. The set N of all positive integers equipped with the
co-finite topology τcof does not have a bounded complete dcpo model.
Here, U ∈ τcof if and only if either U = ∅ or N − U is a finite set.
In fact, suppose, on the contrary, that P is a bounded complete dcpo
model of (N, τcof). To simplify the argument, we assume N = Max(P ).
As N− {1} is not closed in (N, τcof), the set ↓ (N− {1}) is not a Scott
closed set of P (otherwise N − {1} =↓ (N − {1}) ∩ Max(P ) would be
closed). Hence, there is a directed set

D ⊆↓(N− {1})

such that
∨

D /∈↓ (N − {1}). It follows that
∨
D ≤ 1 and

∨
D ̸≤ 2.

Hence, there is a d ∈ D such that d ̸≤ 2. Then, by Corollary 1.2,
↑d ∩Max(P ) is a closed (and proper) subset of Max(P ) = N. By the
definition of τcof , ↑d ∩Max(P ) must be a finite set, say

↑d ∩Max(P ) = {u1, u2, . . . , un}.

Clearly, 1 ∈ {u1, u2, . . . , un} since
∨
D ≤ 1. Assume that u1 = 1 and

{u2, u3, . . . , un} ⊂ N− {1}.

Then,
D ⊆↓{u2, u3, . . . , un} ̸= ∅,

which implies that D ⊆↓um holds for some fixed m ≥ 2. However, this
implies ∨

D ∈↓um ⊆↓(N− {1}),

contradicting the assumption on D. This contradiction shows that
(N, τcof) does not have a bounded complete dcpo model.

Remark 1.5. It is well known that the co-finite topology τcof on a
set X is the coarsest T1 topology on X. If X is finite, then (X, τcof) is
a discrete space; hence, it has a bounded complete dcpo model. If X is
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an infinite set, then using a similar proof as for (N, τcof), it may also be
shown that (X, τcof) does not have a bounded complete dcpo model.

At this time, it remains unknown whether the set R of all real
numbers equipped with the co-countable topology has a bounded
complete dcpo model.

2. Spaces whose closed compact sets form a model. In this
section, we prove some positive results on spaces which have a bounded
complete dcpo model.

For any T1 space (X, τ), let CK(X) be the set of all nonempty closed
compact subsets of X.

The poset (CK(X),⊇) is directed complete: for any directed subset
D ⊆ CK(X), ∩

D =
∨

CK(X)

D.

The set of maximal points of CK(X) are the singleton sets:

Max(CK(X)) = {{x} : x ∈ X}.

It is then natural to ask when the dcpo CK(X) is a model of X, or
more specifically, when the following mapping is a homeomorphism:

ηX : X −→ Max(CK(X)), ηX(x) = {x}, x ∈ X.

Definition 2.1. A subset U of a topological space (X, τ) is called CK-
open if, for any filter base F ⊆ CK(X) with |

∩
F| = 1, that is,

∩
F is

a singleton, and
∩
F ⊆ U , then F ⊆ U for some F ∈ F .

Let τCK be the set of all CK-open sets of X. Obviously, ∅ and X are
CK-open. It is easy to verify that τCK is indeed a topology on X and
τ ⊆ τCK. For the reader’s convenience, we give here a brief explanation.

If U and V are CK-open and F ⊆ CK(X) is a filter base such that∩
F = {x} and x ∈ U ∩ V , then x ∈ U and x ∈ V ; thus, there are

F1, F2 ∈ F satisfying F1 ⊆ U,F2 ⊆ V . Choose F ∈ F such that
F ⊆ F1 ∩ F2. Then F ⊆ U ∩ V . Hence, U ∩ V is CK-open. It is more
straightforward to verify that the union of any collection of CK-open
sets of X is CK-open. Hence, τCK is a topology on X.
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Now, let U be a nonempty open set of (X, τ), i.e., U ∈ τ , and
F ⊆ CK(X) a filter base such that

∩
F = {x} and x ∈ U . Choose an

F0 ∈ F and consider

F0 = {F ∈ F : F ⊆ F0}.

Clearly,
∩
F0 =

∩
F = {x}. The set

F0 − U = F0 ∩ (X − U),

as a closed subset of the compact set F0, is compact. In addition,
{X − F : F ∈ F0} is an open cover of F0 − U , so there is an F ∈ F0

such that F0 − U ⊆ X − F (note that {X − F : F ∈ F0} is a directed
family of open sets). Thus,

F ∩ (F0 − U) ⊆ F ∩ (X − F ) = ∅.

Since F ⊆ F0, we have

F ∩ (F0 − U) = F − U = ∅,

implying F ⊆ U . Hence, every open set of (X, τ) is CK-open, that is,
τ ⊆ τCK.

Definition 2.2. A topological space (X, τ) is called CK-filter defined
if τCK = τ .

Example 2.3. Let X = R be the set of all real numbers and τ the
topology onX, where U ∈ τ if and only if U = V −A for some Euclidean
open set V and a countable set A. Then, CK(X) is the family of all
nonempty finite subsets of R. Thus, every subset is CK-open, so (X, τ)
is not CK-filter defined.

A space X is a k-space (or compactly generated space) if a subset U
of X is open if and only if for any compact set K, U ∩K is open in the
subspace K. Equivalently, a subset B is closed if and only if for any
compact set K, B ∩K is closed in the subspace K.

Theorem 2.4. Every Hausdorff k-space is CK-filter defined.

Proof. Let (X, τ) be a Hausdorff k-space, and let U be CK-open.
Let K be a compact subset of (X, τ). Assume that K ∩ (X −U) is not



148 ZHAO DONGSHENG AND XI XIAOYONG

closed in K. Then, it is not a closed set. Thus, there is a net

{xn : n ∈ D} ⊆ K ∩ (X − U)

that converges to an element x0 and x0 /∈ K ∩ (X−U). However, as K
is closed since it is a compact subset of a Hausdorff space, so x0 ∈ K.
It thus follows that x0 ∈ U . For each n ∈ D, let Fn = cl({xk : k ≥ n}).
Then, each Fn is a closed compact subset of (X, τ) since it is a
closed subset of the Hausdorff compact subspace K. Furthermore,
F = {Fn : n ∈ D} is a filter base, and clearly,

∩
F = {x0}. However,

there is no Fn contained in U . This contradiction shows that, for any
compact subset K of (X, τ), K ∩ (X − U) is closed in K; thus, K ∩ U
is open in K. Since (X, τ) is a k-space, it follows that U is open in
(X, τ). Therefore, τCK ⊆ τ , implying τ = τCK. �

Since every locally compact Hausdorff space is a k-space, we have
the following.

Corollary 2.5. Every Hausdorff locally compact space is CK-filter
defined.

A space X is called a sequential space if a subset A is closed
if and only if for any sequence {xi} in A, A contains all limits of
{xi}. Sequential spaces are precisely the quotient spaces of metric
spaces [5, 6]. Every sequential Hausdorff space is a k-space [3,
Theorem 3.3.20].

Corollary 2.6. Every Hausdorff sequential space is CK-filter defined.
In particular, every first countable Hausdorff space is CK-filter defined.

At this time, we still do not have an example of a CK-filter defined
Hausdorff space which is not a k-space.

We now show that, for any CK-filter defined space X, (CK(X), ⊇)
is a bounded complete dcpo model of X.

Lemma 2.7. For any Hausdorff space (X, τ),CK(X, τ) = CK(X, τCK).

Proof. First, note that every compact Hausdorff space is locally
compact, and thus, CK-filter defined. Also, in a Hausdorff space, every
compact set is closed.
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Since τCK is finer than τ , if A ∈ CK(X, τCK), then A is a compact
subset of (X, τ). However, (X, τ) is Hausdorff; thus, A is also closed in
(X, τ). Hence, A ∈ CK(X, τ).

Now, let
F ∈ CK(X, τ)

and
{Ui : i ∈ I} ⊆ τCK

be an open cover of F . Then,

F =
∪

{F ∩ Ui : i ∈ I}.

The subspace F of (X, τ) is compact Hausdorff; thus, it is CK-filter
defined. It is easily seen that each F ∩ Ui is a CK-open set of the
space F (if D ⊆ CK(F ) is a filter base such that

∩
D = {x} ⊆ F ∩ Ui,

then D ⊆ CK(X, τ) and
∩
D = {x} ⊆ Ui). Therefore, each F ∩ Ui is

an open set of F since F is CK-filter defined, that is,

F ∩ Ui = F ∩ Vi

for some Vi ∈ τ . Then,

F ⊆
∪

{Vi : i ∈ I}.

As F ∈ CK(X, τ) is compact, there exist i1, i2, . . . , in such that

F ⊆
∪

{Vik : k = 1, 2, . . . , n},

which then implies

F ⊆
∪

{Uik : k = 1, 2, . . . , n}.

Hence, F is a compact set of (X, τCK). In addition, as F is closed in
(X, τ) it is also closed in (X, τCK); thus, F ∈ CK(X, τCK).

In all, this shows that CK(X, τ) = CK(X, τCK). �

Corollary 2.8. For any Hausdorff space (X, τ), the space (X, τCK) is
Hausdorff and CK-filter defined.

Proof. That (X, τCK) is Hausdorff follows from the fact that τCK is
finer than τ .
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Let U be a CK-open set of (X, τCK). We must show that U ∈ τCK.
Let D ⊆ CK(X, τ) be a filter base such that∩

D = {x} ⊆ U.

Then, D ⊆ CK(X, τCK) by Lemma 2.7. As U is a CK-open set of
(X, τCK), there is a V ∈ D such that V ⊆ U . Hence, U ∈ τCK. �

A subset U of a topological space (X, τ) is called CK∗-open if, for
any filter base F ⊆ CK(X),∩

F ⊆ U =⇒ F ⊆ U for some F ∈ F .

Every open set of X is CK∗-open, and every CK∗-open set is CK-
open.

The intersection of two CK∗-open sets is clearly a CK∗-open set.
However, it seems impossible to show that, in general, the union of two
CK∗-open sets is CK∗-open. Thus, it is unlikely that all CK∗-open sets
form a topology if no further condition is imposed.

Lemma 2.9. A subset of a Hausdorff space is CK-open if and only if
it is CK∗-open.

Proof. Let (X, τ) be a Hausdorff space. We only need prove that
every CK-open set of X is CK∗-open.

Let U be a CK-open set of X and F ⊆ CK(X) a filter base such
that

∩
F ⊆ U . Without loss of generality, we can assume that there

is an F0 ∈ F such that F ⊆ F0 holds for all F ∈ F . The subspace F0

of X is Hausdorff and compact; therefore, it is CK-filter defined.

It is easy to verify that, if A is a closed set and U is a CK-open set,
then U ∩ A is a CK-open subset of the subspace A. Now, U ∩ F0 is a
CK-open set of the (Hausdorff compact) subspace F0; thus, it is open.
Therefore, it is a CK∗-open set of F0. Now,∩

F ⊆ U ∩ F0,

and each member of F is a closed compact subset of F0. Thus, there
is an F ∈ F with F ⊆ U ∩ F0 ⊆ U . In all, this shows that U is
CK∗-open. �
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Theorem 2.10. Let (X, τ) be a T1 topological space. Consider the
following statements:

(1) X is CK-filter defined.

(2) The mapping

ηX : X −→ Max(CK(X))

is a homeomorphism.

(3) Every CK∗-open set is an open set of X.

Then (1) ⇒ (2) ⇒ (3). If X is Hausdorff, then the above three
statements are equivalent.

Proof.

(1) ⇒ (2). Assume that (X, τ) is CK-filter defined. For any U ∈ τ ,
we claim that the following set is a Scott open set of the dcpo (CK(X),
⊇):

{A ∈ CK(X) : A ⊆ U}.

In order to see this, let E be a directed subset of CK(X) and∨
CK(X)

E =
∩

E ⊆ U.

Choose one A0 ∈ E , and let Ê = {B ∈ E : B ⊆ A0}. Then,
∩
Ê =

∩
E

⊆ U . Further, ∪
{Bc : B ∈ Ê} ⊇ U c ⊇ A0 ∩ U c;

thus, the directed family {Bc : B ∈ Ê} is an open cover of the compact

set A0 ∩ U c. There is a B ∈ Ê such that A0 ∩ U c ⊆ Bc, which
implies B ⊆ U ∪ Ac

0. However, B ⊆ A0; hence B ⊆ U . Since the
set {A ∈ CK(X) : A ⊆ U} is clearly an upper set of (CK(X),⊇), it is
thus a Scott open set of (CK(X),⊇). Furthermore,

ηX(U) = {{x} : x ∈ U} = {A ∈ CK(X) : A ⊆ U}
∩

Max(CK(X)),

which is an open set of Max(CK(X)). Thus, ηX is an open mapping.

Now, let U be a Scott open set in CK(X). We prove that η−1
X (U ∩

Max(CK(X))) is open in (X, τ). By assumption (1), we only need
verify that η−1

X (U ∩Max(CK(X))) is a CK-open set of (X, τ). Assume
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that F ⊆ CK(X) is a filter base such that∩
F = {x} ⊆ η−1

X

(
U
∩

Max(CK(X))
)
.

Then, F is a directed subset of CK(X) and∨
CK(X)

F = {x} = ηX(x) ∈ U

since x ∈ η−1
X (U

∩
Max(CK(X))). Since U is Scott open, there is a

F ∈ F with F ∈ U . Note that U is an upper set of (CK(X),⊇); thus,
for any y ∈ F , it holds that {y} ∈ U . Therefore,

ηX(F ) = {{y} : y ∈ F} ⊆ U ∩Max(CK(X)).

It follows that F ⊆ η−1
X (U ∩ Max(CK(X)), showing that η−1

X (U ∩
Max(CK(X)) is CK-open in (X, τ). Therefore, ηX is continuous. Since
ηX is also clearly bijective, it is a homeomorphism.

(2) ⇒ (3). Let U ⊆ X be a CK∗-open set. By the definition of

CK∗-open sets, it follows that the set Û = {A ∈ CK(X) : A ⊆ U} is a
Scott open set of (CK(X),⊇); thus,

η−1
X (Max(CK(X)) ∩ Û) = U

must be an open set of (X, τ). Thus, (3) is proved.

Now assume that (X, τ) is Hausdorff and every CK∗-open set is open
in (X, τ). From Lemma 2.9, every CK-open set of (X, τ) is CK∗-open,
so every CK-open set of (X, τ) is open, showing that X is CK-filter
defined. Hence, (3) implies (1); therefore, all three statements are
equivalent. �

Theorem 2.11. For any Hausdorff space (X, τ), Max(CK(X)) is
homeomorphic to (X, τCK).

Proof. We prove that the mapping

g : (X, τCK) −→ Max(CK(X))

is a homeomorphism, where g(x) = {x}, x ∈ X.

For any open set E of Max(CK(X)), there is a Scott open set Ê of

CK(X) such that E = {{y} : {y} ∈ Ê}. Then, g−1(E) = {y : {y} ∈ Ê}
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is a CK-open set of X. As a matter of fact, let F ⊆ CK(X) be a filter
base such that ∩

F = {y} ⊆ g−1(E).

Then, ∨
CK(X)

F ∈ Ê.

Thus, there is an F ∈ F ∩ Ê. Again, since Ê is an upper set of

(CK(X),⊇) we have that {y} ∈ Ê holds for any y ∈ F , which implies
g(F ) ⊆ E. Thus, F ⊆ g−1(E). Hence, g−1(E) is an open set of (X,
τCK); therefore, g is continuous.

Now, let U ∈ τCK. From Lemma 2.9, U is a CK∗-open set of X. We
can verify that

H = {A ∈ CK(X) : A ⊆ U}

is a Scott open set of CK(X) and

H ∩Max(CK(X)) = g(U).

Thus, g is also an open mapping, and therefore, a homeomorphism. �

Corollary 2.12.

(1) For any Hausdorff space X, Max(CK(X)) is CK-filter defined.

(2) A Hausdorff space X is CK-filter defined if and only if it is
homeomorphic to Max(CK(Y )) for some Hausdorff space Y .

By the implication of (1) ⇒ (2) in Theorem 2.10, we deduce the main
positive result in this paper on spaces that have a bounded complete
dcpo model.

Theorem 2.13. Every CK-filter defined T1 space has a bounded com-
plete dcpo model.

Corollary 2.14. Every Hausdorff k-space has a bounded complete dcpo
model.

Another possible bounded complete dcpo model of a space X formed
by some subsets is the set CKC(X) of all nonempty closed compact and
connected subsets of X. With respect to the reverse inclusion order,
CKC(X) is a bounded complete dcpo, and the maximal points are the
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singletons. For the real line R with the Euclidean topology, CKC(R)
is the set of all closed intervals and it is indeed a dcpo model of R (see
[7, Example V-6.3]).

The next theorem can be proved using a similar method as for locally
compact Hausdorff spaces.

Proposition 2.15. If X is a locally compact and locally connected T1

space, then (CKC(X),⊇) is a bounded complete dcpo model of X.

3. Conclusions and remarks for further work. In this paper,
we introduced and studied CK-filter defined spaces and used this to
characterize the Hausdorff spaces whose nonempty compact subsets
form a dcpo model. One of the main results is that every Hausdorff
k-space has a bounded complete dcpo model.

The following are some related problems and tasks for further study
on this topic.

(1) Example 1.1 shows that not every T1 space has a bounded
complete dcpo model. We do not know, at this moment, whether
assuming a stronger separation axiom will guarantee the existence of
such a dcpo model. In particular, we are interested in knowing whether
every Hausdorff space has a bounded complete dcpo model.

(2) From Theorem 2.4, if a space is a Hausdorff k-space, it is CK-
filter defined. We do not know whether the converse conclusion for
Hausdorff spaces are true. We conjecture it is not true.

(3) It is well known that the category of all Hausdorff k-spaces is
Cartesian closed. Now, the category of Hausdorff k-spaces is a sub-
category of Hausdorff CK-filtered spaces, and they seem very close to
each other. We wonder whether the category of all Hausdorff CK-filter
defined space also owns some closure properties. For example, one
problem is: is the product of two Hausdorff CK-filter defined spaces
CK-filter defined?

(4) In [9], Hofmann and Lawson introduced q-spaces and proved that
every Hausdorff k-space is a q-space. One of the characteristics of sober
q-spaces was given in terms of collections of quasicompact saturated
subsets of the space [9, Proposition 2.9]. It would be desirable to find
more links between CK-filter defined spaces and q-spaces.
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