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ON A SOLUTION OF THE CAUCHY PROBLEM IN
THE WEIGHTED SPACES OF BEURLING

ULTRADISTRIBUTIONS

STEVAN PILIPOVIĆ, BOJAN PRANGOSKI AND DANIEL VELINOV

ABSTRACT. Results of Da Prato and Sinestrari [6]
on differential operators with non-dense domain but sat-
isfying the Hille-Yosida condition, are applied in the
setting of Beurling weighted spaces of ultradistributions

D′(s)
Lp ((0, T ) × U), where U is open and bounded set in Rd.

For this purpose, the new structural theorems were given

for D′(s)
Lp ((0, T ) × U). Then a class of the Cauchy problems

in the general setting of such spaces of ultradistributions is
analyzed.

0. Introduction. Da Prato and Sinestrari [6] have studied the
Cauchy problem

(0.1) u′(t) = Au(t) + f(t), u(0) = u0,

where A is a closed operator in a Banach space E with not necessarily
dense domain in E but satisfying the Hille-Yosida condition. Here,
u0 ∈ E and f is the E-valued continuous or Lp-function on [0, T ].
They have considered various classes of equations and types of solutions
illustrating their theory. Regularity properties of the solutions are
extended much later in [26].

Our aim in this paper is to extend the results of [6] for (0.1)
to weighted Schwartz spaces of distributions and Beurling space of
ultradistributions [9]–[11]. Since the weighted Schwartz space D′Lp

([28]) can be involved in this theory similarly to Beurling type spaces,
and the second ones are more delicate, we focus our investigation on
the Beurling case, more precisely to the space of ultradistributions

D′(s)Lp ((0, T ) × U)), U a bounded domain in Rd related to the Gevrey
sequence p!s, s > 1 (see [24] for U = Rd). In order to apply results
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of [6] in this abstract setting, we study the topological structure of
spaces Ds

Lp,h(U), p ∈ [1,∞] (with a special analysis for p = ∞),

the closures of D(s)(U) in such spaces, corresponding projective limits,
tensor products, their duals as well as a vector-valued version of such

spaces. As a special result, we note that D(s)
Lp (U) is nuclear for bounded

U . Also, we have that all spaces D(s)
Lp (U) are isomorphic to Ḃ(s)(U) for

bounded U . Both assertions do not hold for U = Rd. The main
results of the paper are related to the structure of quoted spaces.
Such preparatory results are needed for the formulation of the Cauchy
problem in this abstract setting and for the application of results in
[6].

In the second part of the paper we apply our results for the Cauchy
problem with the infinitesimal generators satisfying the Hile-Yosida
condition. In fact, we prove the following result.

Theorem 0.1. Let A : D(A) ⊆ E → E be a closed operator which

satisfies the Hille-Yosida condition and f ∈ D′(s)Lp (0, T ;E). Then the

equation u′ = Au+ f always has a solution u ∈ D′(s)Lp (0, T ;E).

In other words, we solve (0.1) in the space of Banach valued ultra-

distributions D′(s)Lp (0, T ;E), i.e.,

⟨u′(t), φ(t)⟩ = A⟨u(t), φ(t)⟩+ ⟨f(t), φ(t)⟩, ∀φ ∈ D(s)
Lq (0, T ),

where A : D(A) ⊆ E → E is closed operator which satisfies the Hille-
Yosida condition

∥(λ− ω)kR(λ : A)k∥ ≤ C, for λ > ω, k ∈ Z+.

Then, by using this result and the theory that we previously developed,
we prove the following theorem.

Theorem 0.2. Let U be a bounded domain in Rd with smooth bound-
ary, (i.e., C∞ boundary) and let A(x, ∂x) be a strongly elliptic operator

of order 2m on U . Then, for each f ∈ D′(s)Lp ((0, T )×U), there exists a

u ∈ D′(s)Lp ((0, T )× U) such that

u′t +A(x, ∂x)u = f in D′(s)Lp ((0, T )× U) .
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Theorem 0.2 is applicable to a variety of situations, among which
is the heat equation u′t − ∆xU = f in the ultradistribution space

D
′(s)
L1 ((0, T ) × U), for f ∈ D

′(s)
L1 ((0, T ) × U), and U is a bounded

domain that has a smooth boundary. In fact, one only needs to put
A(x, ∂x) = −∆x in Theorem 0.1, and observe that −∆x is a strongly
elliptic operator of order 2 on U (for the definition of the strongly
elliptic operator see Definition 5.1).

Let us point out that the quoted theorem can be treated by the
classical theory of C0 analytic semigroups but our goal was to use our
results with the Hile-Yosida condition and the results within the theory
of ultradistributions. In this sense, the denseness of the infinitesimal
generator (which holds) was not important in the presentation of

our existence result in D
′(s)
L1 ((0, T ) × U). Moreover, jointly with the

previous, our goal was to present the solvability of an important class
of equations which was not treated up until now within distribution
and ultradistribution spaces over a bounded domain.

For the background material, we mention [18, 20, 22, 23, 25]. The
abstract Cauchy problem in the distribution case was vastly studied.
It can be threaded by using local integrated semigroups. In fact, in
[19], by Theorems 2.1.3–2.1.5 and Propositions 1.2.3 and 1.2.4, the
operator A, which has a dense domain, is a generator of a local n-times
integrated semigroup, which is a solution to the Cauchy problem. In the
non dense case, Proposition 4.6 of [15] states the existence of a local
n-times integrated semigroup V (t) generated by A, which gives the
solution to the Cauchy problem. Moreover, we give references for other
approaches to the abstract Cauchy problem with non-densely defined
A through the convoluted, distribution or ultradistribution semigroups,
[1]–[5, 7, 13]–[17, 19, 21].

The paper is organized as follows.

The Banach space D(s)
Lp,h(U) and its dual D

′(s)
Lp,h(U) are explained in

Section 1.

Section 2 is devoted to the Beurling type test spaces D(s)
Lp (U) and

their corresponding duals.

In Section 3, we consider the vector-valued ultradistribution spaces

D′(s)Lp (U ;E) and D′(s)Lp,h(U ;E), where U is a bounded open subset of

Rd. The boundedness of U is important since it implies nuclearity
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of D(s)
Lp (U) and D

′(s)
Lp (U), which in turn will imply a very important

kernel theorem when E is equal to D′(s)Lp (U). In the end of this section

we are particularly interested in the spaces D′(s)Lp (U ;E) when E is
a Banach space. All the spaces that are defined and considered in
the first three sections are for the needs of the second part of the
paper where we investigate the existence of various type of solutions
of the Cauchy problem in spaces of Banach-valued Beurling weighted
ultradistributions.

We start Section 4 by defining the Banach space D̃′sLp,h(0, T ;E)
consisting of the sequences of Bochner Lp functions with certain growth
conditions. In this abstract setting, we define the Cauchy problem (0.1)
and recall from [6] two types of solutions of (0.1). Then, using the

proof in [6], we prove the existence of such solutions in D̃′sLp,h(0, T ;E)

and use this to prove existence of the solution of (0.1) in the space of

Banach-valued ultradistributions D′(s)Lp (0, T ;E).

We apply in Section 5 results of Section 4 for several important
instances of A and E considered by Da Prato and Sinestrari in [6], but
in our ultradistributional setting. The main part is the proof of the
theorem that we announced above by using the theory developed in
Sections 1–3.

0.1. Preliminaries. The sets of natural, integer, positive integer,
real and complex numbers are denoted by N, Z, Z+, R, C. We use
the symbols for x ∈ Rd: ⟨x⟩ = (1 + |x|2)1/2, Dα = Dα1

1 · · ·Dαd

d ,

D
αj

j = i−1∂αj/∂xαj , α = (α1, α2, . . . , αd) ∈ Nd.

Let s > 1 and U ⊆ Rd be an open set. Following Komatsu [9], for
a compact set K ⊆ U , define Es,h(K) as the Banach space (from now
on, abbreviated as (B)-space) of all φ ∈ C∞(U) which satisfy

sup
α∈Nd

sup
x∈K

|Dαφ(x)|
h|α|α!s

<∞

and Ds,h
K as the (B)-space of all φ ∈ C∞(Rd) with support in K, which

satisfy

sup
α∈Nd

sup
x∈K

|Dαφ(x)|
hαα!s

<∞.



ON A SOLUTION OF THE CAUCHY PROBLEM 1941

Define the spaces

E(s)(U) = lim←
K⊂⊂U

lim←
h→0

Es,h(K), E{s}(U) = lim←
K⊂⊂U

lim→
h→∞

Es,h(K),

D(s)
K = lim←

h→0

Ds,h
K , D(s)(U) = lim→

K⊂⊂U
D(s)

K ,

D{s}K = lim→
h→∞

Ds,h
K , D{s}(U) = lim→

K⊂⊂U
D{s}K .

The spaces of ultradistributions and ultradistributions with compact
support of Beurling and Roumieu type are defined as the strong duals
of D(s)(U) and E(s)(U), respectively, D{s}(U) and E{s}(U). For the
properties of these spaces we refer to [9, 10, 11].

It is said that
P (ξ) =

∑
α∈Nd

cαξ
α, ξ ∈ Rd,

is an ultrapolynomial of the class (s), respectively {s}, whenever the
coefficients cα satisfy the estimate |cα| ≤ CL|α|/α!s, α ∈ Nd for some
L > 0 and C > 0, respectively, for every L > 0 and some CL > 0.
The corresponding operator P (D) =

∑
α cαD

α is an ultradifferential
operator of the class (s), respectively {s}, and they act continuously
on E(s)(U) and D(s)(U), respectively E{s}(U) and D{s}(U), and the
corresponding spaces of ultradistributions.

1. Banach spaces of weighted ultradistributions.

1.1. Basic Banach spaces. Let U be an open subset of Rd and
1 ≤ p ≤ ∞. Let Ds

Lp,h(U) be the space of all φ ∈ C∞(U) such that the
norm ( ∑

α∈Nd

hp|α| ∥Dαφ∥pLp(U)

α!ps

)1/p

is finite (with the obvious meaning when p = ∞). One can simply
prove:

Lemma 1.1. Ds
Lp,h(U) is a (B)-space, when 1 ≤ p ≤ ∞.
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Let1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ be such that

1

p
+

1

q
= 1.

Let D(s)
Lp,h(U) denote the closure of D(s)(U) in Ds

Lp,h(U). Denote by

D′(s)Lp,h(U) the strong dual of D(s)
Lq,h(U). Then, D′(s)Lp,h(U) is continuously

injected in D′(s)(U), for 1 ≤ p ≤ ∞. We will denote by C0(U) the space
of all continuous functions f on U such that, for every ε > 0, there
exists K ⊂⊂ U such that |f(x)| < ε when x ∈ U\K. We leave the
proof of the next lemma to the reader.

Lemma 1.2. Let φ ∈ D(s)
L∞,h(U). Then, for every ε > 0, there exist

K ⊂⊂ U and k ∈ Z+ such that

sup
α∈Nd

sup
x∈U\K

h|α| |Dαφ(x)|
α!s

≤ ε and sup
|α|≥k

h|α| ∥Dαφ∥L∞(U)

α!s
≤ ε.

1.2. Duals of Banach spaces. The main goal in this subsection is

to give a representation of the elements of D′(s)Lp,h(U), 1 ≤ p ≤ ∞. In

order to do that, first we will construct a (B)-space which will contain

D(s)
Lp,h(U) as a closed subspace. It is worth to note that the main idea

of this construction is due to Komatsu [9].

For 1 ≤ p <∞, define

Yh,Lp =
{
(ψα)α∈Nd | ψα ∈ Lp(U), ∥(ψα)α∥Yh,Lp

=

( ∑
α∈Nd

hp|α| ∥ψα∥pLp(U)

α!ps

)1/p

<∞
}
.

Then one easily verifies that Yh,Lp is a (B)-space, with the norm
∥ · ∥Yh,Lp , for 1 ≤ p <∞. Let p = ∞. Define

Yh,L∞ =

{
(ψα)α∈Nd | ψα ∈ C0(U), lim

|α|→∞

h|α| ∥ψα∥L∞(U)

α!s
= 0

}
,

with the norm

∥(ψα)α∥Yh,L∞ = sup
α∈Nd

h|α|

α!s
∥ψα∥L∞(U).
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One easily verifies that it is a (B)-space.

Let Ũ be the disjoint union of countable number of copies of U , one
for each α ∈ Nd, i.e.,

Ũ =
⊔

α∈Nd

Uα,

where Uα = U . Equip Ũ with the disjoint union topology. Then Ũ is

a Hausdorff locally compact space. Moreover, every open set in Ũ is
σ-compact. For each 1 ≤ p <∞, one can define a Borel measure µp on

Ũ by

µp(E) =
∑
α

h|α|p

α!ps
|E ∩ Uα|,

for E a Borel subset of Ũ , where |E ∩ Uα| is the Lebesgue measure of
E ∩ Uα. It is obviously locally finite, σ-finite and µ(K) <∞ for every

compact subset K of Ũ . By the properties of Ũ described above, µp is
regular (both inner and outer regular). We obtained that µp is a Radon

measure. It follows that Yh,Lp is exactly Lp(Ũ , µp), for 1 ≤ p < ∞. In
particular, Yh,Lp is a reflexive (B)-space for 1 < p <∞.

For p = ∞, we will prove that Yh,L∞ is isomorphic to C0(Ũ). For

ψ ∈ C0(Ũ), denote by ψα the restriction of ψ to Uα. By the definition

of Ũ , K is a compact subset of Ũ if and only if K ∩ Uα ̸= ∅ for only
finitely many α ∈ Nd and for those α, K ∩ Uα is a compact subset of
Uα. Now, one easily verifies that ψα ∈ C0(U) and

lim
|α|→∞

∥ψα∥L∞(U) = 0.

Moreover, if ψα ∈ C0(U), α ∈ Nd, are such that

lim
|α|→∞

∥ψα∥L∞(U) = 0.

Then the function ψ on Ũ , defined by ψ(x) = ψα(x), when x ∈ Uα is

an element of C0(Ũ). We obtain that

C0(Ũ) =
{
(ψα)α∈Nd | ψα ∈ C0(U), ∀α ∈ Nd, lim

|α|→∞
∥ψα∥L∞(U) = 0

}
.

Observe that the mapping

(ψα)α∈Nd 7−→ (ψ̃α)α∈Nd ,
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where

ψ̃α =
h|α|

α!s
ψα,

is an isometry from Yh,L∞ onto C0(Ũ). For the purpose of the next
proposition we will denote by ι the inverse mapping of this isometry,

i.e., ι : C0(Ũ) → Yh,L∞ .

Note that D(s)
Lp,h(U) can be identified with a closed subspace of Yh,Lp

by the mapping φ 7→ ((−D)αφ)α∈Nd . This is obvious for 1 ≤ p < ∞
and, for p = ∞, it follows from Lemma 1.2. Since Yh,Lp is reflexive for

1 < p <∞, so is D(s)
Lp,h(U) as a closed subspace of a reflexive (B)-space.

Observe that spaces Lp(U), for 1 ≤ p ≤ ∞, respectively, (C0(U))′,

are continuously injected into D′(s)Lp,h(U), respectively, D′(s)L1,h(U). For

α ∈ Nd and F ∈ Lp(U), respectively, F ∈ (C0(U))′, we define

DαF ∈ D′(s)Lp,h(U), respectively, DαF ∈ D′(s)L1,h(U), by

⟨DαF,φ⟩ =
∫
U

F (x)(−D)αφ(x)dx, φ ∈ D(s)
Lq,h(U),

respectively

⟨DαF,φ⟩ =
∫
U

(−D)αφ(x)dF, φ ∈ D(s)
L∞,h(U).

It is easy to verify that DαF is a well-defined element of D′(s)Lp,h(U),

respectively, D′(s)L1,h(U), and in fact it is equal to its ultradistributional

derivative when we regard F as an element of D′(s)(U).

Proposition 1.3. Let 1 < p ≤ ∞. For every T ∈ D′(s)Lp,h(U), there

exist C > 0 and Fα ∈ Lp(U), α ∈ Nd, such that

(1.1)

( ∑
α∈Nd

α!ps

h|α|p
∥Fα∥pLp(U)

)1/p

≤ C and T =
∞∑
|α|=0

DαFα.

When p = 1, for every T ∈ D′(s)L1,h(U), there exist C > 0 and Radon
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measures Fα ∈ (C0(U))′, α ∈ Nd, such that

(1.2)
∑
α∈Nd

α!s

h|α|
∥Fα∥(C0(U))′ ≤ C and T =

∞∑
|α|=0

DαFα.

Moreover, if B is a bounded subset of D′(s)Lp,h(U), then there exists C > 0

independent of T ∈ B and, for each T ∈ B there exist Fα ∈ Lp(U),
α ∈ Nd, for 1 < p ≤ ∞, respectively, Fα ∈ (C0(U))′, α ∈ Nd, for p = 1,
such that (1.1), respectively, (1.2), holds.

If Fα ∈ Lp(U), α ∈ Nd, for 1 < p ≤ ∞, respectively, Fα ∈ (C0(U))′,
α ∈ Nd, for p = 1, are such that( ∑

α∈Nd

α!ps

h|α|p
∥Fα∥pLp(U)

)1/p

<∞,

for 1 < p ≤ ∞, respectively,∑
α∈Nd

α!s

h|α|
∥Fα∥(C0(U))′ <∞,

for p = 1, then the series

∞∑
|α|=0

DαFα

converges absolutely in D′(s)Lp,h(U), respectively, D′(s)L1,h(U).

Proof. Let Yh,Lq be as in the above discussion. Extend T by the
Hahn-Banach theorem to a continuous functional on Yh,Lq , and denote
it again by T , for 1 ≤ q ≤ ∞.

For q = ∞, T̃ = T ◦ ι is a functional on C0(Ũ). Then, for 1 < p ≤ ∞,

there exists g ∈ Lp(Ũ , µq) such that

T ((ψα)α∈Nd) =

∫
Ũ

(ψα)α∈Ndgdµq,

(ψα)α∈Nd ∈ Yh,Lq .



1946 S. PILIPOVIĆ, B. PRANGOSKI AND D. VELINOV

For p = 1, there exists g ∈ (C0(Ũ))′ such that

T̃ (ψ) =

∫
Ũ

ψ dg,

for ψ ∈ C0(Ũ). Hence, for (ψα)α∈Nd ∈ Yh,L∞ , we have

T ((ψα)α∈Nd) = T̃
(
(ψ̃α)α∈Nd

)
=

∫
Ũ

(ψ̃α)α∈Nd dg,

where

(ψ̃α)α = ι−1 ((ψα)α) =

(
h|α|

α!s
ψα

)
α

.

Put

Fα =
h|α|q

α!qs
g|Uα

, for 1 ≤ q <∞.

For q = ∞, put

Fα =
h|α|

α!s
g|Uα

.

Then Fα ∈ Lp(U), for 1 ≤ q < ∞, respectively, Fα ∈ (C0(U))′ for
q = ∞. Moreover, for 1 < q <∞,∑

α∈Nd

α!ps

h|α|p
∥Fα∥pLp(U) =

∑
α∈Nd

h|α|q

α!qs
∥∥g|Uα

∥∥p
Lp(U)

= ∥g∥p
Lp(Ũ,µq)

<∞.

Also, it is easy to verify that, for q = 1,

sup
α∈Nd

α!s

h|α|
∥Fα∥L∞(U) = ∥g∥L∞(Ũ,µ1)

<∞.

For q = ∞, we have∑
α∈Nd

α!s

h|α|
∥Fα∥(C0(U))′ =

∑
α∈Nd

∥∥g|Uα

∥∥
(C0(U))′

= ∥g∥(C0(Ũ))
′ <∞,

where in the second equality we used that ∥g|Uα
∥(C0(U))′ = |g|Uα

|(Uα) =
|g|(Uα) (we denote by |g| the total variation of the measure g and
similarly for g|Uα

). Moreover,

T ((ψ)α∈Nd) =
∑
α∈Nd

∫
U

ψα(x)Fα(x) dx,
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for 1 ≤ q <∞. For q = ∞, we have

T ((ψα)α∈Nd) =

∫
Ũ

(ψ̃α)α∈Nd dg =
∑
α∈Nd

α!s

h|α|

∫
U

ψ̃α dFα

=
∑
α∈Nd

∫
U

ψα dFα.

So, for 1 ≤ q <∞, if φ ∈ D(s)
Lq,h(U), we obtain

⟨T, φ⟩ =
∑
α∈Nd

∫
U

(−D)αφ(x)Fα(x) dx =
∑
α∈Nd

⟨DαFα, φ⟩.

Similarly, ⟨T, φ⟩ =
∑

α⟨DαFα, φ⟩ when q = ∞. Moreover, by these
calculations, it follows that, for 1 ≤ q <∞,

∑
α∈Nd

|⟨DαFα, φ⟩|

≤
( ∑

α∈Nd

α!ps

h|α|p
∥Fα∥pLp(U)

)1/p( ∑
α∈Nd

h|α|q ∥Dαφ∥qLq(U)

α!qs

)1/q

.

Hence, the partial sums of
∑

αD
αFα converge absolutely in D′(s)Lp,h(U),

when 1 < p ≤ ∞. When p = 1, the proof that the partial sums of∑
αD

αFα converge absolutely in D′(s)L1,h(U) is similar and we omit it.

If B is a bounded subset of D′(s)Lp,h(U), by the Hahn-Banach theorem,

it can be extended to a bounded set B1 in Y ′h,Lq , for 1 ≤ q < ∞,

respectively to a bounded set B1 in C0(Ũ) for q = ∞ (ι is an isometry).
Hence, there exists C > 0 independent of T ∈ B1 and, for each T ∈ B1,

there exists g ∈ Lp(Ũ , µq), for 1 < p ≤ ∞, respectively g ∈ (C0(Ũ))′,
for p = 1, such that ∥g∥Lp(Ũ) ≤ C, respectively, ∥g∥(C0(Ũ))′ ≤ C. If

we define Fα as above, one obtains (1.1), respectively (1.2), with the
desired uniform estimate independent of T ∈ B.

The last part of the proposition is easy, and we omit it. �
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2. Ultradistribution spaces.

2.1. Beurling type test spaces. For 1 ≤ p ≤ ∞, we define locally
convex spaces (from now on abbreviated as lcs)

B(s)
Lp (U) = lim←

h→∞
Ds

Lp,h(U).

Then B(s)
Lp (U) is an (F )-space. Denote byD(s)

Lp (U) the closure ofD(s)(U)

in B(s)
Lp (U) for 1 ≤ p <∞ and Ḃ(s)(U) the closure ofD(s)(U) in B(s)

L∞(U).
Hence, when U = Rd, these spaces coincide with the spaces

D(s)
Lp (Rd), for 1 ≤ p <∞,

respectively, Ḃ(s) defined in [24]. All of these spaces are (F )-spaces as
well as

XLp = lim←
h→∞

D(s)
Lp,h(U), 1 ≤ p ≤ ∞.

Lemma 2.1. Let XLp be as above and 1 ≤ p ≤ ∞.

(i) D(s)(U) is dense in XLp .

(ii) XLp is a closed subspace of B(s)
Lp (U), and the topology of XLp is the

same as the induced one from B(s)
Lp (U). Hence, XLp and D(s)

Lp (U),

for 1 ≤ p < ∞, respectively, XL∞ and Ḃ(s)(U) when p = ∞, are
isomorphic lcs.

Proof. Since D(s)(U) is dense in each D(s)
Lp,h(U), it follows that

D(s)(U) ⊆ XLp , and it is dense in XLp . The proof of (i) is complete.

To prove (ii), note that XLp ⊆ B(s)
Lp (U). Let φj , j ∈ N, be a

sequence in XLp which converges to φ ∈ B(s)
Lp (U) in the topology

of B(s)
Lp (U). Then φj converges to φ in Ds

Lp,h(U) for each h. But

φj ∈ D(s)
Lp,h(U), j ∈ N and D(s)

Lp,h(U) is a closed subspace of Ds
Lp,h(U)

with the same topology. It follows that φ ∈ D(s)
Lp,h(U), and φj converges

to φ in D(s)
Lp,h(U) for each h. Hence, φ ∈ XLp . Moreover, since the

inclusion XLp → B(s)
Lp (U) is obviously continuous and XLp , B(s)

Lp (U)
are (F )-spaces and the image of XLp under the inclusion is a closed

subspace of B(s)
Lp (U), by the open mapping theorem, it follows that
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XLp is isomorphic with its image under this inclusion (isomorphic as
lcs). �

By the above lemma, we obtain that D(s)
Lp (U) = lim ←

h→∞
D(s)

Lp,h(U),

for 1 ≤ p <∞ and

Ḃ(s)(U) = lim←
h→∞

D(s)
L∞,h(U), for p = ∞,

and the projective limits are reduced. For 1 < p ≤ ∞, denote by

D′(s)Lp (U) the strong dual of D(s)
Lq (U). Denote by D′(s)L1 (U) the strong

dual of Ḃ(s)(U). Since D(s)(U) is continuously and densely injected into

D(s)
Lq (U), for 1 ≤ q < ∞ and into Ḃ(s)(U), D′(s)Lp (U) are continuously

injected into D′(s)(U), for 1 ≤ p ≤ ∞. One easily verifies that

ultradifferential operators of class (s) act continuously on D(s)
Lp (U), for

1 ≤ p <∞ and on Ḃ(s)(U). Hence, they act continuously on D′(s)Lp (U),

for 1 ≤ p ≤ ∞. For 1 < p < ∞, since all D(s)
Lp,h(U) are reflexive (B)-

spaces, the inclusion D(s)
Lp,h2

(U) → D(s)
Lp,h1

(U), for h2 > h1, is a weakly

compact mapping; hence, D(s)
Lp (U) is an (FS∗)-space. In particular it

is reflexive.

From now on, we suppose that U is a bounded open set in Rd.

Proposition 2.2. Let 1 ≤ p <∞ and h1 > h. We have the continuous

inclusions D(s)
L∞,h1

(U) → D(s)
Lp,h(U) and D(s)

Lp,2sh(U) → D(s)
L∞,h(U). In

particular, the spaces D(s)
Lp (U), 1 ≤ p <∞ and Ḃ(s)(U) are isomorphic

among each other.

Proof. Let 1 ≤ p < ∞ and φ ∈ D(s)
Lp,h(U). It is obvious that, for

each α ∈ Nd, Dαφ ∈Wm,p
0 (U), for any m ∈ Z+. Hence, by the Sobolev

imbedding theorem, it follows that, for each α ∈ Nd, Dαφ extends to
a uniformly continuous function on U . Now, let φ ∈ Ds

L∞,h1
(U). Then( ∑

α∈Nd

hp|α| ∥Dαφ∥pLp(U)

α!ps

)1/p

≤ |U |1/p
( ∑

α∈Nd

hp|α|h
p|α|
1 ∥Dαφ∥pL∞(U)

h
p|α|
1 α!ps

)1/p
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≤ C|U |1/p sup
α∈Nd

h
|α|
1 ∥Dαφ∥L∞(U)

α!s
.

We obtain that the inclusion Ds
L∞,h1

(U) → Ds
Lp,h(U) is continuous.

Moreover, if φ ∈ D(s)
L∞,h1

(U), then there exist φj ∈ D(s)(U), j ∈ Z+,

such that φj → φ, as j → ∞, in Ds
L∞,h1

(U). But, then, φj → φ, as

j → ∞, in Ds
Lp,h(U). Hence, D(s)

L∞,h1
(U) is continuously injected into

D(s)
Lp,h(U). It follows that, for each φ ∈ D(s)

L∞,h1
(U), α ∈ Nd, Dαφ can be

extended to a uniformly continuous function on U . Let φ ∈ D(s)
Lp,2sh(U).

Fix m ∈ Z+, such that mp > d. Denote by C1 = max|α|≤m α!s/h|α|.
By the Sobolev imbedding theorem we have:

h|β|∥Dβφ∥L∞(U)

β!s
≤ C ′

h|β|

β!s

( ∑
|α|≤m

∥Dα+βφ∥pLp(U)

)1/p

≤ C ′
( ∑
|α|≤m

h(|α|+|β|)pα!ps

β!psα!psh|α|p
∥Dα+βφ∥pLp(U)

)1/p

≤ C ′C1

( ∑
|α|≤m

(2sh)(|α|+|β|)p

(α+ β)!ps
∥Dα+βφ∥pLp(U)

)1/p

≤ C ′C1

( ∑
γ∈Nd

(2sh)|γ|p

γ!ps
∥Dγφ∥pLp(U)

)1/p

.

We obtain thatD(s)
Lp,2sh(U) is continuously injected inDs

L∞,h(U). More-

over, if φj ∈ D(s)(U), j ∈ Z+, are such that φj → φ, when j → ∞,

in D(s)
Lp,2sh(U), then φj → φ, when j → ∞, in Ds

L∞,h(U). Hence,

D(s)
Lp,2sh(U) is continuously injected into D(s)

L∞,h(U). �

Proposition 2.2 implies that we no longer need to distinguish the

spaces D(s)
Lp (U) since they are all isomorphic to Ḃ(s)(U). Hence, their

duals are all isomorphic to D′(s)L1 (U).

Proposition 2.3. Let U be bounded, open subset of Rd.

(i) Let h > 0 be fixed. Every element φ of D(s)
Lp,h(U) for 1 ≤ p ≤ ∞

can be extended to a C∞ function on Rd with support in U .



ON A SOLUTION OF THE CAUCHY PROBLEM 1951

Moreover, D(s)
L∞,h(U) can be identified with a closed subspace of

Ds,h

U
;

(ii) Ḃ(s)(U) can be identified with a closed subspace of D(s)

U
;

(iii) Ḃ(s)(U) is a nuclear (FS)-space. Moreover, in the representation

Ḃ(s)(U) = lim←
h→∞

D(s)
L∞,h(U),

the linking inclusions in the projective limit

D(s)
L∞,h1

(U) → D(s)
L∞,h(U)

are compact for h1 > h.

Proof. To prove the first part of (i), note that, by Proposition 2.2,

D(s)
Lp,h(U) is continuously injected into D(s)

L∞,h/2s(U). Hence, it is

enough to prove it for D(s)
L∞,h(U). Let φ ∈ D(s)

L∞,h(U). Then there

exist φj ∈ D(s)(U), j ∈ Z+, such that φj → φ, as j → ∞ in D(s)
L∞,h(U).

So, for ε > 0, there exists j0 ∈ Z+ such that, for j, k ≥ j0 and j, k ∈ Z+,
we have

sup
α∈Nd

h|α| ∥Dαφk −Dαφj∥L∞(U)

α!s
≤ ε.

Since all φj , j ∈ Z+, have compact support in U and D(s)(U) ⊆ Ds,h

U
,

we obtain that

sup
α∈Nd

h|α| ∥Dαφk −Dαφj∥L∞(Rd)

α!s
≤ ε,

for all j, k ≥ j0, j, k ∈ Z+. Hence, φj is a Cauchy sequence in the

(B)-space Ds,h

U
so it must converge to an element ψ ∈ Ds,h

U
. Hence,

ψ(x) = φ(x), when x ∈ U and obviously ψ(x) = 0 when x ∈ Rd\U
(since all φj , j ∈ Z+, have compact support in U). This proves the
first part of (i).

To prove the second part, consider the mapping φ 7→ φ̃, D(s)
L∞,h(U) →

Ds,h

U
, where φ̃(x) = φ(x), when x ∈ U and φ̃(x) = 0, when x ∈ Rd\U .

By the above discussion, this is a well-defined mapping. Moreover,
one easily sees that it is an isometry, which completes the proof of (i).
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Observe that (ii) follows from (i) since

Ḃ(s)(U) = lim←
h→∞

D(s)
L∞,h(U) and D(s)

U
= lim←

h→∞
Ds,h

U
.

The first part of (iii) follows from (ii) since Ḃ(s)(U) is a closed subspace

of the nuclear (FS)-space D(s)

U
(Komatsu in [9] proves the nuclearity

of D(s)

U
when U is regular compact set, but the proof is valid for general

U ; the regularity of U is used by Komatsu [9] for the definition and
nuclearity of E(s)(U)). For the second part, by [9, Proposition 2.2],

the inclusion Ds,h1

U
→ Ds,h

U
is compact. Since D(s)

L∞,h1
(U), respectively

D(s)
L∞,h(U), is a closed subspace of Ds,h1

U
, respectively Ds,h

U
, we obtain

the compactness of the inclusion under consideration. �

2.2. Weighted Beurling spaces of ultradistributions.

Proposition 2.4. Let T ∈ D′(s)L1 (U). For every 1 ≤ p ≤ ∞, there exist

h,C > 0 and Fα ∈ C(U), α ∈ Nd, such that

(2.1)

( ∑
α∈Nd

α!ps

h|α|p
∥Fα∥pL∞(U)

)1/p

≤ C and T =
∑
α∈Nd

DαFα,

where the last series converges absolutely in D′(s)L1 (U). Moreover, if B is

a bounded subset of D′(s)L1 (U) and 1 ≤ p ≤ ∞, then there exist h,C > 0

independent of T ∈ B and, for each T ∈ B, there exist Fα ∈ C(U),
α ∈ Nd, such that (2.1) holds.

Conversely, for 1 ≤ p ≤ ∞, if Fα ∈ Lp(U), α ∈ Nd, are such that( ∑
α∈Nd

α!ps

h|α|p
∥Fα∥pLp

)1/p

<∞ for some h > 0,

then the series
∑∞
|α|=0D

αFα converges absolutely in D′(s)Lp,h(U), and

hence also in D′(s)L1 (U).

Proof. We will prove first the second part of the proposition. If
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Fα ∈ Lp(U), α ∈ Nd, are as above, the absolute convergence of

∞∑
|α|=0

DαFα in D′(s)Lp,h(U)

follows by Proposition 1.3 for 1 < p ≤ ∞ and can be easily verified for
p = 1. By Proposition 2.2, Ḃ(s)(U) is continuously and densely injected

into D(s)
Lq,h(U), where q is the conjugate of p, i.e., p−1 + q−1 = 1 (the

part about the denseness follows from the fact that D(s)(U) ⊆ Ḃ(s)(U)

is dense in D(s)
Lq,h(U)). Hence, D′(s)Lp,h(U) is continuously injected into

D′(s)L1 (U), and we obtain that

∞∑
|α|=0

DαFα

converges absolutely in D′(s)L1 (U).

To prove the first part, we fix 1 < p ≤ ∞ and let q to be the

conjugate of p. Since Ḃ(s)(U) = lim ←
h→∞

D(s)
L∞,h(U) and the projective

limit is reduced with compact linking mappings (cf., Proposition 2.3),

D′(s)L1 (U) = lim→
h→∞

D′(s)L1,h(U) as lcs,

where the inductive limit is injective with compact linking mappings.

If B is a bounded subset of D′(s)L1 (U), there exists h1 > 0 such that

B ⊆ D′(s)L1,h(U) and is bounded there. By Proposition 2.2, if we

take h = 2sh1, D(s)
Lq,h(U) is continuously injected into D(s)

L∞,h1
(U).

Obviously, D(s)
Lq,h(U) is dense in D(s)

L∞,h1
(U) (since D(s)(U) is). We

obtain that D′(s)L1,h1
(U) is continuously injected into D′(s)Lp,h(U). Hence,

B is a bounded subset of D′(s)Lp,h(U). Now, by Proposition 1.3, for each

T ∈ B, there exist F̃α ∈ Lp(U), α ∈ Nd, such that( ∑
α∈Nd

α!ps

hp|α|
∥F̃α∥pLp(U)

)1/p

≤ C ′ and T =
∑
α∈Nd

DαF̃α,

and the constant C ′ is the same for all T ∈ B. Let L(x) ∈ C(Rd) be a
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fundamental solution of ∆dL = δ (∆ is the Laplacian). Define

Gα(x) =

∫
U

L(x− y)F̃α(y) dy, α ∈ Nd.

Obviously, Gα ∈ C(U), α ∈ Nd and ∥Gα∥L∞(U) ≤ C1∥F̃α∥Lp(U), for all

α ∈ Nd. Hence, ( ∑
α∈Nd

α!ps

hp|α|
∥Gα∥pL∞(U)

)1/p

≤ C2

and C2 is independent of T ∈ B. Let ∆d =
∑

β cβD
β , and define

Fα =
∑
β≤α

cβGα−β , α ∈ Nd.

Then obviously Fα ∈ C(U) for all α ∈ Nd. Note that cβ ̸= 0 only for
finitely many β ∈ Nd. Put

C3 =
∑
β

β!s

h|β|
|cβ | .

Then( ∑
α∈Nd

α!ps

(2s+1h)|α|p
∥Fα∥pL∞(U)

)1/p

≤
( ∑

α∈Nd

1

2|α|p

( ∑
β≤α

(α− β)!sβ!s

h|α|−|β|h|β|
|cβ | ∥Gα−β∥L∞(U)

)p)1/p

≤ C2C3

( ∑
α∈Nd

1

2|α|p

)1/p

,

and the last is independent of T ∈ B. Now one easily obtains that
T =

∑
αD

αFα, which completes the first part of the proposition when
1 < p ≤ ∞. Note that the case p = 1 follows from this for any

h̃ > h. �

3. Vector-valued spaces of ultradistributions. Let now E be a

complete lcs. As we saw above, D′(s)L1 (U) and D′(s)Lp,h(U), 1 ≤ p ≤ ∞,

are continuously injected into D′(s)(U). Following Komatsu [11], (see
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also [16]) we define the spaces D′(s)L1 (U ;E) and D′(s)Lp,h(U ;E), 1 ≤
p ≤ ∞, of E-valued ultradistributions of type D′(s)L1 (U) and D′(s)Lp,h(U),
respectively, as

D′(s)L1 (U ;E) = D′(s)L1 (U)εE = Lϵ

((
D′(s)L1 (U)

)′
c
, E

)
,(3.1)

respectively

D′(s)Lp,h(U ;E) = D′(s)Lp,h(U)εE = Lϵ

((
D′(s)Lp,h(U)

)′
c
, E

)
.(3.2)

The subindex c stands for the topology of compact convex circled

convergence on the dual of D′(s)L1 (U), respectively D′(s)Lp,h(U), from the
duality⟨

D′(s)L1 (U),
(
D′(s)L1 (U)

)′⟩
, respectively

⟨
D′(s)Lp,h(U),

(
D′(s)Lp,h(U)

)′⟩
.

If we denote by ι, respectively ιp, the inclusion D′(s)L1 (U) → D′(s)(U),

respectively D′(s)Lp,h(U) → D′(s)(U), then D′(s)L1 (U ;E), respectively

D′(s)Lp,h(U ;E), is continuously injected into D′(s)(U ;E) = D′(s)(U)εE =

Lb(D(s)(U), E) by the mapping ι ε Id, respectively ιp ε Id (cf., [11]). In
[29], it is proved that when both spaces are complete, the same holds

for their ε tensor product. Hence, D′(s)L1 (U ;E) and D′(s)Lp,h(U ;E) are

complete. Since D′(s)L1 (U) and D′(s)Lp,h(U) are barrelled (the former is a

(DFS)-space as the strong dual of a (FS)-space, hence barrelled), every

bounded subset of (D′(s)L1 (U))′c or (D′(s)Lp,h(U))′c is equicontinuous (and

vice versa). Hence, the ϵ topology on the right hand sides of (3.1) and
(3.2) is the same as the topology of bounded convergence. Moreover,

since Ḃ(s)(U) is an (FS)-space and D′(s)L1 (U) is a (DFS)-space, they

are both Montel spaces. Hence, D′(s)L1 (U ;E) = Lb(Ḃ(s)(U), E). For 1 <

p < ∞, D′(s)Lp,h(U ;E) = Lb(D(s)
Lq,h(U)c, E), since D(s)

Lq,h(U) are reflexive,

where D(s)
Lq,h(U)c is the space D(s)

Lq,h(U) equipped with topology of com-

pact convex circled convergence from the duality ⟨D(s)
Lq,h(U),D′(s)Lp,h(U)⟩.

Since Ḃ(s)(U) is a nuclear (FS)-space (by Proposition 2.3) D′(s)L1 (U)
is a nuclear (DFS)-space, and hence it satisfies the weak approximation
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property by [27, Corollary 2, page 110] (for the definition of the
weak approximation property see [29]). Hence, [11, Proposition 1.4]

implies D′(s)L1 (U ;E) = D′(s)L1 (U)εE ∼= D′(s)L1 (U)⊗̂E where the π and the

ϵ topologies coincide on D′(s)L1 (U)⊗̂E since D′(s)L1 (U) is nuclear. We

stress that here the nuclearity of the space D
′(s)
L1 (U) is crucial for the

isomorphism D
′(s)
L1 (U)εE ∼= D

′(s)
L1 (U)⊗̂E,(cf., [11, Theorem 2.2, page

669]), a fact which is extensively used in the rest of the paper. The
following kernel theorem, which plays an essential role in the proof of

Theorem 5.4, also relies on the nuclearity of D
′(s)
L1 (U).

Theorem 3.1. Let U1 and U2 be bounded open sets in Rd1
x and Rd2

y ,
respectively. Then we have the following canonical isomorphisms of lcs:

(i) Ḃ(s)(U1)⊗̂Ḃ(s)(U2) ∼= Ḃ(s)(U1 × U2).

(ii) D′(s)L1 (U1)⊗̂D′(s)L1 (U2) ∼= D′(s)L1 (U1 × U2) ∼= D′(s)L1 (U1)εD′(s)L1 (U2) ∼=
Lb(Ḃ(s)(U1),D′(s)L1 (U2)) ∼= D′(s)L1 (U1;D′(s)L1 (U2)) ∼= D′(s)L1 (U2;D′(s)L1 (U1)).

Proof. First we prove (i). Since Ḃ(s)(U1) and Ḃ(s)(U2) are nuclear

(Proposition 2.3) the π and the ϵ topologies coincide on Ḃ(s)(U1) ⊗
Ḃ(s)(U2). Moreover, one easily verifies that Ḃ(s)(U1) ⊗ Ḃ(s)(U2) can

be regarded as a subspace of Ḃ(s)(U1 × U2) by identifying φ ⊗ ψ with
φ(x)ψ(y). Since D(s)(U1 × U2) is continuously and densely injected in

Ḃ(s)(U1×U2) and D(s)(U1)⊗D(s)(U2) is a dense subspace of D(s)(U1×
U2) (see [10, Theorem 2.1]) we obtain that D(s)(U1) ⊗ D(s)(U2),

and hence Ḃ(s)(U1) ⊗ Ḃ(s)(U2) is a dense subspace of Ḃ(s)(U1 × U2).

Observe that the bilinear mapping (φ,ψ) 7→ φ(x)ψ(y), Ḃ(s)(U1) ×
Ḃ(s)(U2) → Ḃ(s)(U1 × U2) is continuous (it is separately continuous,
and hence continuous, since all spaces under consideration are (F )-

spaces). We obtain that the π topology on Ḃ(s)(U1) ⊗ Ḃ(s)(U2) is

stronger than the induced one by Ḃ(s)(U1 × U2). Hence, to obtain

Ḃ(s)(U1)⊗̂Ḃ(s)(U2) ∼= Ḃ(s)(U1 × U2), it is enough to prove that the ϵ

topology on Ḃ(s)(U1) ⊗ Ḃ(s)(U2) is weaker than the induced one by

Ḃ(s)(U1 × U2). Let A′ and B′ be equicontinuous subsets of D′(s)L1 (U1)
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and D′(s)L1 (U2), respectively. Hence, there exist h,C > 0 such that

sup
T∈A′

|⟨T, φ⟩| ≤ C sup
x,α

h|α| |Dαφ(x)|
α!s

and

sup
S∈B′

|⟨S, ψ⟩| ≤ C sup
y,β

h|β|
∣∣Dβψ(y)

∣∣
β!s

.

Then, for χ ∈ Ḃ(s)(U1)⊗ Ḃ(s)(U2), T ∈ A′ and S ∈ B′, we have

|⟨T (x)⊗ S(y), χ(x, y)⟩| = |⟨T (x), ⟨S(y), χ(x, y)⟩⟩|

≤ C sup
x,α

h|α| |⟨S(y), Dα
xχ(x, y)⟩|

α!s

≤ C2 sup
x,y,α,β

h|α|+|β|
∣∣Dα

xD
β
yχ(x, y)

∣∣
α!sβ!s

≤ C2 sup
x,y,α,β

(2sh)|α|+|β|
∣∣Dα

xD
β
yχ(x, y)

∣∣
(α+ β)!s

.

Hence, we obtain that the ϵ topology is weaker than the topology
induced by Ḃ(s)(U1 × U2).

(ii) Since Ḃ(s)(U1) and Ḃ(s)(U2) are nuclear (FS)-spaces (by Propo-

sition 2.3), D′(s)L1 (U1) and D′(s)L1 (U2) are nuclear (DFS)-spaces. Hence,

the π and the ϵ topologies on the tensor product D′(s)L1 (U1)⊗D′(s)L1 (U2)

coincide and, by (i) (using the fact that D′(s)L1 (U1) and D′(s)L1 (U2) are
nuclear (DFS)-spaces), we have

D′(s)L1 (U1 × U2) ∼=
(
Ḃ(s)(U1)⊗̂Ḃ(s)(U2)

)′ ∼= D′(s)L1 (U1)⊗̂D′(s)L1 (U2).

Other isomorphisms in the assertion on U follow by the discussion
before the theorem. �

3.1. Banach-valued ultradistributions. Now let E be a (B)-space
and denote by Lp(U ;E), 1 ≤ p ≤ ∞, the Bochner Lp space. If
φ ∈ CL∞(U) (the space of bounded continuous functions on U) and
F ∈ L1(U ;E), then one easily verifies that φF ∈ L1(U ;E). We will
need the following lemma.
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Lemma 3.2. (variant of du Bois-Reymond lemma for Bochner integra-
ble functions). Let F ∈ L1(U ;E) be such that∫

U

F(x)φ(x) dx = 0

for all φ ∈ D(s)(U). Then F(x) = 0 almost everywhere.

Proof. Observe first that, for each e′ ∈ E′ and φ ∈ D(s)(U), we have∫
U

e′ ◦ F(x)φ(x) dx = e′
(∫

U

F(x)φ(x) dx

)
= 0.

Since D(s)(U) is dense in D(U), by the du Bois-Reymond lemma, it
follows that e′ ◦ F = 0 almost everywhere for each e′ ∈ E′. Since F is
strongly measurable, F(U) is a separable subset of E.

Let D be a countable dense subset of F(U). Denote by L the set
of all finite linear combinations of the elements of D with scalars from
Q+ iQ. Then L is countable. Denote by Ẽ the closure of L in E. Then

Ẽ is a separable (B)-space and F(U) ⊆ Ẽ. Thus, Ẽ′σ is separable (by
[27, Theorem 1.7, Chapter 4]; σ stands for the weak* topology). Let

Ṽ = {ẽ′1, ẽ′2, ẽ′3, . . .} be a countable dense subset of Ẽ′σ. Extend each
ẽ′j , j ∈ Z+, by the Hahn-Banach theorem to a continuous functional of
E, and denote this extension by e′j , j ∈ Z+. Arguments given above
imply that e′j ◦ F = 0 almost everywhere for each j ∈ Z+ and, in fact,
ẽ′j ◦ F = 0 almost everywhere, j ∈ Z+, since e

′
j is extension of ẽ′j and

F(U) ⊆ Ẽ. Hence, Pj = {x ∈ U | ẽ′j ◦ F(x) ̸= 0} is a set of measure 0
for each j ∈ Z+ and so is P =

∪
j Pj .

We will prove that F(x) = 0 for every x ∈ U\P . Assume that there

exists x0 ∈ U\P such that F(x0) ̸= 0. Then there exists ẽ′ ∈ Ẽ′ such

that ẽ′ ◦ F(x0) ̸= 0, i.e., |ẽ′ ◦ F(x0)| = c > 0. Then there exists ẽ′k ∈ Ṽ
such that |ẽ′ ◦ F(x0)− ẽ′k ◦ F(x0)| ≤ c/2. Since ẽ′k ◦ F(x0) = 0, by the
definition of P , we have

c = |ẽ′ ◦ F(x0)| ≤ |ẽ′ ◦ F(x0)− ẽ′k ◦ F(x0)|+ |ẽ′k ◦ F(x0)| ≤ c/2,

which is a contradiction. Hence, F(x) = 0 for all x ∈ U\P , and the
proof is complete. �
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Denote by δx the delta ultradistribution concentrated at x. For

α ∈ Nd and x ∈ U one easily verifies that Dαδx ∈ D′(s)L1,h(U) for any

h > 0 and, hence, by Proposition 2.2, Dαδx ∈ D′(s)Lp,h(U) for any h > 0
and 1 ≤ p ≤ ∞. For the next proposition, we need the following result.

Lemma 3.3. Let h > 0, α ∈ Nd and 1 ≤ p ≤ ∞. The set

Gα = {Dαδx | x ∈ U} ⊆ D′(s)Lp,h(U) is precompact in D′(s)Lp,h(U).

Proof. Let 0 < h1 < h/2s. By Proposition 2.2, we have the

continuous inclusion D(s)
Lq,h(U) → D(s)

L∞,h/2s(U). Proposition 2.3 implies

that the inclusion D(s)
L∞,h/2s(U) → D(s)

L∞,h1
(U) is compact. Hence,

we have the compact dense inclusion D(s)
Lq,h(U) → D(s)

L∞,h1
(U) (the

denseness follows from the fact that D(s)(U) ⊆ D(s)
Lq,h(U) is dense in

D(s)
L∞,h1

(U)). So, the dual mappingD′(s)L1,h1
(U) → D′(s)Lp,h(U) is a compact

inclusion. Observe that, for φ ∈ D(s)
L∞,h1

(U),

|⟨Dαδx, φ⟩| ≤
α!s

h
|α|
1

∥Dαφ∥D(s)
L∞,h1

(U)
,

for all x ∈ U . Hence, Gα is bounded in the (B)-space D′(s)L1,h1
(U), thus

precompact in D′(s)Lp,h(U). �

Proposition 3.4. Each F ∈ Lp(U ;E) can be regarded as an E-valued
ultradistribution by

F(φ) =

∫
U

F(x)φ(x) dx.

In this way, Lp(U ;E) is continuously injected into D′(s)L1 (U ;E) for

1 ≤ p ≤ ∞ and in D′(s)Lp,h(U ;E) for 1 < p <∞.

Proof. Let F ∈ Lp(U ;E). First, we will prove that Lp(U ;E) is
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continuously injected into D′(s)L1 (U ;E). If φ ∈ Ḃ(s)(U), then∥∥∥∥∫
U

F(x)φ(x) dx

∥∥∥∥
E

≤
∫
U

∥F(x)∥E |φ(x)| dx(3.3)

≤ ∥F∥Lp(U ;E)∥φ∥Lq(U).

Since U is bounded, ∥φ∥Lq(U) ≤ |U |1/q∥φ∥L∞(U). Hence,

F ∈ Lb

(
Ḃ(s)(U), E

)
= D′(s)L1 (U ;E)

and the mapping F 7→ F is continuous from Lp(U ;E) into D′(s)L1 (U ;E).

To prove that it is injective let F = 0, i.e.,∫
U

F(x)φ(x) dx = 0

for all φ ∈ Ḃ(s)(U). Since U is bounded, Lp(U ;E) ⊆ L1(U ;E). Now,
Lemma 3.2 implies that F = 0.

Next, we prove that Lp(U ;E) is continuously injected intoD′(s)Lp,h(U ;E)

for 1 < p < ∞. Consider the set G = {δx | x ∈ U} ⊆ D′(s)Lp,h(U). It is

precompact in D′(s)Lp,h(U) by Lemma 3.3. Fix F ∈ Lp(U ;E), and note

that (3.3) still holds when φ ∈ D(s)
Lq,h(U). Let V = {e ∈ E | ∥e∥E ≤ ε}

be a neighborhood of zero in E and

G̃ =
∥F∥Lp(U ;E)|U |1/q

ε
G.

Since G is precompact, so is G̃. But then, for φ ∈ G̃◦,

∥F∥Lp(U ;E)∥φ∥Lq(U) ≤ |U |1/q∥F∥Lp(U ;E) sup
x∈U

|⟨δx, φ⟩| ≤ ε.

Hence, F(φ) ∈ V for all φ ∈ G̃◦. We obtain that F ∈ L(D(s)
Lq,h(U)c, E)

since the topology of precompact convergence on D(s)
Lq,h(U) coincides

with the topology of compact convex circled convergence (D′(s)Lp,h(U) is

a (B)-space). The continuity of the mapping F 7→ F follows from (3.3)

since the bounded sets of D(s)
Lq,h(U) are the same for the initial topology

and the topology of compact convex circled convergence. The proof of
the injectivity is the same as above. �



ON A SOLUTION OF THE CAUCHY PROBLEM 1961

By Proposition 3.4, from now on we will use the same notation for

F ∈ Lp(U ;E) and its image in D′(s)L1 (U ;E), respectively D′(s)Lp,h(U ;E)
for 1 < p <∞.

For α ∈ Nd and F ∈ Lp(U ;E), 1 < p < ∞, define DαF ∈
D′(s)Lp,h(U ;E) by

DαF(φ) =

∫
U

F(x)(−D)αφ(x) dx, φ ∈ D(s)
Lq,h(U).

As in Proposition 3.4, one can prove that this is a well-defined element

of D′(s)Lp,h(U ;E). One only has to use the set Gα from Lemma 3.3

instead of G = {δx | x ∈ U}. Observe that DαF coincides with the
ultradistributional derivative of F when we regard F as an element of

D′(s)L1 (U ;E) or D′(s)(U ;E).

Theorem 3.5. Let 1 < p < ∞ and Fα ∈ Lp(U ;E), α ∈ Nd, be such
that, for some fixed h > 0,(∑

α

α!ps

h|α|p
∥Fα∥pLp

)1/p

<∞.

Then the partial sums
∑n
|α|=0D

αFα converge absolutely in D′(s)Lp (U ;E)

and D′(s)Lp,h(U ;E).

The partial sums converge absolutely in D′(s)L1 (U ;E) also in the cases
p = 1 and p = ∞.

Proof. Let 1 < p < ∞. To prove that the partial sums converge

absolutely in D′(s)Lp,h(U ;E) = Lb(D(s)
Lq,h(U)c, E), let B be a bounded

subset of D(s)
Lq,h(U)c. Since the bounded sets of D(s)

Lq,h(U) are the same
for the initial topology and the topology of compact convex circled

convergence we may assume that B is the closed unit ball in D(s)
Lq,h(U).

We obtain:
n∑
|α|=0

sup
φ∈B

∥∥∥∥ ∫
U

Fα(x)(−D)αφ(x) dx

∥∥∥∥
E

≤ sup
φ∈B

∞∑
|α|=0

∫
U

∥Fα(x)∥E |Dαφ(x)| dx
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≤ sup
φ∈B

∞∑
|α|=0

∥Fα∥Lp(U ;E)∥Dαφ∥Lq(U)

≤
( ∞∑
|α|=0

α!ps

h|α|p
∥Fα∥pLp(U ;E)

)1/p

· sup
φ∈B

( ∞∑
|α|=0

h|α|q

α!qs
∥Dαφ∥qLq(U)

)1/q

for any n ∈ Z+. Since D′(s)Lp,h(U ;E) is complete, it follows that

the partial sums converge absolutely in D′(s)Lp,h(U ;E) to an element of

D′(s)Lp,h(U ;E). The proof for D′(s)L1 (U ;E) is similar. �

Observe that each F ∈ C(U ;E) is in Lp(U ;E) for any 1 ≤ p ≤ ∞. To
see this, note that F is separately valued since it is continuous and U is
a subset of Rd. Moreover, it is easy to see that it is weakly measurable.
Hence, Pettis’s theorem implies that F is strongly measurable. Now
the claim follows since U is bounded ∥F(·)∥E is in Lp(U), for any
1 ≤ p ≤ ∞.

Theorem 3.6. Let f ∈ D′(s)L1 (U ;E) and 1 ≤ p ≤ ∞. Then there exists

h > 0 and Fα ∈ C(U ;E), α ∈ Nd, such that

(3.4)

(∑
α

α!ps

h|α|p
∥Fα∥pLp(U ;E)

)1/p

<∞

and

f =

∞∑
|α|=0

DαFα,

where the series converges absolutely in D′(s)L1 (U ;E).

Conversely, let Fα ∈ Lp(U ;E), α ∈ Nd, be such that (3.4) holds.

Then there exists f ∈ D′(s)L1 (U ;E) such that f =
∑∞
|α|=0D

αFα and the

series converges absolutely in D′(s)L1 (U ;E).

Proof. First, note that the second part of the theorem follows by
Theorem 3.5.
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To prove the first part, let f ∈ D′(s)L1 (U ;E) = Lb(Ḃ(s)(U), E). Since

Ḃ(s)(U) is nuclear (by Proposition 2.3) and E is a (B)-space, f is
nuclear. Hence, there exists a sequence ej , j ∈ N, in the closed unit ball

of E, an equicontinuous sequence fj , j ∈ N, of D′(s)L1 (U) and a complex
sequence λj , j ∈ N, such that

∑
j |λj | <∞, such that

f(φ) =

∞∑
j=0

λj⟨fj , φ⟩ej .

Since {fj |j ∈ N} is an equicontinuous subset of D′(s)L1 (U), it is bounded

and, by Proposition 2.4, there exist h,C > 0 and Fj,α ∈ C(U) such that

fj =
∞∑
|α|=0

DαFj,α

and

sup
j

( ∑
α∈Nd

α!ps

h|α|p
∥Fj,α∥pL∞(U)

)1/p

≤ C.

Define Fα(x) =
∑

j λjFj,α(x)ej . To prove that Fα ∈ C(U ;E), ob-

serve that, for each j ∈ N, λjFj,α(x)ej ∈ C(U ;E) and the series∑
j λjFj,α(x)ej converges absolutely in the (B)-space C(U ;E). Hence,

Fα ∈ C(U ;E). Moreover,

α!s

h|α|
∥Fα(x)∥E ≤

∞∑
j=0

|λj |
α!s

h|α|
∥Fj,α∥L∞(U)

≤ C
∞∑
j=0

|λj |, for all x ∈ U.

We obtain supα α!
s/h|α|∥Fα∥C(U ;E) < ∞. Since U is bounded,

(3.4) holds for any h1 > h. One easily verifies that the series∑
j,α λj⟨DαFj,α, φ⟩ej converges absolutely in E for each fixed φ ∈

Ḃ(s)(U). Hence, f(φ) =
∑∞
|α|=0D

αFα(φ), for each fixed φ ∈ Ḃ(s)(U).

By Theorem 3.5,
∑∞
|α|=0D

αFα converges absolutely in D′(s)L1 (U ;E);

hence, f =
∑∞
|α|=0D

αFα. �
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4. On the Cauchy problem in D̃′sLp,h(0, T ;E). In this section, E

is the (B)-space with the norm ∥·∥, and D(A) is the domain of a closed
linear operator A, endowed with the graph norm ∥u∥D(A) = ∥u∥+∥Au∥.
We use standard notation for the symbols R(λ : A), ρ(A). The
results obtained in previous sections will often be applied in the one-
dimensional case (i.e., d = 1) when a bounded open set U is equal
to the interval (0, T ). In this case, we will use the more descriptive

notations Lp(0, T ;E), Ds
Lp,h(0, T ), D

(s)
Lp,h(0, T ), Ḃ(s)(0, T ), D′(s)Lp,h(0, T ),

D′(s)L1 (0, T ), D′(s)Lp,h(0, T ;E) and D′(s)L1 (0, T ;E) for the spaces Lp(U ;E),

Ds
Lp,h(U), D(s)

Lp,h(U), Ḃ(s)(U), D′(s)Lp,h(U), D′(s)L1 (U), D′(s)Lp,h(U ;E) and

D′(s)L1 (U ;E), respectively. Note that, by Sobolev imbedding theorem,
every derivative of φ ∈ Ds

Lp,h(0, T ) can be extended to uniformly

continuous function on [0, T ]. As in [6], we define the E-valued Sobolev
space W 1,p(0, T ;E) as the space of all F : [0, T ] → E, such that

F(t) = F0 +

∫ t

0

F′(s) ds, t ∈ [0, T ],

for some F0 ∈ E and F′(t) ∈ Lp(0, T ;E), with the norm ∥F∥W 1,p(0,T :E) =
∥F∥Lp(0,T ;E) + ∥F′∥Lp(0,T ;E), 1 ≤ p < ∞. Observe that, if F ∈
W 1,p(0, T ;E), then F is a continuous function with values in E which is
almost everywhere differentiable and its derivative is equal to F′ almost
everywhere.

Let 1 ≤ p < ∞. Define D̃′s
Lp,h(0, T ;E) as a space of all sequences

f = (Fα)α, Fα ∈ Lp(0, T ;E), α ∈ N, such that

(4.1) ∥f∥D̃′s
Lp,h

(0,T ;E) =

(∑
α∈N

α!ps

hpα
∥Fα∥pLp(0,T ;E)

)1/p

<∞.

One easily verifies that it is a (B)-space with the norm (4.1). Each

f ∈ D̃′s
Lp,h(0, T ;E) generates an element of L(Ds

Lq,h(0, T ), E) by

⟨f , φ⟩ = f(φ) =
∑
α∈N

(−1)α
∫ T

0

Fα(t)φ
(α)(t) dt ∈ E.

Moreover, one easily verifies that the mapping f 7→ ⟨f , ·⟩, D̃′s
Lp,h(0, T ;E) →

Lb(Ds
Lq,h(0, T ), E) is continuous.
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Remark 4.1. It is worth noting that this mapping is not injective.
To see this, let ψ ∈ D(s)(0, T ), ψ ̸= 0. Take a nonzero element e of E
and define F(x) = ψ′(x)e and G(x) = ψ(x)e, x ∈ (0, T ). Obviously,

F,G ∈ Lp(0, T ;E), for any 1 ≤ p ≤ ∞. Define f ,g ∈ D̃′s
Lp,h(0, T ;E)

by f = (F, 0, 0, . . .) and g = (0,G, 0, . . .). Observe that, for φ ∈
Ds

Lq,h(0, T ),

⟨f , φ⟩ = e

∫ T

0

ψ′(x)φ(x) dx

= −e
∫ T

0

ψ(x)φ′(x) dx = ⟨g, φ⟩.

Hence, ⟨f , ·⟩ and ⟨g, ·⟩ are the same element of Lb(Ds
Lq,h(0, T ), E).

Note that Lp(0, T ;E) can be continuously imbedded in D̃′s
Lp,h(0, T ;E)

by F 7→ (F, 0, 0, . . .).

Let 1 ≤ p < ∞. We define D̃′s
W 1,p,h(0, T ;E) as the space of all

sequences f = (Fα)α, where Fα ∈W 1,p(0, T ;E) and

∥f∥D̃′s
W1,p,h

(0,T ;E) =

(∑
α∈N

α!ps

hpα

(
∥Fα∥pLp(0,T ;E) + ∥F′α∥

p
Lp(0,T ;E)

))1/p

<∞.

Equipped with the norm ∥ · ∥D̃′s
W1,p,h

(0,T ;E), it becomes a (B)-space.

D̃′s
W 1,p,h(0, T ;E) is continuously injected into D̃′s

Lp,h(0, T ;E). For

f = (Fα)α ∈ D̃′s
W 1,p,h(0, T ;E), f ′ = f̃ = (F̃α)α ∈ D̃′s

Lp,h(0, T ;E),

where F̃α = F′α is the classical derivative almost everywhere in (0, T ).

Moreover, the mapping f 7→ f ′, D̃′s
W 1,p,h(0, T ;E) → D̃′s

Lp,h(0, T ;E), is
continuous.

Our main assumption is that the Hille-Yosida condition holds for
the resolvent of the operator A:

(4.2) ∥(λ− ω)kR(λ : A)k∥ ≤ C, for λ > ω, k ∈ Z+.

From now on, we will always denote these constants by ω and C.
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4.1. Various types of solutions. We need the following technical
lemma.

Lemma 4.2. Let 1 ≤ p < ∞ and g = (Gα)α ∈ D̃′s
Lp,h(0, T ;D(A)).

Then, for every φ ∈ Ds
Lq (0, T ), ⟨g, φ⟩ ∈ D(A) and

A
∞∑

α=0

(−1)α
∫ T

0

Gα(t)φ
(α)(t) dt =

∞∑
α=0

(−1)α
∫ T

0

AGα(t)φ
(α)(t) dt.

Proof. First observe that, for each α ∈ N, Gαφ
(α) ∈ L1(0, T ;D(A))

and AGαφ
(α) ∈ L1(0, T ;E) since Gα(t) ∈ Lp(0, T ;D(A)) and φ ∈

Ds
Lq (0, T ). Then

(4.3) A

∫ T

0

Gα(t)φ
(α)(t) dt =

∫ T

0

AGα(t)φ
(α)(t) dt.

Moreover, observe that

∞∑
α=0

∥∥∥∥∫ T

0

Gα(t)φ
(α)(t) dt

∥∥∥∥
D(A)

≤ ∥(Gα)α∥D̃′s
Lp,h

(0,T ;D(A)) ∥φ∥Ds
Lq (0,T ).

We obtain that
∞∑

α=0

(−1)α
∫ T

0

Gα(t)φ
(α)(t) dt

converges absolutely in D(A), i.e., ⟨g, φ⟩ ∈ D(A). Hence,

A

∞∑
α=0

(−1)α
∫ T

0

Gα(t)φ
(α)(t) dt =

∞∑
α=0

(−1)αA

∫ T

0

Gα(t)φ
(α)(t) dt,

which, together with (4.3), completes the proof of the lemma. �

Let u0,α ∈ E, α ∈ N, be such that

(4.4)

( ∞∑
α=0

α!ps

hpα
∥u0,α∥pE

)1/p

<∞.

Then the constant functions Ũα(t) = u0,α, t ∈ [0, T ], are such that

Ũα ∈ Lp(0, T ;E) and (4.1) holds. Hence, (Ũα)α ∈ D̃′sLp,h(0, T ;E).
In the sequel, if u0,α, α ∈ N, are such elements, we will denote
the corresponding constant functions simply by u0,α and the element
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(u0,α)α of D̃′sLp,h(0, T ;E) that they generate by u0. We also use the

notation ∥u0∥D̃′s
Lp,h

(0,T ;E) for the norm of this element of D̃′sLp,h(0, T ;E).

We recall from [6] the definition of two types of solutions of the
Cauchy problem (0.1) (here they are restated to fit in our setting). We
also define a weak version of them. Let A : D(A) ⊆ E → E be a closed

linear operator in the (B)-space E, f ∈ D̃′s
Lp,h(0, T ;E) and u0,α ∈ E,

α ∈ N.
1. We say that u = (Uα)α is a strict solution, respectively, strict

weak solution, in D̃′s
Lp,h(0, T ;E) of (0.1) if u ∈ D̃′s

W 1,p,h(0, T ;E) ∩
D̃′s

Lp,h(0, T ;D(A)) and

U′α(t) = AUα(t) + Fα(t), t ∈ [0, T ] almost everywhere

and

Uα(0) = u0,α, for all α ∈ N,

respectively, for each φ ∈ Ds
Lq,h(0, T ) satisfy

⟨u′(t), φ(t)⟩ = A⟨u(t), φ(t)⟩+ ⟨f(t), φ(t)⟩(4.5)

and

Uα(0) = u0,α, for all α ∈ N.

We know by Lemma 4.2 that ⟨u(t), φ(t)⟩ ∈ D(A) for each φ ∈
Ds

Lq,h(0, T ). Also, note that in both cases (of strict or of strict weak

solution of (0.1)) we have

∥u0,α∥pE ≤ 2pT−1∥Uα∥Lp(0,T ;E) + 2pT p/q∥U′α∥Lp(0,T ;E).

Hence, u0 = (u0,α)α satisfies (4.4).

2. We say that u ∈ D̃′s
Lp,h(0, T ;E) is an F -solution, respectively,

F -weak solution in D̃′s
Lp,h(0, T ;E) of (0.1) if, for every k ∈ N, there is

uk = (Uk,α)α ∈ D̃′s
W 1,p,h(0, T ;E) ∩ D̃′s

Lp,h(0, T ;D(A)) such that from

U′k,α(t) = AUk,α(t) + Fk,α(t), t ∈ [0, T ] almost everywhere

and
Uk,α(0) = u0,k,α,
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we have

lim
k→∞

(
∥uk − u∥D̃′s

Lp,h
(0,T ;E) + ∥fk − f∥D̃′s

Lp,h
(0,T ;E)

+ ∥u0,k − u0∥D̃′s
Lp,h

(0,T ;E)

)
= 0,

respectively, from

⟨u′k(t), φ(t)⟩ = A⟨uk(t), φ(t)⟩+ ⟨fk(t), φ(t)⟩, for all φ ∈ Ds
Lq,h(0, T )

and
Uk,α(0) = u0,k,α, for all k, α ∈ N

we have that, for every φ ∈ Ds
Lq,h(0, T ),

(4.6) lim
k→∞

(∥⟨uk − u, φ⟩∥E + ∥⟨fk − f , φ⟩∥E + ∥⟨u0,k − u0, φ⟩∥E) = 0.

From the above definitions, it is clear that a strict, respectively a strict

weak solution, in D̃′s
Lp,h(0, T ;E) is an F -solution, respectively F -weak

solution, in D̃′s
Lp,h(0, T ;E).

Remark 4.3. If a strict weak solution of (0.1) in D̃′s
Lp,h(0, T ;E) exists,

then it is not unique. To see this, let ψ ∈ D(s)(0, T ) and e ∈ D(A)

be such that ψ ̸= 0 and e ̸= 0. Define v = (Vα)α ∈ D̃′s
Lp,h(0, T ;E)

by V0(t) = ψ′(t)e, V1(t) = −ψ(t)e and Vα(t) = 0, for α ≥ 2, α ∈ N.
Obviously v ∈ D̃′s

W 1,p,h(0, T ;E) ∩ D̃′s
Lp,h(0, T ;D(A)) and Vα(0) = 0,

for all α ∈ N. Moreover, it is easy to verify that the operators
⟨v, ·⟩, ⟨v′, ·⟩ ∈ L(Ds

Lq,h(0, T ), E) are, in fact, the zero operator. Hence,

if u is a strict weak solution of (0.1) in D̃′s
Lp,h(0, T ;E), then so is u+v.

One can use the same construction to prove that the F -weak solution

in D̃′s
Lp,h(0, T ;E) of (0.1) is also not unique.

4.2. The existence of solutions. Now we consider the existence of
such solutions of the Cauchy problem (0.1).

Proposition 4.4. If u is a strict, respectively an F -solution, of the
Cauchy problem (0.1), then it is also strict weak, respectively F -weak
solution, of (0.1).
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Proof. The proof follows from Lemma 4.2 and the fact that the

mapping g 7→ ⟨g, ·⟩, D̃′s
Lp,h(0, T ;E) → Lb

(
Ds

Lq,h(0, T ), E
)

is contin-

uous. �

The proof of the next theorem relies heavily on the results obtained
in [6]. The parts in brackets are consequences of Proposition 4.4.

Theorem 4.5.

(i) The Cauchy problem (0.1) has an F -solution (respectively an

F -weak solution) in D̃′s
Lp,h(0, T ;E) for every f = (Fα)α ∈

D̃′s
Lp,h(0, T ;E) and u0 = (u0,α)α such that (u0,α)α satisfies (4.4)

and u0,α ∈ D(A), for all α ∈ N. In the case of F -solution, it is
unique.

(ii) The Cauchy problem (0.1) has a strict solution (respectively a

strict weak solution) in D̃′s
Lp,h(0, T ;E) for every f = (Fα)α ∈

D̃′s
W 1,p,h(0, T ;E) and u0 = (u0,α)α such that u0,α ∈ D(A) and

Au0,α + Fα(0) ∈ D(A), for all α ∈ N and (u0,α)α, and (Au0,α)α
satisfies (4.4). In the case of a strict solution, it is unique.

Proof. First, we will prove (i). By [6, Theorem 7.2] (see also [6,
Appendix]) for each fixed α ∈ N, the problem U′α = AUα + Fα,
Uα(0) = u0,α has an F -solution in Lp(0, T ;E). In other words,
there exist Uk,α ∈ W 1,p(0, T ;E) ∩ Lp(0, T ;D(A)), Fk,α ∈ Lp(0, T ;E),
u0,k,α ∈ E and k ∈ Z+, such that U′k,α = AUk,α + Fk,α, Uk,α(0) =
u0,k,α and

(4.7) lim
k→∞

(
∥Uk,α −Uα∥Lp(0,T ;E) + ∥Fk,α − Fα∥Lp(0,T ;E)

+ ∥u0,k,α − u0,α∥E
)
= 0.

Moreover, by [6, Theorem 5.1] (see also [6, Theorem A.1, Appendix]),

each Uα is in fact in C(0, T ;E), Uα(t) ∈ D(A), for all t ∈ [0, T ],
Uα(0) = u0,α and

(4.8) ∥Uα(t)∥ ≤ Ceωt

(
∥Uα(0)∥+

∫ t

0

e−ωs∥Fα(s)∥ ds
)
, t ∈ [0, T ].
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Using this estimate, one easily verifies that u = (Uα)α ∈ D̃′s
Lp,h(0, T ;E).

We will prove that this is an (F )-solution of (0.1).

Let k ∈ Z+. Take nk ∈ Z+ such that

∞∑
α=nk

α!ps

hpα
∥Fα∥pLp(0,T ;E) ≤

1

(2k)p
,

∞∑
α=nk

α!ps

hpα
∥Uα∥pLp(0,T ;E) ≤

1

(2k)p

and

∞∑
α=nk

α!ps

hpα
∥u0,α∥pE ≤ 1

(2k)p
.

For each 0 ≤ α ≤ nk−1, by (4.7) we can take Fkα,α, Ukα,α and u0,kα,α

such that

nk−1∑
α=0

α!ps

hpα

(
∥Ukα,α −Uα∥pLp(0,T ;E) + ∥Fkα,α − Fα∥pLp(0,T ;E)

+ ∥u0,kα,α − u0,α∥pE
)
≤ 1

(2k)p

and
U′kα,α = AUkα,α + Fkα,α, Ukα,α(0) = u0,kα,α.

For 0 ≤ α ≤ nk − 1, define

Vk,α = Ukα,α, v0,k,α = u0,kα,α

and

Gk,α = Fkα,α.

For α ≥ nk, put

Vk,α = 0, v0,k,α = 0 and Gk,α = 0.

Then

vk = (Vk,α)α ∈ D̃
′s
W 1,p,h(0, T ;E) ∩ D̃

′s
Lp,h(0, T ;D(A)),

gk = (Gk,α)α ∈ D̃
′s
Lp,h(0, T ;E)
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and v0,k = (v0,k,α)α is such that

∞∑
α=0

(α!)ps

hpα
∥v0,k,α∥pE <∞.

Also, vk(0) = v0,k. By definition, we have V′k,α = AVk,α + Gk,α for
all α ∈ N. We will prove that vk → u, gk → f and v0,k → u0 in

D̃′s
Lp,h(0, T ;E); hence, u is an F -solution of (0.1).

Let ε > 0. Take k0 ∈ Z+ such that 1/k0 ≤ ε. For k ≥ k0, k ∈ Z+,
we have

∥vk − u∥p
D̃′s

Lp,h
(0,T ;E)

=

nk−1∑
α=0

α!ps

hpα
∥Vk,α −Uα∥pLp(0,T ;E) +

∞∑
α=nk

α!ps

hpα
∥Uα∥pLp(0,T ;E)

≤
nk−1∑
α=0

α!ps

hpα
∥Ukα,α −Uα∥pLp(0,T ;E) +

εp

2p
≤ 2εp

2p
.

Hence, ∥vk − u∥D̃′s
Lp,h

(0,T ;E) ≤ ε. Similarly,

∥gk − f∥D̃′s
Lp,h

(0,T ;E) ≤ ε

and ( ∞∑
α=0

α!ps

hpα
∥v0,k,α − u0,α∥pLp(0,T ;E)

)1/p

≤ ε, for k ≥ k0.

It remains to prove the uniqueness. If ũ = (Ũα)α ∈ D̃′s
Lp,h(0, T ;E)

is another F -solution of (0.1), then Ũα is an F -solution to the problem

Ũ′α(t) = AŨα(t) + Fα(t), Ũα(0) = u0,α, for each α ∈ N. But, [6,
Theorem 5.1] (see also [6, Theorem A.1, Appendix]) implies that the

F -solution to this problem must be unique; hence, Ũα = Uα, which
proves the desired uniqueness.

To prove (ii), observe that [6, Theorem 8.1] (see also [6, Theorem
A.2, Appendix]) implies that, for each α ∈ N, there exists Uα ∈
C1(0, T ;E) ∩ C(0, T ;D(A)) such that
(4.9)

U′α(t) = AUα(t) + Fα(t), for all t ∈ [0, T ] and Uα(0) = u0,α,
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and it satisfies (4.8) and

∥U′α(t)∥ ≤ Ceωt(∥Au0,α + Fα(0)∥(4.10)

+

∫ t

0

e−ωs∥F′α(s)∥ ds), t ∈ [0, T ].

Moreover, by (4.9) and (4.10), we have

∥AUα(t)∥ ≤ Ce2|ω|T
(
∥Au0,α∥+ ∥Fα(0)∥+ T 1/q∥F′α∥Lp(0,T ;E)

)
+ ∥Fα(t)∥, t ∈ [0, T ].

Since f ∈ D̃′s
W 1,p,h(0, T ;E), (u0,α)α and (Au0,α)α satisfy (4.4), by the

above estimate, (4.8) and (4.10), we can conclude

u = (Uα)α ∈ D̃
′s
W 1,p,h(0, T ;E) ∩ D̃

′s
Lp,h(0, T ;D(A)).

Hence, u is a strict solution. The uniqueness follows from [6, Theorem
8.1] (see also [6, Theorem A.2, Appendix]) by similar arguments as in
(i). �

By following the proof of [8, Theorem 2.5], one can prove Theorem
4.5 by using locally Lipschitz continuous integrated semigroups.

4.3. Solutions in D′(s)L1 (0, T ;E). Let g ∈ D′(s)L1 (0, T ;E). By Theo-
rem 3.6 for 1 < p < ∞, there exist h1 > 0 and Gα ∈ Lp(0, T ;E),
α ∈ N, such that

(4.11)
∞∑

α=0

α!ps

hpα1
∥Gα∥pLp(0,T ;E) <∞ and g =

∞∑
α=0

G(α)
α .

For the moment, for g ∈ D′(s)L1 (0, T ;E) = Lb(Ḃ(s)(0, T ), E), denote

by g(φ) the action of g on φ ∈ Ḃ(s)(0, T ). On the other hand, put

g̃ = (Gα)α ∈ D̃′s
Lp,h(0, T ;E). By the way we define the operator

⟨g̃, ·⟩ ∈ Lb(D(s)
Lq,h(0, T ), E), one easily verifies that g(φ) = ⟨g̃, φ⟩ for

all φ ∈ Ḃ(s)(0, T ) ⊆ D(s)
Lq,h(0, T ). Hence, if g ∈ D′(s)L1 (0, T ;E) has the

representation (4.11), we will denote by ⟨g, ·⟩ the action g(·).
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Let g ∈ D′(s)L1 (0, T ;E) have the representation (4.11). Define G̃0 = 0
and

G̃α(t) =

∫ t

0

Gα−1(s) ds, t ∈ [0, T ]

for α ∈ Z+. Then, obviously, G̃α ∈ W 1,p(0, T ;E), G̃α(0) = 0 and

G̃′α = Gα−1 almost everywhere for all α ∈ Z+, and if we put h > h1,
we have

(4.12)
∞∑

α=0

α!ps

hpα

(
∥G̃α∥pLp(0,T ;E) + ∥G̃′α∥

p
Lp(0,T ;E)

)
<∞.

By Theorem 3.6,
∞∑

α=1

G̃(α)
α ∈ D′(s)L1 (0, T ;E).

Also, for φ ∈ Ḃ(s)(0, T ),

∞∑
α=1

(−1)α
∫ T

0

G̃α(t)φ
(α)(t) dt

=
∞∑

α=0

(−1)α
∫ T

0

G̃′α+1(t)φ
(α)(t) dt

=
∞∑

α=0

(−1)α
∫ T

0

Gα(t)φ
(α)(t) dt

= ⟨g, φ⟩,

i.e., g =
∑∞

α=1 G̃
(α)
α . In other words, for g ∈ D′(s)L1 (0, T ;E) and

1 < p <∞, we can always find h > 0 such that

g =
∞∑

α=0

G̃(α)
α ,

where
G̃α ∈W 1,p(0, T ;E), G̃α(0) = 0, α ∈ N,

such that (4.12) holds. Moreover, in this notation, if we put

f̃ = (G̃′α)α ∈ D̃
′s
Lp,h(0, T ;E),
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then ⟨f̃ , ·⟩ and the E-valued ultradistribution g′ ∈ D′(s)L1 (0, T ;E) (where
g′ is the ultradistributional derivative of g) generate the same element

in D′(s)L1 (0, T ;E) ∼= Lb(Ḃ(s)(0, T ), E). To see this, for φ ∈ Ḃ(s)(0, T ), we
calculate as follows

⟨f̃ , φ⟩ =
∞∑

α=0

(−1)α
∫ T

0

G̃′α(t)φ
(α)(t) dt

= −
∞∑

α=0

(−1)α
∫ T

0

G̃α(t)φ
(α+1)(t) dt,

which is exactly the value at φ of the ultradistributional derivative of

g ∈ D′(s)L1 (0, T ;E).

We consider the equation

u′ = Au+ f in D′(s)L1 (0, T ;E).

In other words, f ∈ D′(s)L1 (0, T ;E) is given, and we search for u ∈
D′(s)L1 (0, T ;E) such that, for every φ ∈ Ḃ(s)(0, T ), ⟨u, φ⟩ ∈ D(A) and
⟨u′, φ⟩ = A⟨u, φ⟩ + ⟨f , φ⟩. By the above discussion, for 1 < p < ∞,
there exists h > 0 and Fα ∈ W 1,p(0, T ;E), Fα(0) = 0, α ∈ N,
such that (4.12) holds (with Fα and F′α in place of G̃α and G̃′α) and

f =
∑∞

α=0 F
(α)
α .

If we put f̃ = (Fα)α, then f̃ ∈ D̃′s
W 1,p,h(0, T ;E). For u0,α = 0 ∈

D(A), put u0 = (u0,α)α. Then the conditions of Theorem 4.5 (ii)

are satisfied; hence, there exists ũ = (Uα)α ∈ D̃′s
W 1,p,h(0, T ;E) ∩

D̃′s
Lp,h(0, T ;D(A)) which is a strict weak solution of ũ′ = Aũ + f̃ in

D̃′s
Lp,h(0, T ;E). If we put u =

∑∞
α=0 U

(α)
α ∈ D′(s)L1 (0, T ;E), by the

above discussion, ⟨u, φ⟩ ∈ D(A), for all φ ∈ Ḃ(s)(0, T ) (since this

holds for ũ) and u is a solution of u′ = Au + f in D′(s)L1 (0, T ;E).
Moreover, by Theorem 3.5, this u as well as f are in fact elements

of D′(s)Lp,h(0, T ;E). Thus, we have proved the following strengthened

version of Theorem 0.1 (announced in the introduction). Observe that

D′(s)L1 (0, T ;E) ∼= D′(s)Lp (0, T ;E), for 1 ≤ p ≤ ∞, by the results obtained
in the previous sections.
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Theorem 4.6. Let A : D(A) ⊆ E → E be a closed operator which

satisfies the Hille-Yosida condition and f ∈ D′(s)L1 (0, T ;E). Then the

equation u′ = Au + f always has a solution u ∈ D′(s)L1 (0, T ;E).

Moreover, u ∈ D′(s)Lp,h(0, T ;E) where 1 < p < ∞ and h > 0 are such
that

∞∑
α=0

α!ps

hpα

(
∥Fα∥pLp(0,T ;E) + ∥F′α∥

p
Lp(0,T ;E)

)
<∞,

with f =
∑

α F
(α)
α , where Fα ∈W 1,p(0, T ;E), Fα(0) = 0, α ∈ N.

5. Applications. Theorem 4.6 is applicable in a variety of different
situations. We collect some of them in the next proposition. First we
need the following definition given in [22].

Definition 5.1. Let Ω be a bounded open domain with smooth
boundary in Rd andm ∈ Z+. We say that A(x, ∂x) =

∑
|α|≤2m aα(x)∂

α
x

where aα ∈ C2m(Ω) is strongly elliptic if there exists c > 0 such that

Re (−1)m
∑
|α|=2m

aα(x)ξ
α ≥ c|ξ|2m, for all x ∈ U, for all ξ ∈ Rd.

Proposition 5.2. The operator A : D(A) ⊆ E → E is a closed oper-
ator which satisfies the Hille-Yosida condition in each of the following
situations:

(i) E = C([0, 1]), Av = −v′, D(A) = {v ∈ C1([0, 1])| v(0) = 0} ([6]).
(ii) For κ ∈ (0, 1), E = Cκ

0 ([0, 1]) = {v ∈ Cκ([0, 1]) | v(0) = 0},
Av = −v′, D(A) = {v ∈ C1+κ([0, 1]) | v(0) = v′(0) = 0} ([6]).

(iii) E = C([0, 1]), Av = v′′, D(A) = {v ∈ C2([0, 1]) | v(0) = v(1) = 0}
([6]).

(iv) For Ω a bounded open set with regular boundary in Rd, E = C(Ω),
Av = ∆v, D(A) = {v ∈ C(Ω) | v|∂Ω = 0, ∆v ∈ C(Ω)} (here ∆ is
the Laplacian in the sense of distributions in Ω) ([6]).

(v) Let Ω be a bounded open domain with smooth boundary in Rd and
m ∈ Z+. Let A(x, ∂x) be strongly elliptic. Define E = Lp(Ω),
Av = −A(x, ∂x)v, D(A) = W 2m,p(Ω) ∩Wm,p

0 (Ω), for 1 < p <∞
and for p = 1 define E = L1(Ω), Av = −A(x, ∂x)v, D(A) = {v ∈
W 2m−1,1(Ω) ∩Wm,1

0 (Ω) | A(x, ∂x)v ∈ L1(Ω)} ([22]).
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In particular, for f ∈ D′(s)L1 (0, T ;E), the equation u′t = Au + f always

has a solution in D′(s)L1 (0, T ;E).

Note that the operator A in (v) has a dense domain.

Proof. The fact that A : D(A) ⊆ E → E is a closed operator which
satisfies the Hille-Yosida condition when A and E are defined as in
(i)–(iv) is proven in [6, Section 14]. When A and E are defined
as in [22, Theorem 7.3.5 v), page 214] for the case 1 < p < ∞,
respectively [22, Theorem 7.3.10, page 218] for the case p = 1, implies
that A is a closed operator which satisfies the Hille-Yosida condition
(in fact these theorems state that A is the infinitesimal generator of
an analytic semigroup on Lp(Ω), 1 ≤ p < ∞). Now, the fact that

the equation u′t = Au+ f has a solution in D′(s)L1 (0, T ;E) follows from
Theorem 4.6. �

5.1. Parabolic equation in D′(s)L1 (U). In this subsection, U is a

bounded domain in Rd with smooth boundary. For the brevity

of notation, let D̃′s
Lp,h(U), respectively D̃′s

W 1,p,h(U), be the space

D̃′s
Lp,h(0, T ;E), respectively D̃′s

W 1,p,h(0, T ;E), when E = C. Also, for

k ∈ Z+, by D̃′s
Wk,p,h(U), we denote the space of all sequences (Fα)α,

Fα ∈W k,p(U), for all α ∈ Nd, for which

∥(Fα)α∥D̃′s
Wk,p,h

(U) =

( ∑
α∈Nd

α!ps

hpα
∥Fα∥pWk,p(U)

)1/p

<∞.

It is easy to verify that it becomes a (B)-space with the norm
∥ · ∥D̃′s

Wk,p,h
(U).

Let m ∈ Z+,

A(x, ∂x) =
∑
|α|≤2m

aα(x)∂
α
x ,

where aα ∈ E(s)(V ) for some open set V ⊆ Rd and U ⊂⊂ V . We
assume that A(x, ∂x) is a strongly elliptic operator. Obviously, A(x, ∂x)

is a continuous operator on Ḃ(s)(U) and on D′(s)L1 (U). Denote by
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Ã : D(Ã) ⊆ L2(U) → L2(U) the following unbounded operator

D(Ã) =W 2m,2(U) ∩Wm,2
0 (U), Ã(φ) = A(x, ∂x)φ, φ ∈ D(Ã).

For such A(x, ∂x) the following a priori estimate holds (see [22, Theo-
rem 7.3.1, page 212]).

Proposition 5.3. [22]. Let A(x, ∂x) be a strongly elliptic operator of
order 2m on a bounded domain U with smooth boundary ∂U in Rd, and

let 1 < p <∞. Then, there exists a constant C̃ > 0 such that

∥φ∥W 2m,p(U) ≤ C̃
(
∥A(x, ∂x)φ∥Lp(U) + ∥φ∥Lp(U)

)
,

for all φ ∈W 2m,p(U) ∩Wm,p
0 (U).

Moreover, [22, Theorem 7.3.5, page 214], yields that −Ã is the
infinitesimal generator of an analytic semigroup of operators on L2(U).

In particular, −Ã is closed, and it satisfies the Hille-Yosida condition
(4.2) for some ω,C > 0.

Now we can prove the theorem announced in the introduction.

Note that we need to prove the theorem for D′(s)L1 ((0, T ) × U) since

D′(s)Lp ((0, T )× U) and D′(s)L1 ((0, T )× U) are isomorphic lcs.

Theorem 5.4. Let U be a bounded domain in Rd with smooth bound-
ary, (i.e., C∞ boundary) and A(x, ∂x) a strongly elliptic operator of

order 2m on U . Then, for each f ∈ D′(s)L1 ((0, T ) × U) there exists

u ∈ D′(s)L1 ((0, T )×U) such that u′t+A(x, ∂x)u = f in D′(s)L1 ((0, T )×U).

Proof. Denote by A the following unbounded operator:

Af̃ = (−A(x, ∂x)Fα)α

(
= (−ÃFα)α

)
,

D(A) =
{
f̃ = (Fα)α ∈ D̃

′s
W 2m,2,h(U) | Fα ∈Wm,2

0 (U), for all α ∈ Nd
}
.

Then, obviously, A : D(A) ⊆ D̃′s
L2,h(U) → D̃′s

L2,h(U) is a linear

operator. Since Ã is closed, by Proposition 5.3, it is easy to verify

that A is closed. For λ > ω, define Bλ : D̃′s
L2,h(U) → D̃′s

L2,h(U), by
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Bλ(f̃) = (R(λ : −Ã)Fα)α. For f̃ = (Fα)α ∈ D̃′s
L2,h(U),

∥Bλf̃∥D̃′s
L2,h

(U) =

( ∞∑
|α|=0

α!2s

h2|α|
∥R(λ : −Ã)Fα∥2L2(U)

)1/2

≤ C

λ− ω
∥f̃∥D̃′s

L2,h
(U).

Hence, Bλ is a well-defined continuous operator. For (Fα)α ∈ D̃′s
L2,h(U),

by the Hille-Yosida condition for −Ã, Proposition 5.3 and the fact that

ÃR(λ : −Ã) = Id− λR(λ : −Ã), we obtain∥∥∥R(λ : −Ã)Fα

∥∥∥
W 2m,2(U)

≤ C̃

(
1 +

C(λ+ 1)

λ− ω

)
∥Fα∥L2(U).

This implies that

Bλ(Fα)α = (R(λ : −Ã)Fα)α ∈ D̃
′s
W 2m,2,h(U).

Obviously,

R(λ : −Ã)Fα ∈Wm,2
0 (U), for each α ∈ Nd.

Hence, the image of Bλ is contained in D(A). Conversely, for (Fα)α ∈
D(A), let Gα = (λ+ Ã)Fα, for each α ∈ Nd. Then

(Gα)α ∈ D̃
′s
L2,h(U)

and
Bλ(Gα)α = (Fα)α;

hence, the image of Bλ is D(A). Also, (λ−A)Bλ = Id and Bλ(λ−A) =
Id. We obtain that λ > ω is in the resolvent of A, R(λ : A) = Bλ, and
similarly as above, one can prove that

∥(λ− ω)kR(λ : A)k∥L
(
D̃′s

L2,h
(U)

) ≤ C,

i.e., A satisfies the Hille-Yosida condition.

We want to solve the equation u′t(t, x) + A(x, ∂x)u(t, x) = f(t, x)

in D′(s)L1 ((0, T ) × U). For simplicity of notation, put U1 = (0, T ) × U .

By Proposition 2.4, there exist h > 0 and Fα,β(t, x) ∈ C(U1), α ∈ N,
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β ∈ Nd such that

(5.1) f =
∑
α,β

∂αt ∂
β
xFα,β and

∑
α,β

(α!β!)
2s

h2(α+|β|)
∥Fα,β∥2L∞(U1)

<∞.

Let E = D̃′s
L2,h(U). Let C ′1 = 1 + supβ∈Nd h|β|/β!s, and put C1 =

(1 + T + |U |)C ′1. Let Lf be the mapping φ 7→ Lf (φ), Ḃ(s)(0, T ) → E

defined by Lf (φ) = (F̃φ,β)β , where

F̃φ,β(x) =
∑
α

(−1)α
∫ T

0

Fα,β(t, x)φ
(α)(t) dt.

We prove that it is a well defined and continuous mapping. First, we

prove that F̃φ,β is a continuous function on U for each β ∈ Nd and

φ ∈ Ḃ(s)(0, T ). For ε > 0, by (5.1), we can find k0 ∈ Z+ such that

∑
α+|β|≥k0

(α!β!)
2s

h2(α+|β|)
∥Fα,β∥2L∞(U1)

<
ε2

(4C1)2
.

For each α ∈ N, β ∈ Nd, Fα,β is uniformly continuous (since U1 is
compact in Rd+1); hence, there exists a δ > 0 such that, for every
t, t′ ∈ [0, T ], x, x′ ∈ U such that |t− t′| ≤ δ and |x− x′| ≤ δ,

k0−1∑
α+|β|=0

(α!β!)
2s

h2(α+|β|)
|Fα,β(t, x)− Fα,β(t

′, x′)|2 < ε2

(2C1)2
.

Hence,∣∣∣F̃φ,β(x)− F̃φ,β(x
′)
∣∣∣

≤ ∥φ∥D(s)

L2,h
(0,T )

( ∞∑
α=0

(α!)2s

h2α

∫ T

0

|Fα,β(t, x)− Fα,β(t, x
′)|2 dt

)1/2

≤ ε∥φ∥D(s)

L2,h
(0,T )

,
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and the continuity of F̃φ,β follows. Also, one easily verifies that(∑
β

β!2s

h2|β|

∥∥∥F̃φ,β

∥∥∥2
L∞(U)

)1/2

≤ T 1/2∥φ∥D(s)

L2,h
(U)

(∑
α,β

(α!β!)
2s

h2(α+|β|)
∥Fα,β∥2L∞(U1)

)1/2

.

Since
∥F̃φ,β∥L2(U) ≤ |U |1/2∥F̃φ,β∥L∞(U),

we obtain that Lf is well defined and Lf ∈ L(Ḃ(s)(0, T ), E). Now,

as Lb(Ḃ(s)(0, T ), E) ∼= D′(s)L1 (0, T ;E) denote by f ∈ D′(s)L1 (0, T ;E) the
mapping Lf .

Now, Theorem 4.6 implies that there exists u ∈ D′(s)L1 (0, T ;E) such

that u′ = Au + f in D′(s)L1 (0, T ;E). Each element g = (Gα)α ∈
E = D̃′s

Lp,h(U) generates an element of Lb(Ḃ(s)(U),C) = D′(s)L1 (U) (see

Section 4) by

⟨S(g), ψ⟩ =
∑
β

(−1)|β|
∫
U

Gβ(x)∂
β
xψ(x) dx,

and one easily verifies that the mapping S : E → D′(s)L1 (U), g 7→ S(g),
is continuous. Hence, we have the continuous mapping φ 7→ S(⟨u, φ⟩),
given by

Ḃ(s)(0, T )
⟨u,·⟩−−−→ E

S−→ D′(s)L1 (U).

Since φ 7→ S(⟨u, φ⟩) ∈ Lb(Ḃ(s)(0, T ),D′(s)L1 (U)) ∼= D′(s)L1 (U1) (where

the isomorphism follows from Theorem 3.1), denote by u ∈ D′(s)L1 (U1)

this ultradistribution. Then, for φ ∈ Ḃ(s)(0, T ), ψ ∈ Ḃ(s)(U),
⟨u(t, x), φ(t)ψ(x)⟩ = ⟨S(⟨u, φ⟩), ψ⟩. Since ⟨u′, φ⟩ = −⟨u, φ′⟩, for all

φ ∈ Ḃ(s)(0, T ), we have

⟨u′t(t, x), φ(t)ψ(x)⟩ = −⟨u(t, x), φ′(t)ψ(x)⟩ = ⟨S(⟨u′, φ⟩), ψ⟩,

for all φ ∈ Ḃ(s)(0, T ), ψ ∈ Ḃ(s)(U). Also, for φ ∈ Ḃ(s)(0, T ), since
⟨u, φ⟩ ∈ D(A),

⟨u, φ⟩ = (Gφ,β)β ∈ D(A).
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Then, by the definition of A, A⟨u, φ⟩ = (−ÃGφ,β)β ∈ E. Now, for

ψ ∈ Ḃ(s)(U),⟨
S
(
(−ÃGφ,β)β

)
, ψ

⟩
= −

∑
β

(−1)|β|
∫
U

ÃGφ,β(x)∂
β
xψ(x) dx

= −
∑
β

(−1)|β|
∫
U

Gφ,β(x)
tA(x, ∂x)∂

β
xψ(x) dx

= −⟨S(⟨u, φ⟩), tA(x, ∂x)ψ⟩
= −⟨u(t, x), φ(t)tA(x, ∂x)ψ(x)⟩
= −⟨A(x, ∂x)u(t, x), φ(t)ψ(x)⟩,

i.e.,
⟨S (A⟨u, φ⟩) , ψ⟩ = −⟨A(x, ∂x)u(t, x), φ(t)ψ(x)⟩

for all φ ∈ Ḃ(s)(0, T ) and ψ ∈ Ḃ(s)(U). Moreover, observe that, for

φ ∈ Ḃ(s)(0, T ) and ψ ∈ Ḃ(s)(U), we have

⟨S(⟨f , φ⟩), ψ⟩ =
∑
β

(−1)|β|
∫
U

F̃φ,β(x)∂
β
xψ(x) dx

=
∑
α,β

(−1)α+|β|
∫
U1

Fα,β(t, x)φ
(α)(t)∂βxψ(x) dt dx

= ⟨f(t, x), φ(t)ψ(x)⟩,

where, in the second equality, we used the definition of F̃φ,β and
Fubini’s theorem since∑

α,β

∫
U1

|Fα,β(t, x)|
∣∣∣φ(α)(t)

∣∣∣ ∣∣∣ψ(β)(x)
∣∣∣ dt dx <∞

by (5.1). Now, since u′ = Au + f in D′(s)L1 (0, T ;E), for every φ ∈
Ḃ(s)(0, T ), ⟨u′(t), φ(t)⟩ = A⟨u(t), φ(t)⟩+ ⟨f(t), φ(t)⟩ in E. Then,

S (⟨u′, φ⟩) = S (A⟨u, φ⟩) + S (⟨f , φ⟩)

in D′(s)L1 (U). Hence, for φ ∈ Ḃ(s)(0, T ) and ψ ∈ Ḃ(s)(U), we have

⟨u′t(t, x), φ(t)ψ(x)⟩ = ⟨S(⟨u′, φ⟩), ψ⟩
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= ⟨S (A⟨u, φ⟩) , ψ⟩+ ⟨S (⟨f , φ⟩) , ψ⟩
= −⟨A(x, ∂x)u(t, x), φ(t)ψ(x)⟩+ ⟨f(t, x), φ(t)ψ(x)⟩.

Since Ḃ(s)(0, T )⊗̂Ḃ(s)(U) ∼= Ḃ(s)(U1) by Theorem 3.1, we obtain the
claim in the theorem. �

Example 5.5. An interesting application of this theorem is obtained
by taking A(x, ∂x) to be −∆x (∆x is the Laplacian ∂2x1

+ · · · + ∂2xd
)

and U to be the arbitrary bounded domain with smooth boundary
in Rd. Then −∆x is a strongly elliptic operator of order 2 on U . The

above theorem then asserts that, for f ∈ D′(s)L1 ((0, T )×U), the equation

u′t −∆xu = f always has a solution in D′(s)L1 ((0, T )× U).

Example 5.6. If U = (0, T1) ⊆ R and A is the differentiation in x,
arguing as above, one can prove the following assertion:

Let f ∈ D′(s)L1 ((0, T )× (0, T1)). The equation u
′
t +u′x = f always has

a solution in D′(s)L1 ((0, T )× (0, T1)).
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lem, Birkhäuser, Basel, 1995.

19. I.V. Melnikova and A.I. Filinkov, Abstract Cauchy problems: Three ap-
proaches, Chapman & Hall/CRC, Washington, 2001.

20. R. Nagel and E. Sinestrari, Inhomogeneous Volterra integrodifferential equa-
tions for Hille-Yosida operators Dekker Lect. Notes 150 (1994), 51–70, Dekker.

21. F. Neubrander, Integrated semigroups and their applications to the abstract
Cauchy problem, Pacific J. Math. 135 (1988), 111–155.

22. A. Pazy, Semigroups of linear operators and applications to partial differ-

ential equations, Springer-Verlag, New York, 1983.

23. R. Phillips, Perturbation theory of semigroups of linear operators, Trans.
Amer. Math. Soc. 74 (1953), 199–221.
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