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NORMALITY CONCERNING EXCEPTIONAL
FUNCTIONS

CHUNNUAN CHENG AND YAN XU

ABSTRACT. Let φ(z)( ̸≡ 0) be a function holomorphic in
a domain D, k ∈ N, and let F be a family of meromorphic
functions defined in D, all of whose zeros have multiplicity at
least k + 2 such that, for every f ∈ F , f (k)(z) ̸= φ(z). The
non-normal sequences in F are characterized.

1. Introduction and main results. Let D be a domain in C,
and let F be a family of meromorphic functions defined on D. F is
said to be normal on D, in the sense of Montel, if for any sequence
{fn} ∈ F there exists a subsequence {fnj}, such that {fnj} converges
spherically locally uniformly on D, to a meromorphic function or ∞
(see [4, 10, 13]).

The following well-known normality criterion was conjectured by
Hayman [5] and proved by Gu [3].

Theorem A. Let F be a family of meromorphic functions defined in a
domain D, and let k be a positive integer. If, for every function f ∈ F ,
f ̸= 0, and f (k) ̸= 1 in D, then F is normal in D.

This result has undergone various extensions and improvements. In
[12] (cf., [7, 9]) Xu obtained:

Theorem B. Let φ(z)( ̸≡ 0) be a function holomorphic in a domain
D ⊂ C, k ∈ N. Let F be a family of meromorphic functions defined in
D, all of whose poles are multiple and whose zeros all have multiplicity
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at least k + 2. If, for every function f ∈ F , f (k)(z) ̸= φ(z), then F is
normal in D.

Theorem C. Let φ(z) ( ̸≡ 0) be a function holomorphic in a domain
D ⊂ C, k ∈ N. Let F be a family of meromorphic functions defined in
D, all of whose zeros all have multiplicity at least k + 3. If, for every
function f ∈ F , f (k)(z) ̸= φ(z), then F is normal in D.

Theorem D. Let φ(z)( ̸≡ 0) be a function holomorphic in a domain
D ⊂ C, k ∈ N. Let F be a family of meromorphic functions defined
in D, all of whose zeros have multiplicity at least k + 2. If, for every
function f ∈ F , f (k)(z) ̸= φ(z), and φ(z) has no simple zeros in D,
then F is normal in D.

We remark that:

(1) the condition ‘all of whose poles are multiple’ in Theorem B is
necessary;

(2) the number k + 3 in Theorem C is best possible;

(3) the hypothesis ‘φ(z) has no simple zeros’ in Theorem D cannot
be omitted.

These can be shown by the following example.

Example 1.1. Let k ∈ N, D = {z : |z| < 1}, φ(z) = z and

F =

{
fn(z) =

1

(k + 1)!

(z − 1/n)k+2

z − (k + 2)/n

}
.

Since

fn(z) =
1

(k + 1)!

(
zk+1 + Pk−1(z) +

a

z − (k + 2)/n

)
,

where Pk−1(z) is a polynomial of degree k− 1 and a ∈ C\{0}, we have

f
(k)
n (z) ̸= φ(z). Clearly, all zeros of fn have multiplicity k + 2, and all
poles of fn are simple. But F is not normal at z = 0.

In this paper, inspired by the idea in [1, 6], we prove the following
result, which shows that the counterexample above is unique in some
sense.
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Theorem 1.2. Let φ(z) ( ̸≡ 0) be a function holomorphic in a domain
D, k ∈ N, and let F be a family of meromorphic functions defined in
D, all of whose zeros have multiplicity at least k+2 such that, for every
function f ∈ F , f (k)(z) ̸= φ(z). If F is not normal at z0 ∈ D, then z0
must be the simple zero of φ(z), and there exist δ > 0 and {fn} ⊂ F
such that

fn(z) =
(z − ξn)

k+2

(z − ηn)
f̂n(z)

on ∆δ(z0) = {z : |z−z0| < δ}, where (ξn−z0)/ρn → −c, (ηn−z0)/ρn →
−(k + 2)c for some sequence of positive numbers ρn → 0 and some

constant c ̸= 0. Moreover, f̂n(z) is holomorphic and non-vanishing on

∆δ(z0) such that f̂n(z) → f̂(z) locally uniformly on ∆δ(z0), where f̂(z)

satisfies [(z − z0)
k+1f̂(z)](k) ≡ φ(z).

In this paper, we denote ∆R = {z : |z| < R} and ∆′
R = {z : 0 <

|z| < R} and drop the subscript when R = 1.

2. Lemmas. To prove our results, we need the following lemmas.

Lemma 2.1. ([8]). Let k be a positive integer, and let F be a family of
meromorphic functions in a domain D such that each function f ∈ F
has only zeros with multiplicities at least k, and suppose that there exists
A ≥ 1 such that |f (k)(z)| ≤ A whenever f(z) = 0, f ∈ F . If F is not
normal at z0 ∈ D, then for each α, 0 ≤ α ≤ k, there exist a sequence
of complex numbers zn ∈ D, zn → z0, a sequence of positive numbers
ρn → 0, and a sequence of functions fn ∈ F such that

gn(ξ) =
fn(zn + ρnξ)

ραn
−→ g(ξ)

locally uniformly with respect to the spherical metric, where g is a non-
constant meromorphic function on C, all of whose zeros have multiplic-
ity at least k, such that g#(ξ) ≤ g#(0) = kA + 1. Moreover, g(ξ) has
order at most 2.

Here, as usual, g#(ξ) = |g′(ξ)|/(1 + |g(ξ)|2) is the spherical deriva-
tive.
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Lemma 2.2. ([11]). Let f be a meromorphic function of finite order
in the plane C, k a positive integer. If all zeros of f are of multiplicity
at least k + 2 and f (k)(z) ̸= 1, then f(z) is a constant.

Lemma 2.3. ([2]). Let f be a transcendental meromorphic function
of finite order, and let b(z) be a polynomial which does not vanish
identically. If f has only multiple zeros, then f ′(z)− b(z) has infinitely
many zeros.

Lemma 2.4. ([12]). Let f be a transcendental meromorphic function,
k ≥ 2, l positive integers. If all zeros of f are of multiplicity at least 3,
then f (k)(z)− zl has infinitely many zeros.

Lemma 2.5. ([11]). Let f be a non-polynomial rational function and
k a positive integer. If f (k)(z) ̸= 1, then

f(z) =
1

k!
zk + ak−1z

k−1 + · · ·+ a0 +
a

(z + b)n
,

where ak−1, . . . , a0, a(̸= 0), b are constants and n is a positive integer.

Lemma 2.6. Let Q be a non-constant rational function and k, l positive
integers. If all zeros of Q are of multiplicity at least k + 2 and
Q(k)(z) ̸= zl, then l = 1 and

Q(z) =
1

(k + 1)!

(z + c)k+2

(z + (k + 2)c)
,

where c is a nonzero constant.

Proof. If Q is a polynomial, then Q(k)(z) − zl is also a polynomial.
Noting that Q(k)(z) ̸= zl, then Q(k)(z) − zl is a zero-free polynomial,
and hence deg(Q(k)(z)−zl) = 0 and Q(k)(z)−zl is a nonzero constant.
So, we may assume thatQ(k)(z) = zl+α, where α is a nonzero constant.
Since all zeros of Q have multiplicity at least k+2, then Q(k+1)(z) = 0
whenever Q(z) = 0. But Q(k+1)(z) = lzl−1 vanishes only for z = 0.
Then Q(0) = 0, so that α = Q(k)(0) = 0, a contradiction. Thus Q is a
non-polynomial rational function.

Set

f(z) = Q(z)− l!

(k + l)!
zk+l +

1

k!
zk.
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Then f(z) is a non-polynomial rational function and f (k)(z) ̸= 1. By
Lemma 2.5,

f(z) =
1

k!
zk + ak−1z

k−1 + · · ·+ a0 +
a

(z + b)n
,

where ak−1, . . . , a0, a( ̸= 0), b are constants and n is a positive integer.
Thus,

(1) Q(z) =
l!

(k + l)!
zk+l + ak−1z

k−1 + · · ·+ a0 +
a

(z + b)n
.

There exists a point z0 such that Q(z0) = 0. Since all zeros of Q have
multiplicity at least k + 2, we get

(2) Q(k)(z0) = zl0 + (−1)k
n(n+ 1) · · · (n+ k − 1)

(z0 + b)n+k
= 0,

and

(3) Q(k+1)(z0) = lzl−1
0 + (−1)k+1n(n+ 1) · · · (n+ k)

(z0 + b)n+k+1
= 0.

We see that z0 ̸= 0 since a ̸= 0. Solving for z0 from (2) and (3), we
obtain

z0 = − bl

n+ k + l
,

and b ̸= 0. By (1), this is the only zero of Q(z) of multiplicity k+ l+n.
From (1), we have Q(k+l+1)(z) ̸= 0. It follows that n = 1 and

Q(z) =
l!

(k + l)!

(z + bl/(k + l + 1))k+l+1

(z + b)
.

Again, by (1), we get

(z +
bl

k + l + 1
)k+l+1 ≡ zk+l(z + b) +

(k + l)!ak−1

l!
zk−1(z + b) + · · ·

+
(k + l)!a0

l!
(z + b) +

(k + l)!a

l!
.

Comparing the coefficients of zk+l gives bl = b, so that l = 1 since
b ̸= 0. Then

Q(z) =
1

(k + 1)!

(z + b/(k + 2))k+2

(z + b)
.
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Letting c = b/(k + 2), we get

Q(z) =
1

(k + 1)!

(z + c)k+2

(z + (k + 2)c)
.

Lemma 2.6 is thus proved. �

Lemma 2.7. Let k be a positive integer, F = {fn} a family of
meromorphic functions defined in a domain D, all of whose zeros have
multiplicity at least k+2, and let {φn(z)} be a sequence of holomorphic
functions such that φn(z) → φ(z)( ̸= 0) locally uniformly on D. If

f
(k)
n (z) ̸= φn(z) for z ∈ D, then F is normal in D.

Proof. Suppose F is not normal at z0 ∈ D. By Lemma 2.1, there
exist a subsequence which we still denote by {fn} for convenience,
complex points zn → z0, and positive numbers ρn → 0 such that

gn(ζ) = ρ−k
n fn(zn + ρnζ) → g(ζ),

locally uniformly on C with respect to the spherical metric, where
g(ζ) is a nonconstant meromorphic function, all of whose zeros have
multiplicity at least k + 2, and g(ζ) has order at most 2.

Moreover, on every compact subset of C which contains no poles of
g(ζ), we have

f (k)
n (zn + ρnζ)− φn(zn + ρnζ)

= g(k)n (ζ)− φn(zn + ρnζ) −→ g(k)(ζ)− φ(z0).

Since f
(k)
n (zn+ρnζ) ̸= φn(zn+ρnζ), Hurwitz’s theorem implies that

either g(k)(ζ) ≡ φ(z0) or g(k)(ζ) ̸= φ(z0) for any ζ ∈ C\{g−1(∞)}.
Clearly, these also hold for all ζ ∈ C.

If g(k)(ζ) ≡ φ(z0), then g(ζ) must be a polynomial of degree k,
which contradicts the fact that all zeros of g(ζ) have multiplicity at
least k + 2. So g(k)(ζ) ̸= φ(z0). Lemma 2.2 implies that g(ζ) is a
constant, a contradiction. Lemma 2.7 is proved. �

3. Proof of Theorem 1. Since F is not normal at z0, by Lemma 2.7,
z0 must be a zero of φ(z). Without loss of generality, we assume
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D = ∆ = {z : |z| < 1}, and

φ(z) = zmϕ(z),

where m ≥ 1, ϕ(0) = 1, ϕ(z) ̸= 0 for all z ∈ ∆. F is normal on ∆′ but
not normal at the origin.

Consider the family

G =

{
g(z) =

f(z)

φ(z)
: f ∈ F

}
.

Since f (k)(0) ̸= φ(0) = 0, and all zeros of f have multiplicity at least
k + 2, we get that f(0) ̸= 0. Thus, for each g ∈ G, g(0) = ∞ with
multiplicity at least m. Furthermore, for each g ∈ G, g(z) has zeros of
multiplicity at least k + 2.

Clearly, G is normal on ∆′. We claim that G is not normal at z = 0.
Indeed, if G is normal at z = 0, then G is normal on the whole disk ∆
and hence equicontinuous on ∆ with respect to the spherical distance.
On the other hand, g(0) = ∞ for each g ∈ G, so there exists ϵ > 0
such that, for every g ∈ G and every z ∈ ∆ϵ, |g(z)| ≥ 1. Then f(z) is
non-vanishing, and thus 1/f is holomorphic on ∆ϵ for all f ∈ F . Since
F is normal on ∆′ but not normal on ∆, the family F1 = {1/f, f ∈ F}
is holomorphic on ∆ϵ and normal on ∆′

ϵ, but it is not normal at z = 0.
Therefore, there exists a sequence {1/fn} ⊂ F1 which converges locally
uniformly on ∆′

ϵ, but not in ∆ϵ. Hence, by the maximum modulus
principle, 1/fn → ∞ on ∆′

ϵ. Thus, fn → 0 converges locally uniformly
on ∆′

ϵ, and so does {gn} ⊂ G, where gn = fn/φ. But |gn(z)| ≥ 1 for
z ∈ ∆ϵ, a contradiction.

Then, by Lemma 2.1, there exist functions {gn} ⊂ G, complex points
zn → 0 and a sequence of positive numbers ρn → 0, such that

Gn(ζ) =
gn(zn + ρnζ)

ρkn
−→ G(ζ)

converges spherically uniformly on compact subsets of C, where G(ζ) is
a nonconstant meromorphic function with finite order, and all of whose
zeros have multiplicity at least k + 2.

By [12, pages 410–411], we can assume that zn/ρn → α, a finite
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complex number. Then

gn(ρnζ)

ρkn
=

gn(zn + ρn(ζ − zn/ρn))

ρkn

= Gn(ζ − zn/ρn) −→ G(ζ − α) = G̃(ζ).

spherically uniformly on compact subsets of C. Clearly, all zeros of

G̃(ζ) have multiplicity at least k + 2, and G̃(0) = ∞ with multiplicity
at least m.

Set

(4) Hn(ζ) =
fn(ρnζ)

ρk+m
n

.

Then

(5) Hn(ζ) =
φ(ρnζ)

ρmn

gn(ρnζ)

ρkn
−→ ζmG̃(ζ) = H(ζ)

spherically uniformly on compact subsets of C. Obviously, all zeros of

H(ζ) have multiplicity at least k + 2 and H(0) ̸= 0 since G̃(0) = ∞
with multiplicity at least m.

Now, we claim that H(k)(ζ) ̸= ζm. Indeed, by (4), we have

0 ̸= f
(k)
n (ρnζ)− φ(ρnζ)

ρmn

= H(k)
n (ζ)− φ(ρnζ)

ρmn
−→ H(k)(ζ)− ζm

uniformly on compact subsets of C.

If there exists ζ0 ∈ C such that H(k)(ζ0) = ζm0 , then H is holomor-
phic at ζ0, and Hurwitz’s theorem implies that H(k)(ζ) ≡ ζm. Hence,
H(ζ) is a polynomial with degree of k + m. H(k)(ζ) = 0 whenever
H(ζ) = 0, since all zeros of H(ζ) have multiplicity at least k + 2. But
H(k)(ζ) = ζm vanishes only for ζ = 0. Then we get H(0) = 0, a
contradiction.

Thus, H(k)(ζ) ̸= ζm. Lemma 2.3 (for k = 1) and Lemma 2.4
(for k ≥ 2) imply that H(ζ) must be a rational function. Then by
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Lemma 2.6, we have m = 1, and

H(ζ) =
(ζ + c)k+2

(k + 1)!(ζ + (k + 2)c)
, c ∈ C\{0}.

This together with (4) and (5) gives that

(6)
fn(ρnζ)

ρk+1
n

−→ (ζ + c)k+2

(k + 1)!(ζ + (k + 2)c)
.

Noting that all zeros of fn have multiplicity at least k+2, there exists
ζn → −c and ζ ′n → −(k + 2)c such that ξn = ρnζn is the zero of fn
with exact multiplicity k + 2 and ηn = ρnζ

′
n is the simple pole of fn.

Now write

(7) fn(z) =
(z − ξn)

k+2

z − ηn
f̂n(z).

Then by (6) and (7), we get

(8) f̂n(ρnζ) −→
1

(k + 1)!

on ζ ∈ C.

Claim 3.1. There exists δ > 0 such that f̂n(z) ̸= 0 on ∆δ.

Suppose not, taking a sequence and renumbering if necessary. f̂n has

zeros tending to 0. Assume ẑn → 0 is the zero of f̂n with the smallest
modulus. Then by (8), we see that ẑn/ρn → ∞.

Set

(9) f̂∗
n(z) = f̂n(ẑnz).

Then f̂∗
n(z) is well-defined on C and non-vanishing on ∆. Moreover,

f̂∗
n(1) = 0.

Now, let

(10) Mn(z) =
(z − ξn/ẑn)

k+2

z − ηn/ẑn
f̂∗
n(z).
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By (7), (9) and (10), we have

Mn(z) =
(zẑn − ξn)

k+2

(zẑn − ηn)

f̂n(ẑnz)

(ẑn)k+1
=

fn(ẑnz)

(ẑn)k+1
.

Obviously, all zeros of Mn(z) have multiplicity at least k + 2. Since

f
(k)
n (z) ̸= φ(z), we obtain

(11) M (k)
n (z)− zϕ(ẑnz) = (ẑn)

−1(f (k)
n (ẑnz)− φ(ẑnz)) ̸= 0.

Hence, by applying Lemma 2.7, {Mn(z)} is normal on C∗ = C\{0}.
Noting that

ξn
ẑn

=
ξn
ρn

ρn
ẑn

−→ 0

and

ηn
ẑn

=
ηn
ρn

ρn
ẑn

−→ 0,

we deduce from (10) that {f̂∗
n} is also normal on C∗. Thus, by taking

a subsequence, we assume that f̂∗
n → f̂∗ spherically locally uniformly

on C∗. Clearly, f̂∗(z) has a zero at 1 with multiplicity at least k + 2

since f̂∗
n(1) = 0.

Set

(12) Kn(z) = M (k)
n (z)− zϕ(ẑnz).

Then, from (11), Kn ̸= 0.

Now we prove that f̂∗(z) ̸≡ 0. Otherwise, f̂∗
n(z) → 0; thus,

Kn(z) → −z and K ′
n(z) → −1 locally uniformly on C∗. By the

argument principle, we have
(13)∣∣∣∣n(1,Kn)− n

(
1,

1

Kn

)∣∣∣∣ = 1

2π

∣∣∣∣ ∫
|z|=1

K ′
n

Kn
dz

∣∣∣∣ −→ 1

2π

∣∣∣∣ ∫
|z|=1

1

z
dz

∣∣∣∣ = 1,

where n(r, f) denotes the number of poles of f in ∆r, counting mul-
tiplicity. It follows that n(1,Kn) = 1, which means that Kn(z) =

M
(k)
n (z)− zϕ(ẑnz) has one simple pole, a contradiction.
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Then 1/f̂∗
n → 1/f̂∗ ̸≡ ∞ spherically locally uniformly on C∗.

Recalling that f̂∗
n is non-vanishing on ∆, then 1/f̂∗

n is holomorphic

on ∆. The maximum modulus principle yields 1/f̂∗
n → 1/f̂∗, and then

f̂∗
n → f̂∗ on ∆. Hence, f̂∗

n → f̂∗ on C.
By (10) and (12), we see that

Kn(z) −→ K(z) = (zk+1f̂∗(z))(k) − z

on C. SinceKn(z) ̸= 0, Hurwitz’s theorem implies that eitherK(z) ≡ 0

or K(z) ̸= 0. Since f̂∗(z) has a zero at 1 with multiplicity at least

k + 2, we know that K(1) = −1. On the other hand, f̂∗
n(0) =

f̂n(0) → 1/(k + 1)! = f̂∗(0), it follows that K(0) = 0. We arrive
at a contradiction, and thus prove our claim.

We now proceed with our proof. Since {fn}, and hence {f̂n} is

normal on ∆′, taking a subsequence and renumbering, we have f̂n → f̂
spherically locally uniformly on ∆′.

The proof follows our previous argument rather closely. We prove

that f̂(z) ̸≡ 0 on ∆′. Otherwise, we have f
(k)
n (z) → 0 and f

(k+1)
n (z) →

0 locally uniformly on ∆′. Then the argument principle yields that:∣∣∣∣n(1

2
, f (k)

n − φ

)
− n

(
1

2
,

1

f
(k)
n − φ

)∣∣∣∣
=

1

2π

∣∣∣∣ ∫
|z|= 1

2

f
(k+1)
n − φ

′

f
(k)
n − φ

dz

∣∣∣∣ → 1

2π

∣∣∣∣ ∫
|z|= 1

2

φ
′

φ
dz

∣∣∣∣ = 1.

Since f
(k)
n (z) ̸= φ(z), we have n( 12 , f

(k)
n ) = n( 12 , f

(k)
n − φ) = 1, which is

impossible.

Hence, 1/f̂n → 1/f̂ ̸≡ ∞ spherically locally uniformly on ∆′. Recall

that f̂n(z) ̸= 0 on ∆δ, 1/f̂n is holomorphic on ∆δ. By the maximum

modulus principle, 1/f̂n → 1/f̂ , and hence f̂n → f̂ spherically locally

uniformly on ∆. Since f̂n(0) → 1/(k + 1)!, we have f̂(0) = 1/(k + 1)!,

so f̂ is holomorphic at 0. Moreover, there exists δ′ > 0 such that each

f̂n is holomorphic on ∆δ′ .

By (7), we obtain fn(z) → zk+1f̂(z) on ∆. Thus,

(14) f (k)
n (z)− φ(z) → [zk+1f̂(z)](k) − φ(z),
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on ∆\(f̂−1(∞)).

If [zk+1f̂(z)](k) − φ(z) ̸≡ 0, by the maximum modulus principle

(14) still holds on ∆ since f
(k)
n (z) ̸= φ(z). Hurwitz’s theorem implies

that [zk+1f̂(z)](k) − φ(z) ̸= 0, violating the fact that [(zk+1f̂(z))(k) −
φ(z)]|z=0 = 0. Hence, [zk+1f̂(z)](k) ≡ φ(z). The proof of Theorem 1 is
completed. �
Acknowledgments. We thank the referee for his/her valuable com-

ments and suggestions made to this paper.

REFERENCES

1. J.M. Chang, Normal families of meromorphic functions whose derivatives
omit a holomorphic function, Science in China, Series: Maththatics, to appear.

2. M.L. Fang, Picard values and normality criterion, Bull. Korean Math. Soc.
38 (2001), 379–387.

3. Y.X. Gu, A normal criterion of meromorphic families, Scientia, Math. Issue
I (1979), 276–274.

4. W.K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.

5. , Research problems in function theory, Athlone Press, London, 1967.

6. X.C. Pang, M.L. Fang and L. Zalcman, Normal families of holomorphic

functions with multiple zeros, Conf. Geom. Dyn. 11 (2007), 101–106.

7. X.C. Pang, D.G. Yang and L. Zalcman, Normal families of meromorphic
functions whose derivatives omit a function, Comp. Meth. Funct. 2 (2002), 257–

265.

8. X.C. Pang and L. Zalcman, Normal families and shared values, Bull. Lond.

Math. Soc. 32 (2000), 325–331.

9. , Normal families of meromorphic functions with multiple zeros and
poles, Israel J. Math. 136 (2003), 1–9.

10. J. Schiff, Normal families, Springer-Verlag, New York,1993.

11. Y.F. Wang and M.L. Fang, Picard values and normal families of meromor-

phic functions with multiple zeros, Acta Math. Sinica 14 (1998), 17–26.

12. Y. Xu, Normality and exceptional functions of derivatives, J. Aust. Math.
Soc. 76 (2004), 403–413.

13. L. Yang, Value distribution theory, Springer-Verlag & Science Press, Berlin,
1993.

Institute of Mathematics, School of Mathematics, Nanjing Normal Uni-
versity, Nanjing 210023, P.R. China

Email address: chengchunnuan@126.com

Institute of Mathematics, School of Mathematics, Nanjing Normal Uni-

versity, Nanjing 210023, P.R. China
Email address: xuyan@njnu.edu.cn


