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ON DE GRAAF SPACES OF PSEUDOQUOTIENTS

ANYA KATSEVICH AND PIOTR MIKUSIŃSKI

ABSTRACT. A space of pseudoquotients, B(X,S), is
defined as equivalence classes of pairs (x, f), where x is
an element of a non-empty set X, f is an element of S,
a commutative semigroup of injective maps from X to X,
and (x, f) ∼ (y, g) if gx = fy. In this note, we consider a
generalization of this construction where the assumption of
commutativity of S is replaced by Ore type conditions. As in
the commutative case, X can be identified with a subset of
B(X,S), and S can be extended to a group, G, of bijections
on B(X,S). We introduce a natural topology on B(X,S)
and show that all elements of G are homeomorphisms on
B(X,S).

1. Introduction. We are interested in algebraic constructions that
can be used in the theory of generalized functions. Jan Mikusiński
used the fact that every integral domain can be extended to a field
of quotients to construct a space of generalized functions on [0,∞)
(see [9, 10], as well as [8]). In this case, the integral domain is the
space C([0,∞)) of continuous functions on [0,∞) with the operations
of addition and convolution defined as

(f ∗ g)(t) =
∫ t

0

f(s)g(t− s) ds.

Yosida modified the construction by considering quotients of the form
f/hn, where f ∈ C([0,∞)) and h is the constant function 1 on [0,∞),
[13]. Since h is an element of C([0,∞)), the ring of quotients obtained
is a subset of the field of quotients obtained from C([0,∞)). However,
one could take a somewhat different point of view. We think of h as a
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map h : C([0,∞)) → C([0,∞)) defined by

hf(t) =

∫ t

0

f(s) ds

and define a semigroup S = {hn : n = 0, 1, 2, . . .} acting on C([0,∞)).
It turns out that this approach creates new possibilities. In 1987,
De Graaf and Ter Elst proposed the following general framework
for constructing spaces of generalized functions: a (possibly non-
commutative) ring R acting on a vector space V , see [5]. There are
two essential ideas here: R need not be a subset of V and R need not
be commutative.

A similar construction in the commutative case was used in [11]. If
X is a non-empty set and S is a commutative semigroup of injective
maps acting on X, then the space of pseudoquotients B(X,S) is defined
as the space of equivalence classes of pairs (x, f) ∈ X × S with respect
to the equivalence relation defined as follows: (x, f) ∼ (y, g) if gx = fy.
A construction in the case when elements of S are not injective is also
considered.

Pseudoquotients have desirable properties. The set X can be iden-
tified with a subset of B(X,S) and the semigroup S can be extended
to a commutative group of bijections acting on B(X,S) (see, for ex-
ample, [7]). Under natural conditions on S, the algebraic structure of
X extends to B(X,S). Examples of applications of pseudoquotients in
generalized functions and abstract harmonic analysis can be found in
[1, 2, 3, 4].

There is interest in applying algebraic methods in noncommutative
cases. In [12], we find an interesting application of the standard non-
commutative localization in the theory of integro-differential algebras
and operators. Noncommutative methods in generalized functions are
also considered in [6].

The paper by De Graaf and Ter Elst was published in not easily
available conference proceedings and has not received the recognition
it deserves. None of the papers mentioned above reference the paper.
The authors of this note were not familiar with the results presented
in [5] until recently.

In this note we present a slightly more general version of the con-
struction of De Graaf and Ter Elst. We construct pseudoquotients in



ON DE GRAAF SPACES OF PSEUDOQUOTIENTS 1447

the case where commutativity of S is replaced by the left Ore condition.
We obtain a space B(X,S) that contains a copy of X. If, in addition to
the left Ore condition, we assume right cancellation in S, then S can
be extended to a group G of bijections acting on B(X,S). We intro-
duce a natural topology on B(X,S) and show that all elements of G
are homeomorphisms on B(X,S). We also give some simple examples.

2. Pseudoquotients. Let X be a nonempty set, and let S be a
semigroup acting on X injectively. We will assume that S satisfies the
following Ore condition:

O For any f, g ∈ S, there exist f ′, g′ ∈ S such that f ′g = g′f .

In X × S, we introduce an equivalence relation:

(x, f) ∼ (y, g) if there exist f ′, g′ ∈ S such that f ′g = g′f and f ′y = g′x.

It is easy to verify that ∼ is reflexive and symmetric (even without
O). To show that it is also transitive we assume (x, f) ∼ (y, g) and
(y, g) ∼ (z, h). Let f ′, g′, g′′, h′′ ∈ S be such that

f ′g = g′f, f ′y = g′x, g′′h = h′′g, and g′′z = h′′y.

By O, there exist j, k ∈ S such that jf ′ = kh′′. Then

jg′f = jf ′g = kh′′g = kg′′h

and
jg′x = jf ′y = kh′′y = kg′′z.

Consequently, (x, f) ∼ (z, h).

We define B = B(X,S) = (X × S)/ ∼. Elements of B(X,S) will
be called pseudoquotients. We will use the standard notation to denote
elements of B: [(x, f)] = x/f .

Lemma 2.1. For all x ∈ X and f, g ∈ S, we have

(a) (fx, f) ∼ (gx, g);
(b) If (fx, f) ∼ (y, g), then y = gx;
(c) If (fx, f) ∼ (fy, f), then x = y.
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Proof.

(a) By O, there are f ′, g′ ∈ S such that f ′g = g′f . Then also
f ′gx = g′fx.

(b) If (fx, f) ∼ (y, g), then there are f ′, g′ ∈ S such that g′fx = f ′y
and g′f = f ′g. Hence,

f ′y = g′fx = f ′gx.

Since f ′ is injective, we obtain y = gx.

(c) follows from (b), if we take fy in place of y and f in place of g
and then use injectivity of f . �

Lemma 2.1 (a) implies that the map ι : X → B defined by

ι(x) =
fx

f

is well defined. From part (b), we have [(fx, f)] = {(gx, g) : g ∈ S}.
This, combined with (c), implies that ι is injective.

Pseudoquotients have many properties of standard quotients. The
following simple lemma gives an example of such a property.

Lemma 2.2. For all x, y ∈ X and f, g, h ∈ S, we have

(a) If (x, f) ∼ (y, g), then (x, f) ∼ (hy, hg);
(b) x/f = gx/gf .

Proof.

(a) If (x, f) ∼ (y, g), then there exist f ′, g′ ∈ S such that g′x = f ′y
and g′f = f ′g. If h ∈ S, then αf ′ = βh for some α, β ∈ S, by O.
Hence,

αg′x = αf ′y = βhy

and
αg′f = αf ′g = βhg.

(b) is a direct consequence of (a). �
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3. Extendability of maps. One of the fundamental properties of
pseudoquotients with commutative S is that S can be extended to
a group of bijections acting on B. To obtain such a result without
commutativity, in addition to O, we will assume right cancellation for
S, that is:

A If f1g = f2g, where f1, f2, g ∈ S, then f1 = f2.

Lemma 3.1. If f ′g = g′f and f ′′g = g′′f , then hf ′′ = kf ′ and
hg′′ = kg′ for some h, k ∈ S.

Proof. Let f ′g = g′f and f ′′g = g′′f . Then there are h, k ∈ S such
that hf ′′ = kf ′, by O. Hence, hf ′′g = kf ′g and hg′′f = kg′f , which
implies hg′′ = kg′ by A. �

Lemma 3.2. Let f ′g = g′f and f ′′g = g′′f . If f ′y = g′x for some
x, y ∈ S, then f ′′y = g′′x.

Proof. Let h, k ∈ S be as defined in Lemma 3.1. Then we have

hf ′′y = kf ′y = kg′x = hg′′x.

Since h is injective, we obtain f ′′y = g′′x. �

Note that, from the above lemma, it follows that, if x/f ∼ y/g, then
we have g′x = f ′y for any g′, f ′ ∈ S such that f ′g = g′f .

Lemma 3.3. If f ′g = g′f and f ′′g = g′′f , then g′x/f ′ = g′′x/f ′′ for
all x ∈ X.

Proof. Let h, k be defined as in Lemma 3.1. Then g′x/f ′ = g′′x/f ′′

because kf ′ = hf ′′ and kg′x = hg′′x. �

Theorem 3.4. A function g ∈ S can be extended to a function
g̃ : B → B by

g̃
x

f
=
g′x

f ′
,

where f ′, g′ ∈ S are any functions such that f ′g = g′f .
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Proof. By Lemma 3.3, g′x/f ′ is independent of choice of g′, f ′, as
long as f ′g = g′f .

Now we show that, if x1/f1 = x2/f2, then g̃x1/f1 = g̃x2/f2. Let
f ′1, f

′
2, g

′, g′′ ∈ S be such that

g′f1 = f ′1g and g′′f2 = f ′2g.

We need to show that g′x1/f
′
1 ∼ g′′x2/f

′
2. Let f

′′
1 , f

′′
2 ∈ S be such that

f ′′1 f
′
2 = f ′′2 f

′
1. Then

f ′′1 g
′′f2 = f ′′1 f

′
2g = f ′′2 f

′
1g = f ′′2 g

′f1.

Since x1/f1 = x2/f2, we obtain f ′′1 g
′′x2 = f ′′2 g

′x1, by Lemma 3.2.

We have shown that g̃ is well defined. Finally we show that g̃ is an
extension of g. If f ′g = g′f , then f ′gx = g′fx, and hence

g̃ι(x) = g̃
fx

f
=
g′fx

f ′
=
f ′gx

f ′
= ι(gx). �

Lemma 3.5. g̃ : B → B is bijective for every g ∈ S.

Proof. Injectivity. Suppose g̃(x1/f1) = g̃(x2/f2), and let f ′1, g
′, f ′2, g

′′ ∈
S be such that

f ′1g = g′f1 and f ′2g = g′′f2.

Then

g̃

(
x1
f1

)
=
g′x1
f ′1

and g̃

(
x2
f2

)
=
g′′x2
f ′2

.

Now let h1, h2 ∈ S be such that h2f
′
1 = h1f

′
2. Then h2g

′x1 = h1g
′′x2,

by Lemma 3.2. We have

x1
f1

=
g′x1
g′f1

=
g′x1
f ′1g

=
h2g

′x1
h2f ′1g

and
x2
f2

=
g′′x2
g′′f2

=
g′′x2
f ′2g

=
h1g

′′x2
h1f ′2g

.

Since
h1g

′′x2
h1f ′2g

=
h2g

′x1
h2f ′1g

,

we obtain x1/f1 = x2/f2 by transitivity.



ON DE GRAAF SPACES OF PSEUDOQUOTIENTS 1451

Surjectivity. If x/f ∈ B, then

x

f
=
fx

f2
= g̃(

x

fg
)

since f(fg) = f2(g). �

Note that g̃−1(x/f) = x/fg.

Theorem 3.6. S can be extended to a group G of bijections acting on
B. Moreover, G satisfies conditions O and A.

Proof. It suffices to show that G satisfies conditions O and A,
but this follows immediately from the fact that everything in G is
invertible. �

Remark 3.7. We can think of B as the set of all solutions ξ of the
equations f(ξ) = x, for any f ∈ S and x ∈ X. These solutions are

unique, for if f̃(x1/f1) = x and f̃(x2/f2) = x, then

x1
f1

=
x2
f2
,

since f̃ acts injectively on B. Also any element of B is a solution to
some equation, since

f̃

(
x

f

)
=
fx

f
= ι(x).

4. Topology of pseudoquotients. Now we assume that X is a
topological space and S is a semigroup of continuous injections acting
on X. To define a topology in B we equip S with the discrete topology,
then X × S with the product topology, and finally B = X × S/ ∼
with the quotient topology. This topology has desirable properties. In
particular, the embedding ι : X → B is continuous and G is a group of
homeomorphisms acting on B.

Theorem 4.1. ι is continuous.

Proof. Let U be open in B, and let x ∈ ι−1(U). Then fx/f ∈ U .
Since U is open in B, we have that fx × f ∈ V × f ⊂ p−1(U), where
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V is open in X and p : X × S → B is the quotient map defined by
p(x× f) = x/f . Then x ∈ f−1(V ) ⊂ ι−1(U), which shows that ι−1(U)
is open. �

Theorem 4.2. Elements of the group G are homeomorphisms.

Proof. Consider the map ψg : X × S → B defined by ψg(x × f) =
g′x/f ′, where f ′g = g′f . Since the function g̃ is well defined, so is ψg.
Further, it is clear that

ψg

(
p−1

({
x

f

}))
=
g′x

f ′
.

It follows that, if ψg is continuous, then g̃ is also continuous. Let U be
open in B, and let x× f ∈ ψ−1

g (U). Then g′x/f ′ ∈ U . Since U is open

in B, we have that g′x× f ′ ∈ V × f ′ ⊂ p−1(U), where V is open in X.
Then it is easy to show that x×f ∈ g′−1(V )×f ⊂ ψ−1

g (U), from which

it follows that ψ−1
g (U) is open in X × S and that ψg is continuous.

To show that g̃−1 is continuous, we similarly show that ψg−1 :
X × S → B defined by ψg(x× f) = x/fg is continuous. �

5. Simple examples. We end this paper with some examples of
the described construction.

Example 5.1. Let X = N, and let S be the semigroup of all functions
on N of the form f(x) = mxn where m,n ∈ N. It is easy to see that O
and A are satisfied. In this case, B can be identified with the set of all
real numbers of the form n

√
k/m, where k,m, n ∈ N, and the extended

group G can be described as all functions of the form f(x) = pxq, where
p and q are positive rational numbers.

Example 5.2. Let X = Zn, and let S be the semigroup of all functions
f : Zn → Zn of the form f(x) =Mx+b, whereM is an n×n matrix of
rank n with integer entries and b ∈ Zn. To check O, let f(x) =M1x+b1
and g(x) = M2x + b2. If m1 = detM1 and m2 = detM2, then the
functions

f ′(x) = m1m2M
−1
2 x+m1m2M

−1
1 b1

and
g′(x) = m1m2M

−1
1 x+m1m2M

−1
2 b2
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satisfy the equation f ′g = g′f . It is easy to see that A is also satisfied.

Here B can be identified with Qn, and the extended group G can be
described as all functions f : Qn → Qn of the form f(x) = Mx + b,
whereM is an n×n invertible matrix with rational entries and b ∈ Qn.

Example 5.3. Let

X =

{ n∑
k=0

λkχ[k,k+1) : λk ∈ R and n ∈ N
}
,

and let δ, τ : X → X be defined as follows:

δ

( n∑
k=0

λkχ[k,k+1)

)
=

n∑
k=0

λk
2
χ[2k,2k+2)

and

τ

( n∑
k=0

λkχ[k,k+1)

)
=

n∑
k=0

λkχ[k+1,k+2).

If we define I = χ[0,1), then we can write

n∑
k=0

λkχ[k,k+1) =
n∑
k=0

λkτ
kI.

Let S be the semigroup generated by δ and τ . Since δτ = τ2δ, we
have S = {τmδn : m,n ≥ 0}. Since δ and τ are injective, S acts on X
injectively. We will show that S satisfies O and A. To verify O, assume
τm1δn1 , τm2δn2 ∈ S. If n1 = n2 = n, then

τm2τm1δn = τm1τm2δn.

If n1 < n2, then

τm2δn2−n1τm1δn1 = τ2m1τm2δn2 .

To verify A, first observe that, for every ϕ ∈ S, the representation
ϕ = τmδn is unique. Now, if

τm1δn1τkδl = τm2δn2τkδl,

we have
τm1+2kδn1+l = τm2+2kδn2+l.

Thus, m1 = m2 and n1 = n2.
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Note that, since δ and τ preserve the integral and the L1-norm, we
can define ∫

f

τmδn
=

∫
f and

∥∥∥∥ f

τmδn

∥∥∥∥
1

= ∥f∥1,

where f ∈ X. The space of pseudoquotients B obtained can be
identified with a dense subspace of L1(R).

Example 5.4. Let X1, X2, . . . be a sequence of nonempty sets of the
same cardinality. For every n ∈ N, let φn : Xn → Xn+1 be a bijection,
and let ψn : Xn → Xn be an injection such that the following diagram
commutes:

Xn
ψn //

φn

��

Xn

φn

��
Xn+1

ψn+1

// Xn+1

Let X = ∪∞
n=1Xn, and let Φ : X → X be the unique function on X

such that Φ(x) = φn(x) whenever x ∈ Xn. Let Ψn : X → X be defined
by

Ψn(x) =

{
ψn(x) if x ∈ Xn,
x otherwise.

Since ΦΨn = Ψn+1Φ for every n ∈ N and the maps Ψn commute, the
semigroup generated by Φ,Ψ1,Ψ2, . . . is

S =
{
Ψk11 · · ·Ψkmm Φn : k1, . . . , km,m, n ∈ N ∪ {0}

}
.

It is easy to check that S satisfies O and A.
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13. Kôsaku Yosida, Operational calculus: A theory of hyperfunctions, Applied
Mathematical Sciences, Springer-Verlag, New York, 1984.

Department of Mathematics, University of Central Florida, Orlando,

FL 32816 and Department of Mathematics, University of North Carolina,
Chapel Hill, NC 27514
Email address: akatsevi@live.unc.edu

Department of Mathematics, University of Central Florida, Orlando, FL
32816
Email address: piotr.mikusinski@ucf.edu


