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C∗-ALGEBRAS OF 2-GROUPOIDS

MASSOUD AMINI

ABSTRACT. We define topological 2-groupoids and study
locally compact 2-groupoids with 2-Haar systems. We con-
sider quasi-invariant measures on the sets of 1-arrows and
unit space and build the corresponding vertical and hori-
zontal modular functions. For a given 2-Haar system, we
construct the vertical and horizontal full C∗-algebras of a
2-groupoid and show that they are independent of the choice
of the 2-Haar system, up to strong Morita equivalence. We
make a correspondence between their bounded representa-
tions on Hilbert spaces and those of the 2-groupoid on
Hilbert bundles. We show that representations of certain
closed 2-subgroupoids are induced to representations of the
2-groupoid and use regular representation to build the ver-
tical and horizontal reduced C∗-algebras of the 2-groupoid.
We establish strong Morita equivalence between C∗-algebras
of the 2-groupoid of composable pairs and those of the 1-
arrows and unit space. We describe the reduced C∗-algebras
of r-discrete principal 2-groupoids and find their ideals and
masa’s.

1. Introduction. A Lie bialgebroid is a compatible dual pair (A,A∗)
of Lie algebroids [18], the basic example being the pair (TM,T ∗M)
of tangent and cotangent bundles of a Poisson manifold M . Poisson
groupoids are the infinitesimal objects associated to symplectic double
groupoids [17, 18, 26]. A double Lie groupoid is essentially a groupoid
object in the category of Lie groupoids [5, 18] and can be presented
by a square whose edges are Lie groupoids with certain compatibility
conditions (i.e., filling condition). Just as a Lie groupoid induces a sim-
plicial manifold, a double Lie groupoid induces a bisimplicial manifold
(called its nerve). After applying the Artin and Mazur bar construction
[9] to the nerve of a double Lie groupoid we get a simplicial manifold
which is a (weak) local Lie 2-groupoid in the sense of [29] and a Lie
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2-groupoid in the presence of the filling condition [19]. If G⇒M is
a Lie groupoid whose source map is a fibration, then the fundamental
groupoids of G and M form a double Lie groupoid and the fibration
assumption gives the filling condition. This is a Lie 2-groupoid. By
truncating this Lie 2-groupoid, one could recover the Haefliger funda-
mental groupoid [14] of G [19]. More generally, if (A,A∗) is a Lie
bialgebroid, there is a Courant algebroid structure on A⊕ A∗ [16]. It

has been suggested by S̆evera and Roytenberg that the global groupoid-
like object corresponding to a Courant algebroid, and in particular, the
double of a Poisson groupoid, is a symplectic 2-groupoid.

The 2-groupoids which appear in Poisson and symplectic geome-
try are usually Hausdorff. On the other hand, in noncommutative
geometry, certain quotient spaces are described by non-commutative
C∗-algebras. When the symmetry groups of such quotient spaces are
non-Hausdorff, it is more appropriate to describe such symmetry groups
and groupoids using crossed modules of groupoids [7]. One motivating
example is the gauge action on the irrational rotation algebra Aϑ, which
is the universal C∗-algebra generated by two unitaries U and V satisfy-
ing the commutation relation UV = λV U with λ : = exp(2πiϑ). Since
Aϑ is the crossed product C(T)oλZ, for the canonical action of Z on T
by n · z : =λn · z, it could be viewed as the noncommutative analog of
the non Hausdorff quotient space T/λZ. This latter group acts on itself
by translations, thus T/λZ is a symmetry group of Aϑ. More generally,
one may define actions of crossed modules on C∗-algebras similar to the
twisted actions in the sense of Green [12], and build crossed products
for such actions. The resulting crossed product is functorial: if two
actions are equivariantly Morita equivalent in a suitable sense, their
crossed products are Morita-Rieffel equivalent C∗-algebras [7].

Crossed modules of discrete groups are used in homotopy theory
to classify 2-connected spaces up to homotopy equivalence. They are
equivalent to strict 2-groups [3, 21]. The crossed modules of topolog-
ical groupoids in [7] are equivalent to strict topological 2–groupoids.
In [7], the authors basically discussed crossed modules of groups, but
also emphasized the importance of dealing with groupoids, such as ho-
lonomy groupoid of foliations or groupoid of germs of a pseudogroup
of transformations, which are only locally Hausdorff (see also [20]).
According to the principles of noncommutative geometry, such non
Hausdorff spaces of arrows should be viewed as the orbit space of
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another groupoid. This is exactly where the higher category theory
naturally comes in. Indeed one could write every locally Hausdorff
groupoid as the truncation of a Hausdorff topological weak 2–groupoid.
Also the crossed modules of groupoids correspond naturally to strict
2–groupoids. For a Hausdorff étale groupoid G and the interior H ⊆ G
of the set of loops (arrows with same source and target) in G, the quo-
tient G/H is a locally Hausdorff, étale groupoid, and the pair (G,H)
together with the embedding H → G and the conjugation action of G
on H is a crossed module of topological groupoids. The correspond-
ing C∗-algebra C∗(G,H) is the C∗-algebra of foliations in the sense of
Connes [10]. The C∗-algebra of general (non Hausdorff) groupoids are
studied in detail by Renault in [24].

In this paper we study the C∗-algebra of 2–groupoids. We follow the
footsteps of Renault in [24]. We study locally compact 2-groupoids and
show that the notion of similarity, studied by Ramsay for groupoids
[23], also applies to 2-groupoids and use it to show that 2-groupoids
are similar to groupoid bundles. In 2-groupoids, one has two sets of
units (objects and 1-arrows); thus, we should expect 2-Haar systems,
consisting of invariant families of (Borel) measures indexed by these
sets of units. We show that invariance of 2-Haar systems corresponds
to the vertical and horizontal products on the set of 2-arrows, and
construct explicit 2-Haar systems for some basic examples.

We consider quasi-invariant measures on 1-arrows and objects and
build the corresponding vertical and horizontal modular functions. For
a given 2-Haar system, we construct the vertical and horizontal full
C∗-algebras of a 2-groupoid and show that, moving from one 2-Haar
system to another, these C∗-algebras remain unchanged up to strong
Morita equivalence.

We show that there are two natural classes of vertical and hori-
zontal representations for a 2-groupoid on Hilbert bundles indexed by
1-arrows and objects, respectively, and make a correspondence between
these and vertically or horizontally bounded representations of the cor-
responding C∗-algebras on Hilbert spaces.

We show that the induction machinery of Mackey-Green-Rieffel
applies to induce representations of certain closed 2-subgroupoids to
representations of the 2-groupoid and use regular representation to
build the vertical and horizontal reduced C∗-algebras of a 2-groupoid.
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We show that C∗-algebras of the 2-groupoid of composable pairs
for vertical and horizontal products are Morita equivalent to the C∗-
algebras of 1-arrows and objects.

We study the reduced C∗-algebras of r-discrete principal 2-groupoids
in more detail and find their ideals and maximal abelian subalgebras.

2. Locally compact 2-groupoids. This section is devoted to the
notion of topological 2-groupoids. We adopt the algebraic setting of
2-groupoids, see for instance [21], to the topological framework of [24].

2.1. Strict 2-categories. We define a strict 2–category and describe
it as a category enriched over categories. We adopt the notation and
terminology of [8] (see also [3]). For two objects x and y of the first
order category, we have a category of morphisms from x to y, and the
composition of morphisms lifts to a bifunctor between these morphism
categories (compare to the pre-additive category, a category enriched
over abelian groups).

The arrows between objects

u : x −→ y

are called 1–morphisms. We write

x = d(u) and y = r(u).

The arrows between arrows

y x,

u

||

v

bb a
��

are called 2-morphisms (or bigons). Note that there are other ways to
describe 2-categories using triangles or other shapes as 2-morphisms [3].
We write

u = d(a), v = r(a),

and
x = d2(a), y = r2(a).

Note that the 2-morphism a is defined if d2(a) = dr(a) and r2(a) =
rd(a).
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The category structure on the space of arrows x→ y gives a vertical
composition of 2-morphisms,

y x

u

��
voo

w

[[
b��
a��

7−→ y x .

u

{{

w

cc a·vb
��

The vertical product a ·v b is defined if r(b) = d(a). The compo-
sition functor between the arrow categories gives a composition of
1-morphisms

z y
uoo x

voo 7−→ z x ,
uvoo

which is defined if r(v) = d(u), and a horizontal composition of
2-morphisms

z y

u1

||

v1

bb a
��

x

u2

||

v2

bb b
��

7−→ z x .

u1u2

{{

v1v2

cc a·hb
��

The horizontal product a ·h b is defined if r2(b) = d2(a). These three
compositions are assumed to be associative and unital, with the same
units for the vertical and horizontal products. The horizontal and
vertical products commute. Given a diagram:

z y

u1

��
v1oo

w1

\\
a1��

b1��
x ,

u2

��
v2oo

w2

]]
a2��

b2��

composing first vertically and then horizontally, or vice versa, produces
the same 2-morphism

u1u2 =⇒ v1v2.

We denote the inverse of a 1-morphism u by u−1 and vertical and
horizontal inverses of a 2-morphism a by a−v and a−h.

Categories form a strict 2-category with small categories as objects,
functors between categories as arrows, and natural transformations be-
tween functors as 2-morphisms. The composition of 1-morphisms is the
composition of functors and the vertical composition of 2-morphisms
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is the composition of natural transformations. The horizontal compo-
sition of 2-morphisms yields a canonical natural transformation. An-
other example of a strict 2-category has C∗-algebras as objects, non-
degenerate ∗-homomorphisms as 1-morphisms, and unitary intertwiners
between such ∗-homomorphisms as 2-morphisms [8].

Definition 2.1. A 2-groupoid is a strict 2-category in which all
1-morphisms and 2-morphisms are invertible (both for the vertical and
horizontal product).

This is also called a strict 2-groupoid by some authors [8]. In this
paper, all 2-groupoids are assumed to be small 2-categories, namely,
the classes of objects and morphisms are sets. A (strict) 2–group is a
strict 2-groupoid with a single object. Given a 2-groupoid G, its objects
G0 and 1-morphisms G1 form a groupoid, and so do the 1-morphisms
and 2-morphisms G2 with vertical composition. We usually write
G = (G2,G1,G0) and denote the subset of composable elements in
G1 × G1 by G(1) and the subsets of elements in G2 × G2 which are
vertically or horizontally composable by G(2v) or G(2h). We may use
horizontal products with unit 2-morphisms to produce any 2-morphism
from a 2-morphisms that starts at a unit 1-morphism:

y y

1y

zz

r(a)

dd a
��

x

u

zz

u

dd 1u
��

7−→ y x .

u

zz

r(a)u

ee a·h1u
��

The 2-morphisms starting at the identity 1-morphisms at the object x
form a group Gx with respect to horizontal composition, and the range
map is a homomorphism from the set of such 2-morphisms to the
isotropy group bundle

H =
⊔

x∈G0

Gx

of the groupoid (G0,G1). This map is onto when G is 2-transitive (i.e.,
for each u, v ∈ G1 there is a ∈ G2 with d(a) = u and r(a) = v).
Furthermore, the groupoid G acts on the group bundle H by horizontal
conjugation:
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x y

u

zz

u

dd 1g
��

y

1y

zz

r(a)

dd a
��

x

u−1

zz

u−1

dd 1u−1

��
7−→ x x ,

v

zz

ur(a)u−1

dd b
��

where b = 1u ·h a ·h 1u−1 . We may consider the map

r :
⊔

x∈G0

Gx −→
⊔

x∈G0

Gx
x

and regard (H,G1, r) as a crossed module of groupoids. Conversely,
for each crossed module (H,G1, r) where H is a bundle of groups, G1

is a groupoid and r : H → G1 is a groupoid homomorphism. There
is a unique 2-groupoid G, whose isotropic group bundle is isomorphic
to H, whose set of 1-morphisms is isomorphic to G1, and its range
map realizes (after identification) as r. For crossed modules and their
(strict) actions on C∗-algebras we refer the reader to [7].

As a concrete example, consider the map

rϑ : Z −→ T; n 7−→ e2πinϑ,

where ϑ ∈ R. Then T acts on Z by conjugation and the correspond-
ing crossed module is the symmetry of the rotation algebra Aϑ [7].
This gives a 2-groupoid with a single object, 1-morphisms T and
2-morphisms Z× T [8].

2.2. 2-Groupoids. Let G = (G2,G1,G0) be a 2-groupoid, then G is
called 1-principal if the map

(r, d) : G1 −→ G0 × G0

is one-to-one, 2-principal if the map

(r, d) : G2 −→ G1 × G1

is one-to-one, and principal if both are 1-principal and 2-principal. If
we replace one-to-one with onto, we get the notions of 1-transitive,
2-transitive, and transitive. Note that 2-transitivity here is different
from the property of each two nodes being connected by paths of
length 2.
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For each x ∈ G0 and u ∈ G1 we have the isotropy group

Gx
x = {u ∈ G1 : d(u) = r(u) = x}

and 2-isotropy groups

Gu
u = {a ∈ G2 : d(a) = r(a) = u}

and
Gu,x
u,x = {a ∈ G2 : d(a) = r(a) = u, d2(a) = r2(a) = x}

with respect to the vertical and horizontal multiplication. We also have
the isotropy groupoid G(x) = (G2(x),G1(x)) where

G2(x) = {a ∈ G2 : d2(a) = r2(a) = x}

and
G1(x) = {r(a) : a ∈ G2(x)}

with vertical multiplication. The sets Gx, Gy and Gy
x for x, y ∈ G0 and

Gu, Gv and Gv
u for u, v ∈ G1 are defined similarly. The equivalence

relations x ∼ y and u ∼ v are defined by Gy
x ̸= ∅ and Gv

u ̸= ∅,
respectively, with 1-orbits [x], 2-orbits [u] and orbit spaces G0\G1 and
G1\G2.

Example 2.2. We give three basic examples of 2-groupoids.

(i) (Transformation 2-group.) Let S be an additive group with
identity 0 acting from the right on a set U , and put

G1 = U × S and G0 = U × {o}.

Let T be a multiplicative group with identity 1 acting from the left on
S and acting trivially from the right on U . Put G2 = T × U × S and
identify U × S {1} × U × S. Assume that the left action of T on S is
distributive

t · (s+ s′) = t · s+ t · s′,

for s, s′ ∈ S and t ∈ T . Define r(u, s) = (u, 0) and d(u, s) = (u·s, 0) and
partial multiplication by (u, s) · (u · s, s′) = (u, s + s′) with (u, s)−1 =
(u · s,−s). Also define r(t, u, s) = (1, u, s) and d(t, u, s) = (1, u, t · s)
and vertical multiplication by

(t, u, t′ · s′) ·v (t′, u, s′) = (tt′, u, s′)
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with
(t, u, s)−v = (t−1, u, t · s)

and horizontal multiplication by

(t, u, s) ·h (t, u · s, s′) = (t, u, s+ s′)

with
(t, u, s)−h = (t, u · s,−s).

(ii) (Principal 2-groupoid.) Let X be a set and put G2 = X(5),
G1 = X(3), G0 = X. Define

r(x, y, z) = z and d(x, y, z) = x

and (x, y, z) · (z, u, v) = (x, y, v) with (x, y, z)−1 = (z, y, x). Define

r(x, y, z, u, v) = (x, u, v) and d(x, y, z, u, v) = (x, y, v)

and vertical multiplication by (x, y, z, u, v) ·v (x, u, s, t, v) = (x, y, z,
t, v) with (x, y, z, u, v)−v = (x, u, z, y, v) and horizontal multiplication
by (x, y, z, u, v) ·h (v, w, s, t, r) = (x, y, s, u, r) with (x, y, z, u, v)−h =
(v, u, z, y, x).

(iii) (Groupoid bundle.) If G = (G2,G1,G0) satisfies d(u) = r(u) for
each u ∈ G1 then

G =
⊔

x∈G0

G(x)

is a groupoid bundle.

For 2-groupoids G and H, a vertical morphism φ : G → H of
2-groupoids is a pair φ = (φ2, φ1) such that φ2(a ·v b) = φ2(a) ·v φ2(b)
and φ1(uv) = φ1(u)φ1(v), for a, b ∈ G2 and u, v ∈ G1, whenever both
sides are defined. Two vertical morphisms φ,ψ from G to H are called
similar if there are maps ϑ2 : G1 → H2 and ϑ1 : G0 → H1 such that

d(ϑ2(u)) = ϑ1(d(u)), r(ϑ2(u)) = ϑ1(r(u))

and

ϑ2 ◦ r(a) ·v φ2(a) = ψ2(a) ·v ϑ2 ◦ d(a), ϑ1 ◦ r(u)φ1(u) = ψ1(u)ϑ1 ◦ r(u)

for u ∈ G1 and a ∈ G2. We write φ ∼v ψ. We say that G and
H are v-similar if there are vertical morphisms φ : G → H and
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ψ : H → G such that φ ◦ ψ ∼v idH and ψ ◦ φ ∼v idG . The notions
of horizontal morphisms and h-similarity are defined similarly and the
latter is denoted by ∼h.

Definition 2.3. Let G = (G2,G1,G0) be a 2-groupoid and

E = (E1, E0) with E0 ⊆ G0

and
E1 ⊆ {u ∈ G1 : d(u), r(u) ∈ E0}.

The 2-groupoid GE = (E2, E1, E0), where E2 = {a ∈ G2 : d(a), r(a) ∈
E1}, is called the restriction of G to E . We say that E is full if E0 meets
each equivalence class in G0 and E1 meets each equivalence class in G1.

The next lemma is proved by Ramsay for groupoids [23, Theo-
rem 1.7].

Lemma 2.4. If E is full, then GE ∼v G.

Proof. Since E0 meets each equivalence class in G0, for each x ∈ G0

and y ∈ E0 there is ϑ1(x) ∈ G1 such that d(ϑ1(x)) = x, r(ϑ1(x)) = y,
and ϑ1(z)) = z for z ∈ E0. Consider the canonical injection φ1 : G1

E ↩→
G1 and define ψ1 : G1 ↩→ G1

E by ψ1(u) = ϑ1(r(u))uϑ1(d(u))−1. Also as
E1 meets each equivalence class in G1, for each u ∈ G1, v = ϑ1(r(u))
and w = ϑ1(d(u)), there is ϑ2(u) ∈ G2 such that d(ϑ2(u)) = w,
r(ϑ2(u)) = v, and ϑ2(e)) = e for e ∈ E1. Consider the canonical
injection φ2 : G2

E ↩→ G2 and define ψ2 : G2 ↩→ G2
E by ψ2(a) =

ϑ2(r(a)) ·v a ·v ϑ2(d(a))−v. Then it is straightforward to check that
φ = (φ2, φ1) and ψ = (ψ2, ψ1). We have φ ◦ ψ = ψ ∼v id = ψ ◦ φ. �

Corollary 2.5. Every 2-groupoid is v-similar to a groupoid bundle. A
2-groupoid is v-similar to a groupoid if and only if its set of objects
consists of only one equivalence class.

Proof. Let E0 contain one element from each equivalence class in G0

and Ex = (Gx
x , {x}) for x ∈ E0. Then
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G ∼v

⊔
x∈E0

GEx
,

and GEx is isomorphic to the isotropy groupoid G(x). �

2.3. Topological 2-groupoids and 2-Haar systems. In this sec-
tion, we define locally compact 2-groupoids and introduce the related
Borel measures. We associate to each locally compact 2-groupoid a pair
of (quasi-invariant) Borel measures on the objects and 1-morphisms,
two vertical and horizontal Haar systems and build the corresponding
modular functions. Throughout this section, we identify G0 with a sub-
set of G1 and G1 with a subset of G2 by identifying x ∈ G0 with 1x and
u ∈ G1 with 1u.

Definition 2.6. A topological 2-groupoid is a 2-groupoid G = (G2,G1,
G0) and a topology on G2, such that:

(i) The maps u 7→ u−1 and a 7→ a−v, a 7→ a−h are continuous on G1

and G2.
(ii) The maps (u, v) 7→ uv and (a, b) 7→ a ·v b, (a, b) 7→ a ·h b are

continuous on their domains.

Lemma 2.7. For any topological 2-groupoid, G = (G2,G1,G0),

(i) the maps u 7→ u−1 and a 7→ a−v, a 7→ a−h are homeomorphisms
on G1 and G2.

(ii) The source and range maps d, r are continuous on G1 and G2.
(iii) If G1 is Hausdorff, G0 ⊆ G1 is closed, and if G2 is Hausdorff,

G0 ⊆ G1, G1 ⊆ G2 and G0 ⊆ G2 are closed.
(iv) If G0 is Hausdorff, G(1) ⊆ G1×G1 is closed, and if G1 is Hausdorff,

G(2v) ⊆ G2 × G2 and G(2h) ⊆ G2 × G2 are closed.
(v) For the range equivalence a ∼r b defined by r(a) = r(b), the

orbit space G2/∼r is homeomorphic to G1. Similarly G1/∼r is
homeomorphic to G0.

Proof.

(i) These maps are their own inverses.

(ii) We have d(u) = u−1u, r(u) = uu−1 and d(a) = a−v ·v a,
r(a) = a ·v a−v.
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(iii), (iv). These follow from (ii) and uniqueness of limit in Hausdorff
spaces.

(v) The map [a] 7→ r(a) is a homeomorphism from G2/∼r onto G1.
It is the same for G1. �

Definition 2.8. A locally compact 2-groupoid is a topological 2-group-
oid G = (G2,G1,G0) such that G0 and G1 are Hausdorff Borel subsets
of G2 and every point of G2 has an open, relatively compact, Hausdorff
neighborhood.

For the rest of this paper, G is a locally compact 2-groupoid. We
put

Cc(G)={f :G2 → C :f is continuous and supp (f) ⊆ G2 is compact},

where supp (f) is the complement of the union of open Hausdorff
subsets of G2 on which f vanishes. By assumption, G2 is a union
of compact Hausdorff sets K, and the algebraic direct limit Cc(G) =
lim→ C(K) is endowed with an inductive limit topology.

Definition 2.9. Let G be a locally compact 2-groupoid. A continuous
left 2-Haar system on G consists of two families of positive Borel
measures {λuv}and {λxh}on G2, where u ranges over G1 and x ranges
over G0, such that

(i) supp (λuv) = Gu and supp (λxh) = Gx, for each u ∈ G1 and x ∈ G0.
(ii) For any f ∈ Cc(G), the map u 7→

∫
fdλuv is continuous on G1, and

the map x 7→
∫
fdλxh is continuous on G0.

(iii) For any f ∈ Cc(G),∫
f(a ·v b) dλd(a)v (b) =

∫
f(b)dλr(a)v (b)

and ∫
f(a ·h b) dλd

2(a)
h (b) =

∫
f(b)dλ

r2(a)
h (b).

Note that, identifying 1u, 1v ∈ G2 with u, v ∈ G1, it follows from the
first equality in (iii) that
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∫
f(uv) dλd(u)v (v) =

∫
f(v) dλr(u)v (v).

Proposition 2.10. If G has a continuous 2-Haar system, we have
continuous surjections

λv : Cc(G2) −→ Cc(G1); f 7−→ λv(f), λv(f)(u) =

∫
f dλuv ,

and

λh : Cc(G2) −→ Cc(G0); f 7−→ λh(f), λh(f)(x) =

∫
f dλxh.

Moreover, the maps r : G2 → G1, r : G1 → G0 and r2 : G2 → G0 are
open, and the associated equivalence relations on G1 and G0 are open.

Example 2.11. The 2-Haar systems of the above examples are as
follows:

(i) (Transformation 2-group.) Let S and T be locally compact groups
with Haar measures λS and λT acting continuously on a locally compact
Hausdorff space, U , as in Example 2.2 (i) and G2 = T × U × S. Then
the vertical and horizontal left Haar systems on G are given by:

λ(1,u,s)v = λT × δu × λ1,

λ
(1,u,0)
h = λ2 × δu × λS

(u ∈ U, s ∈ S),

where λ1 and λ2 are arbitrary Borel measures with full support on S
and T , respectively.

(ii) (Principal 2-groupoid.) Let X be a locally compact Hausdorff
space and G2 = X(5). Consider the homeomorphism

d : G(x,u,v) −→ X(2); (x, y, z, u, v) 7−→ (y, z).

Let α be any Borel measure on X(2) with full support such that, for
each f ∈ Cc(G), the map,

(x, u, v) 7−→
∫
f(x, y, z, u, v) dα(y, z),
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is continuous on X(3). Then∫
f dλ(x,u,v)v =

∫
f(x, y, z, u, v) dα(y, z)

defines a vertical left Haar system. The horizontal case is treated
similarly.

(iii) (Groupoid bundle.) Let

G =
⊔

x∈G0

G(x)

be a locally compact groupoid bundle. The 2-Haar system is essentially
unique (if it exists), that is, any two systems {λuv , λxh} and {σu

v , σ
x
h} are

related via λuv = h(u)σu
v and λxh = k(x)σx

h , where h ∈ C(G1)+ and
k ∈ C(G0)+.

Given a locally compact groupoid G which has (and all of its locally
compact subgroupoids have) a left Haar system, let S be the set of
all locally compact subgroupoids of G. Then S is a locally compact,
Hausdorff space in the Fell topology [11], and

G = {(H, x) : H ∈ S, x ∈ H} ⊆ S× G

is a groupoid bundle with G(x) = H, for x ∈ H. For the vertical
product,

(H, x) ·v (H, y) = (H, xy) (H, x)−v = (H, x−1)

(x ∈ H, (x, y) ∈ H(2)),

and left Haar system λH onH, λ
(H,u)
v = λH, u ∈ H(0), defines a vertical

left Haar system on G. Similarly, for the horizontal product,

(H, u) ·v (H, u) = (H, u) (H, u)−h = (H, u) (u ∈ H(0)),

λ
(H,u)
h = λH, u ∈ H(0), is a horizontal left Haar system on G.

Definition 2.12. A locally compact 2-groupoid G is called r-discrete
if G0 ⊆ G1 and G1 ⊆ G2 are open.

Lemma 2.13. If G is r-discrete, then:

(i) for each u ∈ G1 and x ∈ G0, Gu and Gx are open in G2;
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(ii) if a continuous 2-Haar system exists, it is essentially the system
of counting measures. In this case, d, r : G2 → G1, d, r : G1 → G0

and d2, r2 : G2 → G0 are local homeomorphisms.

Proof.

(i) If a ∈ Gu
v , then b 7→ a ·v b is a homeomorphism from Gv to Gu and

{v} = Gv ∩G1 is open in Gv; hence, {a} = {a ·v 1v} is open in Gu. The
same argument works for Gx.

(ii) Every point in Gu has a positive λuv measure and, replacing
λuv with αuλ

u
v , where αu = (λv(ξG1)(u))−1, we may assume that

λuv({u}) = 1. Therefore λuv({a}) = λvv({v}) = 1, for each a ∈ Gu
v .

Also, a compact neighborhood V of a meets Gu in finitely many points,

and we may assume that Gu ∩ V = {a}, that gives λ
r(a)
v (V ) = 1. By

continuity, we may assume that λuv(V ) = 1, for each u ∈ r(V ), that is,
r : V → G1 is injective. The same argument works for r2 using λxh. �

Definition 2.14. Let G be a locally compact 2-groupoid. A subset s
of G2 is called a G1-set if the restrictions of d and r to s are one-to-one.
This is equivalent to s ·v s−1 and s−1 ·v s being contained in G1. A
subset s of G2 is called a G0-set if the restrictions of d2 and r2 to s are
one-to-one, or equivalently, s ·h s−1 and s−1 ·h s are contained in G0.

In the above definition, the products are considered as products of
sets. Note that both G1-sets and G0-sets form an inverse semigroup and,
for each a ∈ G2 and G1-set s, if d(a) ∈ r(s) (respectively r(a) ∈ d(s))
then the set a ·v s (respectively s ·v a) is a singleton, and so defines an
element of G2 denoted again by a ·v s (respectively s ·v a). Also, there is
a map r(s) → d(s); u 7→ u ·s := d(u ·v s), satisfying u ·(s ·v t) = (u ·s) ·v t,
for G1-sets s, t. Similarly, for a ∈ G2 and G0-set s with d2(a) ∈ r2(s)
(respectively r2(a) ∈ d2(s)) the element a ·h s (respectively s ·v a) of G2

is defined, and the map r2(s) → d2(s); x 7→ x · s := d2(x ·h s), satisfies
x · (s ·h t) = (x · s) ·h t, for G0-sets s, t.

Proposition 2.15. For a locally compact 2-groupoid G, the following
are equivalent :

(i) G is r-discrete and has a continuous left 2-Haar system,
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(ii) the maps r : G2 → G1 and r2 : G2 → G0 are local homeomor-
phisms,

(iii) the product maps G(1) → G1, G(2v) → G1 and G(2h) → G0 are
local homeomorphisms,

(iv) G2 has an open basis consisting of open G1-sets and one consisting
of open G0-sets.

Proof.

(i) ⇒ (ii). Lemma 4.8 (ii).

(ii) ⇒ (iii). Given (a, b) ∈ G(2v), choose compact neighborhoods U
and V of a and b on which, respectively, r and d are homeomorphisms.
Then the vertical product is one-to-one on the compact neighborhood
U × V of (a, b). The product map on G(1) is just the restriction of the
vertical product. The argument for the horizontal product is similar.

(iii) ⇒ (iv). For an open neighborhood U of a ∈ G2, find open sets
V,W with a ∈ V ⊆ U and a−v ∈ W ⊆ U−v such that the vertical
product is one-to-one on V ×W . Then V ∩W−v is an open G1-set
inside U . The same argument works for G0-sets.

(iv) ⇒ (i). For u ∈ G1, choose an open G1-set s such that u ∈ r(s)
and s ·v s−v are open in G2. Let λuv be the counting measure on
Gu. Write any f ∈ Cc(G) as a finite sum of continuous functions
supported on open G1-sets, and observe that, for a continuous function
g supported on an open G1-set s,

λv(g)(u) = λuv(g) =
∑

a∈Gu∩s

g(a) = g(u ·v s);

thus, λv(g) is continuous. The same argument works for λh(g). �

3. C∗-algebras of 2-groupoids. This is the main section of the
paper. Here, we construct full and reduced C∗-algebras of a locally
compact 2-groupoid. Our construction follows [24] closely.

3.1. Quasi-invariant measures. Let G be a locally compact 2-group-
oid with continuous left 2-Haar system {λuv}and {λxh}, and let {λvu}
and {λhx} be the images of this system under the inverse maps a 7→ a−v

and a 7→ a−h. Then the latter is a continuous right 2-Haar system.
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Borel measures µ1 and µ0 on G1 and G0 induce measures

νv =

∫
λuvdµ

1(u), νh =

∫
λxhdµ

0(x)

with images

ν−1
v =

∫
λvudµ

1(u), ν−1
h =

∫
λhx dµ

0(x)

and induced measures

ν2v =

∫
λuv × λvudµ

1(u), ν2h =

∫
λxh × λhx dµ

0(x).

Definition 3.1. A Borel measure µ1 on G1 is called quasi-invariant
if νv ∼ ν−1

v . A Borel measure µ0 on G0 is called quasi-invariant if
νh ∼ ν−1

h .

By the uniqueness of the Radon-Nikodym derivative we have the
following result which defines vertical and horizontal modular functions.

We put νv0 = D
1/2
v νv and νh0 = D

1/2
h νh.

Proposition 3.2 (Modular functions). For quasi-invariant measure
µ1 on G1 there is a locally νv-integrable positive function Dv such that
νv = Dvν

−1
v and

(i) Dv(a ·v b) = Dv(a)Dv(b) (ν2v-almost everywhere), Dv(a
−v) =

Dv(a)
−1 (νv-almost everywhere),

(ii) if µ
′1 = g1µ1 where g1 is positive and locally µ1-integrable, then

D′
v = (g1 ◦ r)Dv(g

1 ◦ d)−1 satisfies ν′v = D′
vν

′−1
v .

Similarly, for quasi-invariant measure µ0 on G0, there is a locally
νv-integrable positive function Dh such that νh = Dhν

−1
h and relations

similar to (i) and (ii) above hold.

For locally compact topological spaces X and Y and surjective map
p : X → Y , a measure class C on X and (probability) measure µ ∈ C,
p∗C is the measure class of p∗µ := µ ◦ p−1. A pseudo-image of µ ∈ C
is a measure in p∗C. If (X,µ) and (Y, ν) are measure spaces and
s : X → Y ;x 7→ x · s is a bi-measurable bijection, then µ lifts to a
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measure µ · s on Y defined by∫
f(y) dµ · s(y) =

∫
f(x · s) dµ(x) (f ∈ Cc(Y ))

and, when µ · s ≪ ν, we denote the corresponding Radon-Nikodym
derivative by dµ · s/dν and say that s is non singular if it induces an
isomorphism of the corresponding measure algebras [24, page 29].

For quasi-invariant measures µ1 and µ0 subsets A1 ⊆ G1 and
A0 ⊆ G0 are called almost invariant if r(a) ∈ A1 is equivalent to
d(a) ∈ A1 (νv-almost everywhere) and r2(a) ∈ A0 is equivalent to
d2(a) ∈ A0 (νh-almost everywhere). The measures µ1 and µ0 are called
ergodic if every almost invariant set is null or co-null. For arbitrary
Borel measures µ1 and µ0 the pseudo-images [µ1] and [µ0] of νv and
νh under d and d2 are quasi-invariant and in the same measure class
as µ1 and µ0 if and only if µ1 and µ0 are quasi-invariant [24, 1.3.6]. If
αu
v and αx

h are pseudo-images of λuv and λxh, then the measure class of
αu
v and αx

h depends only on the orbits of u and x in G1 and G0, αu
v and

αx
h are ergodic, and every quasi-invariant pair carried by the orbits of
u and x are equivalent to αu

v and αx
h [24, 1.3.8].

Let µ1 be a Borel measure on G1 with induced measure νv, and let
s be a νv-measurable G1-set. The measure νv is called quasi-invariant
under s if the map a 7→ a ·v s−v is non singular from (d−1(d(s)), νv)
to (d−1(r(s)), νv). Let δv(·, s) = d(νv · s−v)/dνv be the corresponding
Radon-Nikodym derivative. The measure µ1 is called quasi-invariant
under s if the map u 7→ u · s−v is non singular from (d(s), µ1) to
(r(s), µ1) and ∆v(·, s) = d(µ1 · s−v)/dµ1 is the corresponding Radon-
Nikodym derivative. For a Borel measure µ0 on G0 the horizontal
functions δh and ∆h are defined similarly. An argument similar to [24,
1.3.19, 1.3.20] proves the following.

Lemma 3.3. Under the above quasi-invariance properties,

(i) δv(s(a), s) = δv(a, s), (νv-almost everywhere a ∈ d−1(r(s)),
(ii) δv(u, s) = Dv(u · s)∆v(u, s) (µ

1-almost everywhere u ∈ r(s)),

and the same for δh and ∆h.

A G1-set s is said to be Borel (continuous) if the restrictions of d and
r to s are Borel isomorphisms (homeomorphisms) onto a Borel (open)
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subset of G1. It is called non singular if there is a Borel (continuous)
positive function δv(·, s) on r(s), bounded above and below on compact
subsets of G1, such that δv(d(a), s) = d(λuv · s−v)/dλuv(a) for every
u ∈ G1 and λuv -almost everywhere a ∈ d−1(r(s)). A non singular Borel
G1-set s is also non singular with respect to the induced measure νv
of any Borel measure µ1 on G1 and δv(d(a), s) = d(νv · s−v)/dνv(a)
for νv–almost everywhere a ∈ d−1(r(s)). The set of non singular Borel
G1-sets also form an inverse semigroup,

δv(u, s ·v t) = δv(u, s)δv(u · s, t) (u ∈ r(s ·v t)),

and
δv(u, s

−v) = δv(u · s−v, s)−1 (u ∈ d(s)).

3.2. Full C∗-algebras. In this section, we study representation the-
ory of 2-groupoids and the corresponding C∗-algebras. Representation
theory of topological groupoids is well studied [22, 24] and is shown
to be much more involved than that of topological groups, but also
resembling some similarities [1, 2].

Let G be a locally compact 2-groupoid with a fixed continuous left
2-Haar system {λuv}and {λxh}, for f, g ∈ Cc(G) put

f∗vg(a) =
∫
f(a ·v b)g(b−v)dλd(a)v (b), f∗v (a) = f(a−v),

and

f∗hg(a) =
∫
f(a ·h b)g(b−h)dλ

d2(a)
h (b), f∗h(a) = f(a−h),

for each a ∈ G2.

Lemma 3.4. Cc(G) is a topological ∗-algebra with respect to both
vertical and horizontal convolutions and involutions, denoted by Ccv(G)
and Cch(G), respectively.

Proof. An argument like [24, 2.1.1] shows that the above operations
are well defined and continuous in the inductive limit topology and
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supp (f∗vg) = supp (f) ·v supp (g) and supp (f∗v ) = supp (f)−v. Also,

f∗v(g∗vh)(a) =
∫
f(a ·v b)(g∗vh)(b−v) dλd(a)v (b)

=

∫ ∫
f(a ·v b)g(b−v ·v c)h(c−v) dλr(b)v (c) dλd(a)v (b)

=

∫ ∫
f(a ·v c ·v b)g(b−v)h(c−v) dλd(c)v (b) dλd(a)v (c)

=

∫
(f∗vg)(a ·v c)h(c−v) dλd(a)v (c)

= (f∗vg)∗vh(a),

and f∗∗v = f , (f∗vg)∗v = f∗v∗vg∗v, for each a ∈ G2 and f, g, h ∈ Cc(G).
The same equalities hold for the horizontal operations. �

A representation of Ccv(G) on a Hilbert spaceH is a ∗-homomorphism
L : Ccv(G) → B(H) which is continuous in the inductive limit topology
on the domain and weak operator topology on the range. We have the
same definition for representations of Cch(G). In this section, we only
work with non-degenerate representations.

For f ∈ Ccv(G), put

∥f∥v,r = sup
u∈G1

∫
|f | dλuv , ∥f∥v,d = sup

u∈G1

∫
|f | dλvu

and ∥f∥v = max{∥f∥v,r, ∥f∥v,d}. This is a norm on Ccv(G) defining
a topology coarser than the inductive limit topology. We say that
a representation L is v-bounded if there is a constant M > 0 such
that ∥L(f)∥ ≤ M∥f∥v, for each f ∈ Ccv(G). We put ∥f∥v =
supL ∥L(f)∥, where the supremum is taken over all v-bounded non-
degenerate representations. This is a C∗-seminorm on Ccv(G) and
∥f∥v ≤ ∥f∥v, for each f ∈ Ccv(G). The norms ∥f∥h and ∥f∥h are
defined similarly on Cch(G) using h-bounded representations.

Definition 3.5. A vertical representation of G (abbreviated as v–repre-
sentation) consists of a quasi-invariant Borel measure µ1 on G1, a G1-
Hilbert bundle H over (G1, µ1), and a map π : G2 → Iso (H) such that:

(i) π(a) is a map from Hd(a) to Hd(a) and π(u) = idHu , for all a ∈ G2

and u ∈ G1,
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(ii) π(a ·v b) = π(a)π(b) for ν2v-almost everywhere (a, b),
(iii) π(a−v) = π(a)−1 for νv-almost everywhere a,
(iv) a 7→ ⟨π(a)ξ ◦d(a), η ◦ r(a)⟩ is measurable on G2 for all measurable

sections ξ and η.

Using Hilbert bundles over (G0, µ0), h-representations are defined sim-
ilarly.

Two v-representations (π1,H1, µ
1
1) and (π2,H2, µ

1
2) are equivalent if

µ1
1 ∼ µ1

2 and there is an isomorphism ϕ of Hilbert bundles from H1

onto H2 which intertwines π1 and π2, that is,

π2(a)ϕ ◦ d(a) = ϕ ◦ r(a)π1(a)
for νv-almost everywhere, a ∈ G2.

Let (π,H, µ1) be a v-representation and Γv(H) the Hilbert space of
square integrable sections with respect to µ1. The following lemma is
proved as in [24, 2.1.7].

Lemma 3.6. Let (π,H, µ1) be a v-representation of G, f ∈ Ccv(G) and
ξ, η ∈ Γv(H). Then

⟨π̃(f)ξ, η⟩ =
∫
f(a)⟨π(a)ξ ◦ d(a), η ◦ r(a)⟩ dνv0(a)

defines a v-bounded representation of Ccv(G) on Γv(H), and two equiva-
lent v-representations of G induce equivalent v-bounded representations
of Ccv(G) as above.

When dim(Hu) is constant, namely, there is a Hilbert space H with
Hu ≃ H, for all u ∈ G1,

π̃(f)ξ(u) =

∫
f(a)π(a)ξ ◦ d(a)D1/2

v (a) dλuv(a),

µ1-almost everywhere, for f ∈ Ccv(G) and ξ ∈ L2(G1, µ1,H). In
general, π̃ is a direct sum of representations on constant fields over
all possible dimensions. Similar statements hold for h-representations
(π,H, µ0) and the Hilbert space Γh(H) of square integrable sections with
respect to µ0.
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Consider the measurable field of Hilbert spaces L2(G2, λuv) with
square integrable sections

L2(G2, νv) =

∫ ⊕
L2(G2, λuv) dµ

1(u),

where µ1 is a quasi-invariant Borel measure on G1. Then

π(a) : L2(G2, λd(a)v ) −→ L2(G2, λr(a)v ); π(a)ξ(b) = ξ(a−v ·v b)

is a v-representation of G, and

a 7−→ ⟨π(a)ξ ◦ d(a), η ◦ r(a)⟩ =
∫
ξ(a−v ·v b)η(b) dλr(a)v (b)

is continuous for ξ, η ∈ Cc(G) and measurable for ξ, η ∈ L2(G2, νv).
This is called the v-left regular representation of G with respect to µ1.
Similarly, we could define the h-left regular representation of G with
respect to a quasi-invariant measure µ0 on G0.

Lemma 3.7. The topological algebra Ccv(G) has a left approximate
identity in the inductive limit topology. The same holds for Cch(G).

Proof. A subset A ⊆ G2 is d-relatively compact if A ∩ d−1(K) is
relatively compact for any compact subset K of G1. An argument
similar to [24, 2.1.9] shows that G1 has a fundamental system (Uα) of
d-relatively compact neighborhoods. Let U ⊇ Uα for each α and Kα be
compact subsets of G1 such that Kα ⊆ Kβ , for α ≤ β, and G1 = ∪αKα.
Choose gα ∈ Ccv(G) such that gα > 0 on Kα and supp (gα) ⊆ Uα and
hα ∈ Cc(G1)+ with

hα(u) =

(∫
gαdλ

u
v

)−1

, for u ∈ Kα.

Put fα = (hα ◦ r)gα ∈ Ccv(G). Then supp (fα) ⊆ Uα and λv(fα) = 1
on Kα. For f ∈ Ccv(G) with K = supp (f), for each α, supp (fα∗vf) ∪
supp (f) ⊆ U ·v K =: L, which is compact. Given ε > 0, there is an
α0 such that, for each α, G = (G2,G1,G0)α0, r(L) ⊆ Kα and, for each
(a, b) ∈ L× Uα ∩ G(2v), |f(b−v ·v a)− f(a)| < ε. Hence,

|fα∗vf(a)− f(a)| =
∣∣∣∣ ∫ fα(b)(f(b

−v ·v a)− f(a)) dλr(a)v (b)

∣∣∣∣ ≤ ε,

for a ∈ L. The argument for Cch(G) is similar. �
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The above lemma implies that v-left regular representations with
respect to all quasi-invariant measures on G1 induce a faithful family of
v-bounded representations of Ccv(G). Also, for each quasi-invariant
measure µ1 on G1, Ccv(G) is a generalized Hilbert algebra under
the inner product of L2(G2, ν−1

v ) whose left regular representation is
equivalent to the v-left regular representation with respect to µ1 [24,
2.1.10] and, by the Tomita-Takesaki theory, we have a modular function

Jv : L2(G2, ν−1
v ) −→ L2(G2, ν−1

v );

Jvξ(a) = D1/2
v (a)ξ(a−v)

and a modular operator

∆v : L2(G2, νv) ∩ L2(G2, ν−1
v ) −→ L2(G2, νv) ∩ L2(G2, ν−1

v );

∆vξ(a) = Dv(a)ξ(a).

The same observations hold for Cch(G).

Definition 3.8. The full vertical (respectively horizontal) C∗-algebra
of G is the completion of Ccv(G) (respectively Cch(G)) in ∥ · ∥v (respec-
tively ∥ · ∥v).

Lemma 3.9. Letting {L,H} be a representation of Ccv(G), there is a
unique representation {L1,H1} of Cc(G1) such that

L(hf) = L1(h)L(f),

L(fh) = L(f)L1(h)

(h ∈ Cc(G1), f ∈ Ccv(G))

where

hf(a) = h ◦ r(a)f(a), fh(a) = f(a)h ◦ d(a) (a ∈ G2).

Moreover, for f, g ∈ Ccv(G), h ∈ Cc(G1),

f∗vhg = fh∗vg, hf∗vg = h(f∗vg), (hf)∗v = f∗vh
∗,

where h∗(u) = h(u), for u ∈ G1. There is a representation {L0,H0} of
Cc(G0) with similar relations to the horizontal convolution.
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Proof. We have:

f∗vhg(a) =
∫
f(a∗vb)hg(b−v)dλd(a)v (b)

=

∫
f(a∗vb)h(d(a))g(b−v)dλd(a)v (b)

=

∫
f(a∗vb)h(d(a∗vb))g(b−v)dλd(a)v (b)

=

∫
fh(a∗vb)g(b−v)dλd(a)v (b)

= fh∗vg(a),

and the other convolution relations are proved similarly. Since Ccv(G)
has a left approximate identity, the map

L1(h)

( n∑
i=1

L(fi)ξi

)
=

n∑
i=1

L(hfi)ξi

is well defined and extends to a bounded representation of Cc(G1) on
the closure of span {L(f)ξ : f ∈ Ccv(G), ξ ∈ H}. A similar argument
works on G0 with

hf(a) = h ◦ r2(a)f(a), fh(a) = f(a)h ◦ d 2(a),

for h ∈ Cc(G0) and a ∈ G2. �

Corollary 3.10. C∗(G1) and C∗(G0) are subalgebras of the multiplier
algebras M(C∗

v(G)) and M(C∗
v(G)), respectively.

Similar to [24, 2.1.17], every representation of Cc(G) extends to a
representation of B(G) of bounded Borel functions on G2 with vertical
or horizontal convolution. For a non singular Borel G1-set s and

f ∈ B(G) we define s ·v f(a) = δ
1/2
v (r(a), s) for a ∈ r−1(r(s)), and

zero otherwise, and f ·v s(a) = δ
1/2
v (d(a), s−v) for a ∈ d−1(d(s)), and

zero otherwise. Then

(s ·v (t ·v f) = (st) ·v f,
(f ·v s)∗vg = f∗v(s ·v g),
(s ·v f)∗vg = s ·v (f∗vg)
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and

(f ·v s)∗ = s−v ·v f∗,

for non singular G1-sets s, t and f, g ∈ B(G). We denote B(G) with
vertical convolution by Bv(G). The same relations hold for Bh(G), that
is, B(G) with horizontal convolution. Lemma 6.6 also holds for Bv(G)
and Bh(G) and we could find a unique representation V 1 of the Borel
ample semigroup of non singular G1-sets such that

L(s ·v f) = V 1(s)L(f),

L(f ·v s) = L(f)V 1(s),

and
V 1(s)L1(h)V 1(s)∗ = L1(hs),

for the non singular G1-set s, f ∈ Bv(G) and h ∈ Cc(G1), where
hs(u) = h(us) for u ∈ r(s), and zero otherwise. The same holds
for representations L,L0 and a representation V 0 of the Borel ample
semigroup of non singular G0-sets [24, 2.1.20].

Theorem 3.11. If G is a locally compact second countable 2-groupoid
with left 2-Haar system {λuv}and {λxh}with sufficiently many non sin-
gular G1-sets (respectively G0-sets), then every v-bounded (respectively
h-bounded) representation of Ccv(G) (respectively Cch(G)) on a sepa-
rable Hilbert space is the integration of a v-representation (respectively
an h-representation) of G.

Proof. The assumption means that, for every measure µ1 on G1 (µ0

on G0) with induced measure νv (νh) every Borel set in G with positive
νv-measure (νh-measure) contains a non singular Borel G1-set (G0-set)
of positive µ1 ◦ r-measure (µ0 ◦ r2-measure). As is [24, 2.1.21], we
only need to check the result for factor representations. Let {L,H}
be a v-bounded factor representation of Ccv(G) with corresponding
representations L1 of Bv(G) and V 1 of the semigroup of non singular
G1-sets. There are a probability measure µ1 and a Hilbert bundle
(K,G1, µ1) such that L1 is unitarily equivalent to the multiplication
representation on Γv(K). We thus may assume that H = Γv(K) and
L1 is multiplication. An argument as in [24, 2.1.21] shows that µ1 is
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quasi-invariant and ergodic and

V 1(s)ξ(u) = ∆1/2
v (u ·v s, s)c(u, s)ξ(u ·v s)

for u ∈ r(s) and zero otherwise, where c(u, s) is defined for µ1–almost
everywhere u ∈ r(s) and is an isometry from Ku·vs onto Ku [13, page
82, Proposition 1]. Since we have sufficiently many non singular G1-
sets, the set of those u ∈ G1 for which dimKu is constant is almost
invariant (that is for νv-almost everywhere a, r(a) is in this set if and
only if d(a) is in it). This and ergodicity of µ1 let us further assume
that H = L2(G1, µ1,K) for some Hilbert space K. Since the measure
induced by the functional f 7→ ⟨L(f)ξ, η⟩ is absolutely continuous with
respect to νv0, there is a Borel function c on G2 such that

⟨L(f)ξ, η⟩ =
∫
fc dνv0 ,

for f ∈ Bv(G) and ξ, η ∈ K. An argument similar to [24, 2.1.21(e)]
shows that, when ξ, η are unit vectors, |c| ≤ 1 νv-almost everywhere;
hence,

|⟨L(f)ξ, η⟩| ≤
∫

|f | dνv0∥ξ∥∥η∥,

for f ∈ Ccv(G) and ξ, η ∈ K, and the result follows from [15, page 106,
Theorem 5.4]. The same argument works for h-representations. �

Corollary 3.12. When G is second countable with sufficiently many
non singular G1-sets (respectively G0-sets), every representation of
Ccv(G) (respectively Cch(G)) on a separable Hilbert space is v-bounded
(respectively h-bounded) and there is a one-to-one correspondence be-
tween G1-Hilbert bundles (respectively G0-Hilbert bundles) and separa-
ble Hermitian C∗

v(G)-modules (respectively C∗
v(G)-modules) preserving

intertwining operators.

Proof. The first statement is already proved and the second follows
from the fact that two v-representations (π1,H1, µ

1
1) and (π2,H2, µ

1
2)

giving unitarily equivalent integrated representations are equivalent.
�

3.3. Induced representations and reduced C∗-algebras. Let
G = (G2,G1,G0) be a locally compact 2-groupoid with left 2-Haar sys-
tem {λuv}and {λxh}, and letH = (H2,H1,H0) be a closed 2-subgroupoid,



C∗-ALGEBRAS OF 2-GROUPOIDS 719

that is, a 2-subgroupoid such that Hi ⊆ Gi is closed for i = 0, 1, 2, with
left 2-Haar system {σu

v} and {σx
h} such that G1 ⊆ H2 and G0 ⊆ H1.

For the equivalence relations a ∼v b if and only if d(a) = r(b) and
a ·v b ∈ H2 and a ∼h b if and only if d2(a) = r2(b) and a ·h b ∈ H2,
for a, b ∈ G2, the quotient space H\G is Hausdorff and locally compact
and the quotient map, G → H\G, is open. Also, there are continuous
open surjections from the quotient spaces to G1 and G0 induced by d
and d2, respectively (cf., [24, 2.2.1]).

Lemma 3.13. There are Bruhat approximate vertical and horizontal
cross-sections for G over H\G, that is, non negative continuous func-
tions bv, bh on G whose supports have compact intersections respectively
with H2 ·v K and H2 ·h K for each compact subset K of G2 such that∫

bv(c
−v ·v a) dσr(a)

v (c) = 1,

∫
bh(c

−h ·h a) dσr2(a)
h (c) = 1,

for each a ∈ G2.

Proof. This follows from [4, page 96, Lemma 1]. �

Consider equivalence relations on G(2v) and G(2h), (a1, b1) ∼v (a2, b2)
if and only if b1 = b2 and a1 ·v a−v

2 ∈ H2 and (a1, b1) ∼h (a2, b2) if and

only if b1 = b2 and a1 ·h a−h
2 ∈ H2, then the quotient spaces H\G(2v)

and H\G(2h) are locally compact 2-groupoids with a set of 1-morphisms

H\G1 and H\G0 with left 2-Haar systems {δȧ×λd(ȧ)v } and {δȧ×λd
2(ȧ)

h }
with a ranging respectively over H\G(2v) and H\G(2h) (cf., [24, 2.2.3]).
For φ ∈ Cc(H) and f ∈ Cc(G),

φ ·v f(a) =
∫
φ(c)f(c−v ·v a) dσr(a)

v (c),

f ·v φ(a) =
∫
f(a ·v c)φ(c−v) dσd(a)

v (c),

and

φ ·h f(a) =
∫
φ(c)f(c−h ·h a) dσr2(a)

h (c),

f ·h φ(a) =
∫
f(a ·h c)φ(c−h) dσ

d2(a)
h (c),
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for a ∈ G2. Also, for ϕ ∈ Cc(H\G(2v)), ψ ∈ Cc(H\G(2v)) and f ∈ Cc(G),

ϕ ·v f(a) =
∫
ϕ(ȧ−v, a ·v b)f(b−v) dλd(a)v (b),

f ·v ϕ(a) =
∫
f(b)ϕ(ḃ, b−v ·v a) dλr(a)v (b),

and

ψ ·h f(a) =
∫
ψ(ȧ−h, a ·h b)f(b−h) dλ

d2(a)
h (b),

f ·h ψ(a) =
∫
f(b)ψ(ḃ, b−h ·h a) dλr

2(a)
h (b),

for a ∈ G2. Then Xv := Ccv(G) is a bimodule over Bv := Cc,v(H)

and Ev := Cc,v(H\G(2v)) with commuting actions on opposite sides,
and the action of Ccv(H) as double centralizers on Ccv(G) extends
to an action on C∗

v(G), giving a ∗-homomorphism of Ccv(H) into the
multiplier algebra M(C∗

v(G)), and the same holds for Cch(G) (cf., [24,
2.2.4]).

Consider Xv as a left Ev-module and right Bv-module with the
following vector-valued inner products

⟨f, g⟩Bv(c) =

∫
f(a−v)g(a−v ·v c) dλr(c)v (a)

and

⟨f, g⟩Ev(ȧ, a
−v ·v b) =

∫
f(a−v ·v c)g(b ·v c)dσr(a)

v (c),

for c ∈ H2, a, b ∈ G2. Then

⟨f, gh⟩Bv = ⟨f, g⟩Bvh, ⟨ef, g⟩Bv = ⟨f, e∗g⟩Bv ,

and

⟨ef, g⟩Ev = e⟨f, g⟩Ev , ⟨f, gh⟩Ev = ⟨fh∗, g⟩Ev ,

for f, g ∈ Xv, h ∈ Bv and e ∈ Ev, and f1⟨g, f2⟩Bv = ⟨f1, g⟩Evf2, for
f1, f2, g ∈ Xv. The same holds for horizontal spaces and modules. An
argument similar to [24, 2.2.5] shows the following.
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Lemma 3.14. The linear span of {⟨f, g⟩Ev : f, g ∈ Xv} contains a left
approximate identity for Ev in the inductive limit topology and is dense
in Ev and C∗

v(H\G(2v))). Similarly, the linear span of {⟨f, g⟩Bv : f, g ∈
Xv} is dense in Bv and C∗

v(H). The same holds for Eh Bh.

Corollary 3.15. The C∗-algebras C∗
v(G(2v)) and C∗

v(G1) are strongly
Morita equivalent. Similarly, C∗

h(G(2h)) and C∗
v(G0) are strongly Morita

equivalent.

Proof. We have already checked that Xv has algebraic properties of
an Ev-Bv-imprimitivity bimodule. For H = G1, we have

⟨f, f⟩Bv(u) =

∫
f(a−v)f(a−v ·v r(a)) dλuv(a)

=

∫
|f(a−v)|2dλuv(a) ≥ 0

and

⟨f, f⟩Ev(ȧ, a
−v ·v b) =

∫
f(a−v ·v r(a))f(b ·v u) dσr(a)

v (u)

= |f(ḃ)|2σr(a)
v (u) = |f(ḃ)|2σr(a)

v (K) ≥ 0,

for a, b ∈ G2, where K is a compact subset of G1, and the norm
conditions

⟨fh, fh⟩Ev
≤ ∥h∥2⟨f, f⟩Ev

, ⟨ef, ef⟩Bv
≤ ∥e∥2⟨f, f⟩Bv

are satisfied for each f ∈ Ccv(G), h ∈ Ccv(G1) and e ∈ Ccv(G(2v)) [24,
2.2.7]. Similarly, Xh is an Eh-Bh-imprimitivity bimodule. �

Now by the Rieffel construction, each v-representation of C∗
v(G1)

induces a v-representation of C∗
v(G(2v)) and then restricts to a v-v-

representation of C∗
v(G) which acts on C∗

v(G(2v)) as double centralizers;
in other words, the restriction map Pv : Ccv(G) → Ccv(G1) is a
generalized conditional expectation in the sense of [25]. Similarly, we
have a generalized conditional expectation Ph : Cch(G) → Cch(G0).
More generally, if G is second countable andH is a closed 2-subgroupoid
such that both G and H have sufficiently many non singular Borel sets,
it follows from [24, Lemma 7.1, 2.2.9-10] that the restriction map from
Ccv(G) to Ccv(H) is a generalized conditional expectation, and the same
for Cch(G).
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For the representation of C∗
v(G1) given by multiplication on L2(G1,

µ1) the induced representation Indµ1 acts on L2(G1, νv
−1) by convo-

lution on the left, namely,

⟨Indµ1(f)ξ, η⟩ =
∫ ∫ ∫

f(a ·v b)ξ(b−v)η(a) dλuv(b)λv,u(a) dµ
1(u),

for f ∈ Ccv(G) and ξ, η ∈ L2(G1, νv
−1). When µ1 is quasi-invariant,

Indµ1 is just the left regular representation on µ1. In this case,
ker(Indµ1) consists of those f ∈ Ccv(G) that f = 0 on supp (νv

−1) [24,
1.1.11]. Since G1 has a faithful family of quasi-invariant measures [24,
1.3.9], Ccv(G) has a faithful family of v-bounded representations (con-
sisting of induced representations of such quasi-invariant measures). In
particular,

∥f∥vred := sup
µ1

∥Indµ1(f)∥

is a C∗-norm, where µ1 ranges over all quasi-invariant Borel measures
on G1, and ∥f∥vred ≤ ∥f∥v, for each f ∈ Ccv(G). Similarly,

∥f∥hred := sup
µ0

∥Indµ0(f)∥ ≤ ∥f∥h

is a C∗-norm, where µ0 ranges over all quasi-invariant Borel measures
on G0. The completions C∗

v,red(G) and C∗
h,red(G) of Ccv(G) and Cch(G)

with respect to these C∗-norms are called the vertical and horizontal
reduced C∗-algebras of G, which are quotients of the vertical and
horizontal full C∗-algebras C∗

v(G) and C∗
h(G) of G.

As we can see from the next example, the C∗-algebra of a 2-groupoid
may be independent (up to isomorphism) of the choice of the Haar
system (see also [6]). In general, one could only expect independence
up to Morita equivalence (see the Proposition 3.17).

Example 3.16 (Principal 2-groupoid). Consider the principal 2-group-
oid G = X(5) with the Haar system as in Example 2.11 (ii), coming
from a Borel measure α on X(2). When X is uncountable and α is
non atomic, then G has sufficiently many Borel G1-sets, and any v-
representation of G is a multiple of one-dimensional trivial representa-
tion (compare to [24, 2.2.12]); hence, for any such choice of α, C∗

v(G)
is isomorphic to the C∗-algebra of compact operators on a separable
Hilbert space.
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Proposition 3.17. If a second countable locally compact groupoid
G has two 2-Haar systems {λuv}, {λxh}and {σu

v} , {σx
h} , and it has

sufficiently many non singular Borel G1-sets (respectively G0-sets) with
respect to both systems, then the corresponding C∗-algebras C∗

v(G, λ)
and C∗

v(G, σ) (respectively C∗
h(G, λ) and C∗

h(G, σ)) are strongly Morita
equivalent.

Proof. We have G\G(2v) = G and Xv = Ccv(G, λ) is an Ev-Bv-
imprimitivity bimodule, for Ev = Ccv(G, λ) and Bv = Ccv(G, σ). The
same holds for Xv = Ccv(G, σ), Ev = Ccv(G, σ) and Bv = Ccv(G, λ).
The horizontal case is similar. �

3.4. r-Discrete principal 2-groupoids. In this section, we describe
the reduced C∗-algebras of r-discrete principal 2-groupoids and find
their ideals and masa’s.

Lemma 3.18. Let G be an r-discrete 2-groupoid with a 2-Haar system
and a ∈ G2. Let L = Indµ1 (respectively L = Indµ0) be the
representation of Ccv(G) (respectively Cch(G)) induced by the point
mass µ1 = δd(a) (respectively µ0 = δd2(a)). Then, for every f ∈ Ccv(G)
(respectively f ∈ Cch(G)),

f(a) = ⟨L(f)δu, δa⟩ = L(f)δu(a),

where u = d(a) (respectively u = x := d2(a)) and δu, δa are regarded as
unit vectors in L2(G, λvu) (respectively in L2(G, λhx)). In particular,
max{∥f∥∞, ∥f∥2} ≤ ∥f∥vred (respectively the same for ∥f∥hred), where
∥.∥2 is the norm in L2(G, λvu) (respectively in L2(G, λhx)).

Proof. We have

⟨L(f)δu, δa⟩ =
∑

r(c)=u

∑
d(b)=u

f(b ·v c)δu(c−v)δa(b) = f(a),

and the rest is proved similarly. �

Now the inclusion map jv : Ccv(G) → C0(G) extends to a norm
decreasing linear map jv : C∗

v,red(G) → C0(G). Let us observe that

the latter map is still injective. Consider the surjection p : Ccv(G) →
Cc(G1), for a quasi-invariant probability measure µ1 on G1, the induced
representation Indµ1 is the GNS-representation of µ1 ◦ p, namely,
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∫
p(f) dµ1 = ⟨Indµ1(f)ξ0, ξ0⟩

and

Indµ1(f)ξ0 = f∗vξ0 = jv(f)

where ξ0 ∈ L2(G, νv−1) is the characteristic function of G1, and jv is
now considered as the inclusion from Ccv(G) into L2(G, νv−1). Now
the above lemma shows that Indµ1(g)ξ0 = jv(g) remains valid for
g ∈ C∗

v,red(G) and if jv(g) = 0, then Indµ1(g) = 0 as ξ0 is a cyclic
vector, and this, being true for all quasi-invariant probability measures
µ1 on G1, implies that g = 0. Also, ∥g∥∞ ≤ ∥g∥vred, where on the
left hand side g is regarded as a continuous function on G. The same
observations hold for C∗

h,red(G).

A 2-groupoid G is called essentially v-principal (respectively h-princi-
pal) if, for every invariant closed subset F of G1 (respectively G0) the
set of u ∈ F (respectively x ∈ F ) whose isotropy group Gu

u (respectively
Gx
x) is a singleton, is dense in F . It is called essentially principal if, for

every invariant closed subset F of G0, the set of x ∈ F whose isotropy
groupoid G(x) is a singleton, is dense in F .

Lemma 3.19. Let G be an r-discrete essentially v-principal (respectively
h-principal) 2-groupoids with 2-Haar system and a ∈ G2. For any
quasi-invariant measure µ1 on G1 (respectively µ0 on G0) with sup-
port F , any v-representation (respectively h-representation) π on µ1

(respectively µ0), and any f ∈ Ccv(G) (respectively f ∈ Cch(G)) we
have supF f ≤ ∥π̃(f)∥.

Proof. We only need to deal with the case that, for each u ∈ F
(respectively x ∈ F ), Gu

u = {u} (respectively Gx
x = {x}). The proof

goes by choosing an appropriate sequence of square integrable sections
{ξn} of π such that ⟨π̃(f)ξn, ξn⟩ tends to f(u) (respectively f(x)) as in
[24, 2.4.4]. �

Let G be a locally compact groupoid with 2-Haar system. For an
invariant open subset U of G1 (respectively G0) let Icv(U) = {f ∈
Ccv(G) : f(u) = 0 (u /∈ GU )} (respectively Ich(U) = {f ∈ Cch(G) :
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f(x) = 0 (x /∈ GU )}) and Iv(U) (respectively Ih) be its closure. Let F
be the complement of U in G1 (respectively G0) then it follows from
[24, 2.4.5] that Iv(U) (respectively Ih) is isomorphic to C∗

v,red(GU )

(respectively C∗
h,red(GU )), and it is a closed ideal of C∗

v,red(G) (respec-
tively C∗

h,red(G)) whose quotient is isomorphic to C∗
v,red(GF ) (respec-

tively C∗
h,red(GF )). If µ

1 (respectively µ0) is a quasi-invariant measure

on G1 (respectively on G0) with support F , U is the complement of
F , then Iv(U) = ker(Indµ1) (respectively Ih = ker(Indµ0)). This
provides a one-to-one correspondence between invariant open subsets
of G1 (respectively G0) and a family of closed ideals of C∗

v,red(G) (re-

spectively C∗
h,red(G)). Both sets are a lattice with respect to inclu-

sion. When G is r-discrete and essentially v-principal (respectively
h-principal), the above correspondence is an order preserving bijec-
tion, namely all closed ideals of C∗

v,red(G) (respectively C∗
h,red(G)) are

of the form Iv(U) (respectively Ih) for some invariant open subset U
of G1 (respectively G0) and the correspondence U 7→ Iv(U) (respec-
tively Ih) preserves inclusion. Indeed, in this case, the surjection p
defined after Lemma 3.18 is a conditional expectation and (Indµ1 (re-
spectively (Indµ0) is the GNS-representation of µ1 ◦ p (respectively
µ0 ◦ p) and so ∥(Indµ1(f)∥ ≤ ∥π̃(f)∥ for f ∈ Ccv(G) (respectively
∥(Indµ0(f)∥ ≤ ∥π̃(f)∥ for f ∈ Cch(G)) hence ker(π̃) is equal to Iv(U)
(respectively Ih) where U is the complement of the support of µ1 (re-
spectively µ0).

Lemma 3.20. Let G be an r-discrete with 2-Haar system. An element
g of C∗

v,red(G) (respectively C∗
h,red(G)) commutes with each element of

C∗
v(G1) (respectively C∗

h(G0)) if and only if it vanishes off the isotropy
group bundle

⊔
u∈G1 Gu

u (respectively
⊔

x∈G0 Gx
x).

Proof. Since G1 is open, C∗
v(G1) could be considered as a subalgebra

of C∗
v,red(G) consisting of those elements vanishing off G1, and the result

follows. The horizontal case is proved similarly. �

Corollary 3.21. If G is an r-discrete with 2-Haar system, C∗
v(G1)

(respectively C∗
h(G0)) is a masa in C∗

v,red(G) (respectively C∗
h,red(G)) if

and only if G1 (respectively G0) is the interior of the isotropy group
bundle

⊔
u∈G1 Gu

u (respectively
⊔

x∈G0 Gx
x).
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A concrete example for which the necessary and sufficient condition
of the above corollary fails, is provided by the principal 2-groupoid
(Example 2.2 (ii)). In this case, G1 = {(x, u, x, u, v) : x, u, v ∈ X}
whereas the isotropy group bundle is equal to {(x, u, z, u, v) : x, z, u, v ∈
X}, and the above condition holds only when X is a singleton. In this
example, C∗

v(G1) is the algebra of compact operators which fails to
be abelian (unless G1 is a singleton). On the other extreme, for the
groupoid bundle G =

⊔
x∈G0 G(x) of Example 2.2 (iii), where each G(x)

is a bundle of abelian groups, the above condition always holds. In this
example,

C∗
v(G1) = c0-

⊕
u∈G1

C0(Ĝu
u),

where each Gu
u is an abelian group with Pontryagin dual Ĝu

u .

In the above corollary, if moreover G is essentially v-principal (re-
spectively h-principal), the restriction map p : C∗

v,red(G) → C∗
v(G1) (re-

spectively p : C∗
h,red(G) → C∗

h(G0)) is a faithful surjective conditional
expectation and there is a one-to-one correspondence between the am-
ple semigroup of compact open G1-sets (respectively G1-sets) and the
inverse semigroup of partial homeomorphisms of C∗

v(G1) (respectively
C∗

h(G0)) defined by conjugation with respect to the elements in the
normalizer of C∗

v(G1) (respectively C∗
h(G0)) in C∗

v,red(G) (respectively

C∗
h,red(G)) (cf., [24, 2.4.8]).
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