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ASYMPTOTIC BEHAVIOR IN NEUTRAL
DIFFERENCE EQUATIONS WITH SEVERAL

RETARDED ARGUMENTS

G.E. CHATZARAKIS AND G.N. MILIARAS

ABSTRACT. In this paper, we study the asymptotic be-
havior of the solutions of a neutral type difference equation
of the form

∆

[
x(n) +

w∑
j=1

cjx(τj(n))

]
+ p(n)x(σ(n)) = 0, n ≥ 0

where τj(n), j = 1, . . . , w, are general retarded arguments,
σ(n) is a general deviated argument (retarded or advanced),
cj ∈ R, j = 1, . . . , w, (p(n))n≥0 is a sequence of positive real
numbers such that p(n) ≥ p, p ∈ R+, and ∆ denotes the
forward difference operator ∆x(n) = x(n+ 1)− x(n).

We also examine the convergence of the solutions when
these are continuous and differentiable with respect to cj ,
j = 1, . . . , w.

1. Introduction. A neutral difference equation (NDE) is a differ-
ence equation in which the higher order difference of the unknown se-
quence appears in the equation both with and without delays or ad-
vances. See, for example, [1, 4, 5, 13] and the references cited therein.
We should note that the theory of neutral difference equations presents
complexities, and results which are true for non-neutral difference equa-
tions may not be true for neutral equations [23].

1.1. Applications of NDEs. Apart from mathematical interest, the
study of those equations is motivated by their applications. Neutral
difference equations arise in several areas of applied mathematics, in-
cluding circuit theory [3], bifurcation analysis [2], population dynamics
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[11], dynamical behavior of delayed network systems [32], signal pro-
cessing [2] and so on. Neutral difference equations also come up in the
study of vibrating masses attached to an elastic bar as, for example,
the Euler equation is used in some variational problems and in the the-
ory of automatic control. See, also, Driver [9], Hale [14], Brayton and
Willoughby [5], and the references cited therein. For the general theory
of difference equations the reader is referred to the monographs [1, 4,
13, 17].

Below, we present two applications indicating the relevance of the
equation we study in this paper to real world problems. The two
examples are taken from the areas of signal processing and population
dynamics.

1.1.1. An application in signal processing. A filter is a system
that functions to extract the data from noise, in a signal. The simplest
filters are the FIR (finite impulse response) filters that discriminate
data from noise by computing the “running average” of the input signal.
The term running average simply means regularly sampling the input
signal at a fixed time interval ∆t and computing the average of the
most recent values of the input signal.

Another class of filters is the IIR (infinite impulse response) filters.
In contrast to FIR filters that merely involve previous values of the
input signal, IIR filters involve previous values of the input signal, as
well as previous computed values of the output signal in the compu-
tation of the present output y(n). Since the output is fed back to be
combined with the input, these systems are examples of the general
class of feedback systems.

The defining equation for an IIR filter is the difference equation (see
[20])

y(n) =

n1∑
i=1

aiy(n− i) +

n2∑
i=0

bix(n− i),

where x(n) is the input signal, y(n) is the output signal, ai, 1 ≤ i ≤ n1

and bi, 0 ≤ i ≤ n2 are real constants. Thus,

y(n+ 1) =

n1∑
i=1

aiy(n+ 1− i) +

n2∑
i=0

bix(n+ 1− i).
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From the above equations, it follows that

∆y(n) =

n1∑
i=1

ai∆y(n− i) +

n2∑
i=0

bi∆x(n− i)

and

L∑
ℓ=1

cℓ∆y(n− ρℓ) =
L∑

ℓ=1

cℓ

n1∑
i=1

ai∆y(n− ρℓ − i)

+
L∑

ℓ=1

cℓ

n2∑
i=0

bi∆x(n− ρℓ − i),

where cℓ, 1 ≤ ℓ ≤ L, are real constants and ρℓ, 1 ≤ ℓ ≤ L are positive
integers.

Combining the last two equations we obtain

∆

[
y(n) +

L∑
ℓ=1

cℓy(n− ρℓ)

]
=

n1∑
i=1

ai

[
∆y(n− i) +

L∑
ℓ=1

cℓ∆y(n− ρℓ − i)

]

+

n2∑
i=0

bi

[
∆x(n− i)+

L∑
ℓ=1

cℓ∆x(n−ρℓ−i)

]
or

∆

[
y(n) +

L∑
ℓ=1

cℓy(n− ρℓ)

]
+

n1+max1≤ℓ≤L ρℓ∑
j=0

p(j)y(n− j)

=

n2+max1≤ℓ≤L ρℓ∑
j=0

q(j)x(n− j),

where p(j), 0 ≤ j ≤ n1 + max1≤ℓ≤L ρℓ and q(j), 0 ≤ j ≤ n2 +
max1≤ℓ≤L ρℓ are real constants.

That means that the functional characteristics/properties of the
class of IIR filters are described by a neutral difference equation having
the above form, which is the non-homogeneous form of the equation we
study in this paper.

1.1.2. An application in population dynamics. Neutral differ-
ence equations have been and are used to describe/model the dynamics
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of a population or species that increases from the reproduction of its
members and decrease from competition, both within the population
and competition from another population or species. The neutral dif-
ference equation we study in the paper is a more general form of the
neutral difference equation that has been (commonly) used to model
the change–growth or depletion–of species or populations.

If we denote x(n) to be the size of a population at the time unit
n, then according to the Malthus model of population dynamics, the
size/growth of the population at n + 1 is described by an equation of
the form

x(n+ 1)− x(n) = q(n)x(n−m), n ≥ 0,

where q(n) is a time dependent growth rate. The delay m indicates
that it takes m periods of time for a newborn in the population to
mature and start reproducing.

However, a population’s growth is checked by various environmental
agents and factors, primarily the limited resources that lead to intra
and extra population competition. Except from competition, various
other causes, like disease, act to check the growth of a population.
We can describe the affect on a population, namely, the decrease in
a population, due to disease and intra population competition by the
difference equation

c [x(n− k + 1)− x(n− k)] = p(n)x(n− r), n ≥ 0,

where c is a real constant, p(n) is a time dependent depletion rate and
k, r are nonnegative integers such that r ≥ k. The value of delay r
is chosen so that r ≥ m + 1, thus indicating that, on the average, the
relatively more aged members of the population are more susceptible
to competition and disease than the younger ones.

Combining the above equations, the net change in the size of the
population can be described by the neutral difference equation

∆ [x(n)− cx(n− k)]− q(n)x(n−m) + p(n)x(n− r) = 0, n ≥ 0.

If the rate q(n) of the population’s reproduction is slow relative to the
rate p(n) at which the population is depleted due to, say, an epidemic
disease and −1 < c < 1, then in the short term, the change in the
population can be described by the neutral difference equation

∆ [x(n)− cx(n− k)] + p(n)x(n− r) = 0, n ≥ 0,
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which is a special case of the neutral difference equation we study in
this paper (see Section 3, Theorem 3.1, Part III).

1.2. NDE with several retarded arguments. Consider the neu-
tral difference equation in which the difference of the unknown sequence
appears in the equation both with and without more than one delay

(E) ∆

[
x(n) +

w∑
j=1

cjx(τj(n))

]
+ p(n)x(σ(n)) = 0, n ≥ 0,

where (p(n))n≥0 is a sequence of positive real numbers such that
p(n) ≥ p, p ∈ R+, cj ∈ R, j = 1, . . . , w, (τj(n))n≥0, j = 1, . . . , w
is an increasing sequence of integers that satisfies

(1.1)
τj(n) ≤ n− 1, j = 1, . . . , w ∀ n ≥ 0, limn→∞ τj(n) = +∞

and
τℓ(n) < τm(n+ 1), ∀ ℓ,m ∈ [1, w] ∩ N

and (σ(n))n≥0 is an increasing sequence of integers such that

(1.2)
σ(n) ≤ n− 1 ∀ n ≥ 0, limn→∞ σ(n) = +∞,

or
σ(n) ≥ n+ 1 ∀ n ≥ 0.

The keen interest in equation (E) is motivated by the fact that it
represents a general form of first order neutral difference equations (see
[6])

(E1) ∆ [x(n) + cx(τ(n))] + p(n)x(σ(n)) = 0, n ≥ 0,

where (p(n))n≥0 is a sequence of positive real numbers such that
p(n) ≥ p, p ∈ R+, c ∈ R, (τ(n))n≥0 is an increasing sequence of
integers which satisfies

(1.1′) τ(n) ≤ n− 1 for all n ≥ 0 and lim
n→∞

τ(n) = +∞

and (σ(n))n≥0 is an increasing sequence of integers such that (1.2)
holds.

Define

k = − min
n≥0

1≤j≤w

{τj(n), σ(n)} if σ(n) is a retarded argument.



136 G.E. CHATZARAKIS AND G.N. MILIARAS

(Clearly, k is a positive integer.)

By a solution of the neutral difference equation (E), we mean a
sequence of real numbers (x(n))n≥−k which satisfies (E) for all n ≥ 0.
It is clear that, for each choice of real numbers c−k, c−k+1, . . . , c−1,
c0, there exists a unique solution (x(n))n≥−k of (E) which satisfies the
initial conditions x(−k) = c−k, x(−k + 1) = c−k+1, . . . , x(−1) = c−1,
x(0) = c0.

A solution (x(n))n≥−k of the neutral difference equation (E) is called
oscillatory if, for every positive integer n0 there exist n1, n2 ≥ n0

such that x(n1)x(n2) ≤ 0. In other words, a solution (x(n))n≥−k is
oscillatory if it is neither eventually positive nor eventually negative.
Otherwise, the solution is said to be nonoscillatory.

If σ(n) is an advanced argument, then:

By a solution of the neutral difference equation (E), we mean a
sequence of real numbers (x(n))n≥0 which satisfies (E) for all n ≥ 0.

A solution (x(n))n≥0 of the neutral difference equation (E) is called
oscillatory if, for every positive integer n0, there exist n1, n2 ≥ n0 such
that x(n1)x(n2) ≤ 0. In other words, a solution (x(n))n≥0 is oscillatory
if it is neither eventually positive nor eventually negative. Otherwise,
the solution is said to be nonoscillatory.

In the special case where τj(n) = n−aj , σ(n) = n± b, aj , b ∈ N and
τ(n) = n− a, a ∈ N, equations (E) and (E1) take the forms:

(E′) ∆

[
x(n) +

w∑
j=1

cjx(n− aj)

]
+ p(n)x(n± b) = 0, n ≥ 0

(E′
1) ∆ [x(n) + cx(n− a)] + p(n)x(n± b) = 0, n ≥ 0,

respectively.

In the last few decades the asymptotic behavior of neutral difference
equations has been extensively researched and developed. Hence, a
large number of related papers have been published. See [2, 3, 5–8,
10, 12, 15, 16, 18, 19, 22, 24–31], and the references cited therein.
Most of these papers concern the special case of the neutral delay
difference equation (E′

1) where the algebraic characteristic equation
provides useful information about oscillation and stability, while only a
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small number of papers have dealt with the general case of the neutral
difference equation (E1).

Regarding equation (E1), recently, Chatzarakis and Miliaras [8]
established the following theorem:

Theorem 1.1 [8]. For equation (E1), the following statements hold
true:

(I) Every nonoscillatory solution is unbounded if c < −1.
(II) Every solution oscillates if c = −1.
(III) Every nonoscillatory solution tends to zero if −1 < c < 1.
(IV) Every nonoscillatory solution is bounded if c ≥ 1.

Furthermore, if any solution of (E1) is continuous with
respect to c, then the following statements hold :

(V) Every solution is eventually zero, if c ≤ −1.
(VI) Every solution tends to zero, if −1 < c ≤ 1.
(VII) If additionally, any solution of (E1) has continuous derivatives

of any order and convergent Taylor series for every c ∈ R, then
the solution is zero.

In the same article [8], Chatzarakis and Miliaras established the
following corollary for equation (E′

1):

Corollary 1.1 [8]. For equation (E′
1), the following statements hold

true:

(i) Every nonoscillatory solution tends to ±∞ if c < −1.
(ii) Every solution oscillates if c = −1.
(iii) Every nonoscillatory solution tends to zero if c > −1.

Furthermore, if any solution of (E′
1) is continuous with

respect to c, then the following statements hold :
(iv) Every solution is eventually zero, if c ≤ −1.
(v) If additionally, any solution of (E′

1) has continuous derivatives
of any order and convergent Taylor series for every c ∈ R, then
the solution is zero.

The objective in this paper is to investigate the convergence and
divergence of solutions of equation (E) in the case of general delay
arguments τj(n), j = 1, 2, . . . , w, and a general deviated (retarded or
advanced) argument σ(n), depending on real constants cj , j = 1, . . . , w.
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2. Some preliminaries. Assume that (x(n))n≥−k is a nonoscilla-
tory solution of (E). Then it is either eventually positive or eventually
negative. As (−x(n))n≥−k is also a solution of (E), we can restrict
ourselves only to the case where x(n) > 0 for all large n. Let n1 ≥ −k
be an integer such that x(n) > 0, for all n ≥ n1. Then, there exists
n0 ≥ n1 such that

x(σ(n)) > 0, x(τj(n)) > 0, j = 1, 2, . . . , w for all n ≥ n0.

Set

(2.1) z(n) = x(n) +
w∑

j=1

cjx(τj(n)).

In view of (2.1), equation (E) becomes

(2.2) ∆z(n) + p(n)x(σ(n)) = 0.

Taking into account that p(n) ≥ p > 0, we have

∆z(n) = −p(n)x(σ(n)) ≤ −px(σ(n)) < 0, for all n ≥ n0,

which means that the sequence (z(n)) is eventually strictly decreasing,
regardless of the values of the real constants cj .

Let the domain of τj be the setD(τj) = Nn∗
j
= {n∗

j , n
∗
j+1, n∗

j+2, . . .},
where n∗

j is the smallest natural number that τj is defined. Set

n∗ = max
1≤j≤w

n∗
j .

Then τj , j = 1, 2, . . . , w, is defined in the set Nn∗ = {n∗, n∗ + 1, n∗ +
2, . . .}.

Let the subsequences

(2.3)
x(τρ(n)(n)) = max {x(τ1(n)), x(τ2(n)), . . . , x(τw(n))}

and
x(τφ(n)(n)) = min {x(τ1(n)), x(τ2(n)), . . . , x(τw(n))} ,

where ρ(n), φ(n) are sequences that take values in the set {1, 2, . . . , w}.
Clearly, condition (1.1) guarantees that (x(τρ(n)(n))) and (x(τφ(n)(n)))
are subsequences of (x(n)).

Notice that

(2.4) τj1(τj2(· · · τjℓ(n))) = τj1(ns) where ns = τj2(· · · τjℓ(n)).
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The following lemma provides some tools which are useful for the main

results:

Lemma 2.1. Assume that (x(n))n≥−k is a positive solution of (E).
Then the following statements hold :

(i) If
∞∑

i=n0

p(i)x(σ(i)) = S0 < +∞,

then

(2.5) lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

cjx(τj(σ(n))), A ∈ R.

(ii) If
∞∑

i=n0

p(i)x(σ(i)) = +∞,

then

(2.6) z(n) < 0 eventually.

(iii) If the constants cj are all nonpositive or nonnegative and
c ≥ −1, then

(2.7)

∞∑
i=n0

p(i)x(σ(i)) = S0 < +∞.

Proof. Summing up (2.2) from n0 to n, n ≥ n0 ,we obtain

z(n+ 1)− z(n0) +
n∑

i=n0

p(i)x(σ(i)) = 0,

or

(2.8) z(n+ 1) = z(n0)−
n∑

i=n0

p(i)x(σ(i)).
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For the above relation, there are only two possible cases:

(2.8.a)

∞∑
i=n0

p(i)x(σ(i)) = S0 < +∞,

or

(2.8.b)
∞∑

i=n0

p(i)x(σ(i)) = +∞.

Assume that (2.8.a) holds. Since p(n) ≥ p > 0, we have

+∞ > S0 =
∞∑

i=n0

p(i)x(σ(i)) ≥ p
∞∑

i=n0

x(σ(i)).

The last inequality guarantees that

∞∑
i=n0

x(σ(i)) < +∞

and, consequently,

(2.9) lim
n→∞

x(σ(n)) = 0.

Also, (2.8.a) guarantees that limn→∞ z(n) exists as a real number. Set

lim
n→∞

z(n) = A ∈ R.

Since (z(σ(n))) is a subsequence of (z(n)), we have limn→∞ z(σ(n)) =
A, or

lim
n→∞

[
x(σ(n)) +

w∑
j=1

cjx(τj(σ(n)))

]
= A.

Using (2.9), we obtain

lim
n→∞

w∑
j=1

cjx(τj(σ(n))) = A.

Thus,

lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

cjx(τj(σ(n))).

The proof of part (i) of the lemma is complete.
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Assume that (2.8.b) holds. Then, by taking limits on both sides of
(2.8) we obtain limn→∞ z(n) = −∞ which, in conjunction with that
fact that the sequence (z(n)) is eventually strictly decreasing, means
that

z(n) < 0 eventually.

The proof of part (ii) of the lemma is complete.

Assume that −1 ≤ c < 0 and suppose, for the sake of contradiction,
that

∑∞
i=n0

p(i)x(σ(i)) = +∞. Then, in view of part (ii), we have
z(n) < 0 eventually. Thus, if

(2.10) c =

w∑
j=1

cj

and, taking into account definition (2.3), we have

x(n) < −
w∑

j=1

cjx(τj(n)) ≤
(
−

w∑
j=1

cj

)
x(τρ1(n)(n))

= −cx(τρ1(n)(n))

< (−c)

(
−

w∑
j=1

cjx(τj(τρ1(n)(n)))

)

≤ (−c)

(
−

w∑
j=1

cj

)
x(τρ2(n)(τρ1(n)(n)))

= (−c)
2
x(τρ2(n)(τρ1(n)(n)))

< · · · < (−c)
m(n)

x(τρm(n)
(τρm(n)−1

(· · ·τρ1(n)(n)))).

Based on (2.4), the last inequality becomes

(2.11) x(n) < (−c)
m(n)

x(τρm(n)
(n∗)).

If −1 < c < 0, clearly (−c)m(n) → 0 since m(n) → ∞ as n → ∞. Since
x(n) > 0 for all large n, (2.11) guarantees that limn→∞ x(n) = 0. This
implies that limn→∞ z(n) = 0, and consequently,

∑∞
i=n0

p(i)x(σ(i)) <
∞, which contradicts our assumption.

If c = −1, from (2.11) we obtain x(n) < x(τρm(n)
(n∗)), which

means that (x(n)) is bounded, and therefore, (z(n)) is bounded. Thus,∑∞
i=n0

p(i)x(σ(i)) < ∞, which contradicts our assumption.
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Assume that c ≥ 0 and
∑∞

i=n0
p(i)x(σ(i)) = ∞. In view of

part (ii), (2.6) holds, i.e., z(n) < 0 eventually. This contradicts z(n) =
x(n)+

∑w
j=1 cjx(τj(n)) > 0. Therefore,

∑∞
i=n0

p(i)x(σ(i)) = S0 < +∞.

The proof of part (iii) of the lemma is complete.

The proof of Lemma 2.1 is complete. �

3. Main results. The asymptotic behavior of the solutions of the
neutral type difference equation (E) is described by the theorem be-
low. It is clear that the behavior of x(n) depends on the con-
stants c1, c2, . . . , cw. So, we may consider x(n) to be a function of
(c1, c2, . . . , cw). We examine the behavior of x(c1, c2, . . . , cw, n) in terms
of continuity and differentiability and, as we will see, the results we will
obtain are essentially different, especially in the case where the delays
are constant.

Theorem 3.1. For equation (E), the following statements hold :

(I) Every nonoscillatory solution does not converge in R if the
constants cj are all nonpositive and c < −1.

(II) Every solution oscillates if the constants cj are all nonpositive
and c = −1.

(III) Every nonoscillatory solution tends to zero if either cjs are all
nonpositive or the cjs are all nonnegative, and −1 < c < 1.

(IV) Every nonoscillatory solution is bounded if the cjs are all
nonnegative and c ≥ 1.

If any solution of (E) is continuous with respect to (c1,c2, . . . ,
cw) where the cjs are either nonpositive or nonnegative, then
the following statements hold :

(V) Every solution is eventually zero, if c = −1.
(VI) Every solution tends to zero, if −1 < c ≤ 1.

Proof. Assume that (x(n))n≥−k is a nonoscillatory solution of
(E). Then it is either eventually positive or eventually negative. As
(−x(n))n≥−k is also a solution of (E), we can restrict ourselves only to
the case where x(n) > 0 for all large n. Let n1 ≥ −k be an integer such
that x(n) > 0, for all n ≥ n1. Then, there exists n0 ≥ n1 such that

x(σ(n)) > 0, x(τj(n)) > 0, j = 1, 2, . . . , w, ∀ n ≥ n0.
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Set

(2.1) z(n) = x(n) +

w∑
j=1

cjx(τj(n)).

In view of (2.1), equation (E) becomes

(2.2) ∆z(n) + p(n)x(σ(n)) = 0.

Taking into account the fact that p(n) ≥ p > 0, we have

∆z(n) = −p(n)x(σ(n)) ≤ −px(σ(n)) < 0 for all n ≥ n0,

which means that the sequence (z(n)) is strictly decreasing eventually,
regardless of the values of the real constants cj ’s.

Assume that the cj ’s are all nonpositive and c < −1. If (2.8.a) holds,
then, in view of part (i) of Lemma 2.1, we have

lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

cjx(τj(σ(n))), A ∈ R,

which guarantees that A ≤ 0.

If A = 0, then
lim

n→∞
z(n) = 0.

Taking into account that the sequence (z(n)) is eventually strictly
decreasing, it follows that, eventually, z(n) > 0. Thus, from (2.3),
(2.4) and (2.10), we have

x(n) > −
w∑

j=1

cjx(τj(n)) ≥
(
−

w∑
j=1

cj

)
x(τφ1(n)(n))

= −cx(τφ1(n)(n)) > · · · > (−c)
m(n)

x(τφm(n)
(n∗)).

Consequently,

lim
n→∞

x(n) ≥ lim
n→∞

[
(−c)

m(n)
x(τφm(n)

(n∗))
]
= +∞,

which contradicts (2.9). Therefore, A < 0. Now, since limn→∞ x(σ(n))
= 0, (x(n)) has more than one accumulation point. Thus, (x(n)) does
not converge in R.
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Assume that (2.8.b) holds. Then, by taking limits on both sides of
(2.8) we obtain

lim
n→∞

z(n) = −∞,

or

lim
n→∞

[
x(n) +

w∑
j=1

cjx(τj(n))

]
= −∞,

or

lim
n→∞

x(n) +
 w∑

j=1

cj

x(τρ(n)(n))

 = −∞,

or
lim

n→∞

[
x(n) + cx(τρ(n)(n))

]
= −∞.

Since c < −1, the last relation guarantees that

lim
n→∞

x(τρ(n)(n)) = +∞,

which means that (x(n)) is unbounded. Therefore, (x(n)) does not
converge in R. The proof of part (I) of the theorem is complete.

Assume that the constants cj are all nonpositive and c = −1. Then,
from parts (iii) and (i) of Lemma 2.1, we have

lim
n→∞

z(n) = lim
n→∞

[
x(n) +

w∑
j=1

cjx(τj(n))

]
= A

= lim
n→∞

w∑
j=1

cjx(τj(σ(n)))

which guarantees that A ≤ 0.

Assume that A < 0. Then there exists a natural number nλ such
that z(n) < 0, for all n ≥ nλ. Thus, from (2.3), (2.4) and (2.10), we
have

x(n) < −
w∑

j=1

cjx(τj(n)) ≤
(
−

w∑
j=1

cj

)
x(τρ1(n)(n))

= x(τρ1(n)(n)) < −
w∑

j=1

cjx(τj(τρ1(n)(n)))
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≤
(
−

w∑
j=1

cj

)
x(τρ2(n)(τρ1(n)(n)))

= x(τρ2(n)(τρ1(n)(n))) < · · · < x(τρm(nℓ)
(ns))

which means that (x(n)) is bounded.

Let

(3.1) M = lim sup
n→∞

x(n).

Then there exists a subsequence (x(θ(n))) of (x(n)) such that

lim
n→∞

x(θ(n)) = M.

Thus,

lim
n→∞

[
x(θ(n)) +

w∑
j=1

cjx(τj(θ(n)))

]
= A,

or

− lim
n→∞

[ w∑
j=1

cjx(τj(θ(n)))

]
= M −A.

Therefore, for every ε with 0 < ε < −A, there exists n3 ∈ N such that

−
w∑

j=1

cjx(τj(θ(n))) + ε ≥ M −A, for all n ≥ n3

or (
−

w∑
j=1

cj

)
x(τρ(θ(n))(θ(n))) + ε ≥ M −A,

or
x(τρ(θ(n))(θ(n))) + ε ≥ M −A,

or
M + ε ≥ lim sup

n→∞

[
x(τρ(θ(n))(θ(n)))

]
+ ε > M −A

or
ε ≥ −A.

This result contradicts that ε < −A, and therefore A = 0, i.e.,
limn→∞ z(n) = 0. Furthermore, taking into account the fact that
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the sequence (z(n)) is eventually strictly decreasing, we conclude that
z(n) > 0, or equivalently,

x(n) +
w∑

j=1

cjx(τj(n)) > 0,

or

x(n) > −
w∑

j=1

cjx(τj(n)) ≥
(
−

w∑
j=1

cj

)
x(τφ1(n)(n))

= x(τφ1(n)(n)) > · · · > x(τφm(n)
(n∗)).

Since (x(n)) has a lower bound greater than zero, it cannot have any
subsequence that tends to zero. Thus, limn→∞ x(σ(n)) = 0 is not valid,
and therefore

∑∞
i=n0

p(i)x(σ(i)) = ∞, which comes to contradiction

with our previous assumptions. Thus, if c = −1, (x(n)) oscillates. The
proof of part (II) of the theorem is complete.

Assume that the constants cj are all nonpositive and −1 < c < 0.
In view of parts (i) and (iii) of Lemma 2.1, by a similar procedure as
in part (II), we conclude that A ≤ 0.

Assume that A < 0. Then there exists a natural number nλ such
that z(n) < 0, for all n ≥ nλ, and therefore

x(n) < −
w∑

j=1

cjx(τj(n)) ≤
(
−

w∑
j=1

cj

)
x(τρ1(n)(n))

= (−c)x(τρ1(n)(n)) < · · · < (−c)m(nℓ)x(τρm(nℓ)
(ns)),

which means that (x(n)) tends to zero as n → ∞. Thus, (z(n)) tends
to zero as n → ∞, i.e., A = 0, which contradicts the assumption that
A < 0. Hence, A = 0.

Taking into account the fact that the sequence (z(n)) is strictly
decreasing, it is obvious that z(n) > 0. Hence, for every ε > 0, there
exists a natural number n4 such that

x(n) +
w∑

j=1

cjx(τj(n)) < ε, for all n ≥ n4
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or

x(n) < −
w∑

j=1

cjx(τj(n)) + ε ≤
(
−

w∑
j=1

cj

)
x(τρ1(n)(n)) + ε

= −cx(τρ1(n)(n)) + ε

< −c

[
−

k∑
j=1

cjx(τj(τρ1(n)(n))) + ε

]
+ ε

≤ −c

[(
−

w∑
j=1

cj

)
x(τρ2(n)(τρ1(n)(n))) + ε

]
+ ε

= −c
[
−cx(τρ2(n)(τρ1(n)(n))) + ε

]
+ ε

= c2x(τρ2(n)(τρ1(n)(n)))− cε+ ε

< · · · < (−c)
m(nℓ) x(τρm(nℓ)

(ns)) + ε

− cε+ · · ·+ (−c)
m(nℓ) ε.

As n → ∞, clearly m(nℓ) → ∞, and therefore,

lim
n→∞

x(n) ≤ lim
n→∞

[
ε− cε+ · · ·+ (−c)

m(nℓ) ε
]
=

ε

1 + c
.

Since ε is an arbitrary positive real number and (x(n)) > 0, it becomes
evident that

lim
n→∞

x(n) = 0.

Let c = 0. In view of part (iii) of Lemma 2.1, we have

∞∑
i=n0

p(i)x(σ(i)) < +∞.

This guarantees that (z(n)) is bounded. Therefore, (x(n)) is bounded,
since z(n) = x(n). Also, since (z(n)) is strictly decreasing, we can infer
that limn→∞ z(n) exists, and consequently, limn→∞ x(n) exists. Using
(2.9), we conclude that

lim
n→∞

x(n) = 0.

Assume that 0 < c < 1. Then, using parts (i) and (iii) of Lemma 2.1,
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we have

lim
n→∞

k∑
j=1

cjx(τj(σ(n)) = A.

Therefore, for every ε with 0 < ε < (1− c)A, there exists n5 ∈ N such
that, for all n ≥ n5,

w∑
j=1

cjx(τj(σ(n))) + ε > A,

or ( w∑
j=1

cj

)
x(τρ(σ(n))(σ(n))) + ε > A,

or
cx(τρ(σ(n))(σ(n))) + ε > A,

or

x(τρ(σ(n))(σ(n))) >
A− ε

c
,

and therefore

z(τρ(σ(n))(σ(n)) >
A− ε

c
> A,

which contradicts that 0 < ε < (1− c)A. Hence, A = 0, i.e.,

lim
n→∞

z(n) = 0,

and since
z(n) ≥ x(n) > 0,

we have
lim
n→∞

x(n) = 0.

The proof of part (III) of the theorem is complete.

Assume that c ≥ 1. By part (iii) of Lemma 2.1,
∑∞

i=n0
p(i)x(σ(i)) <

+∞ which, in conjunction with (2.8), implies that (z(n)) is bounded.
Therefore, (x(n)) is bounded. The proof of part (IV) of the theorem is
complete.

For the rest of the proof, we assume that x(n) is a continuous
function with respect to (1, c2, . . . , cw), where the constants cj are either
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nonpositive or nonnegative. Therefore, instead of x(n), we shall write
x(c1, c2, . . . , cw, n).

Let

d1, d2, . . . , dw ≤ 0 with d1 + d2 + · · ·+ dw = −1.

Then, in view of part (II), (x(d1, d2, . . . , dw, n)) oscillates. On the other
hand, since x(c1, c2, . . . , cw, n) is continuous, we have

lim
(c1,c2,...,cw)→(d1,d2,···,dw)

x(c1, c2, . . . , cw, n) = x(d1, d2, . . . , dw, n).

But x(c1, c2, . . . , cw, n) > 0 for all large n, and therefore its limit is
always nonnegative. Thus,

x(d1, d2, . . . , dw, n) ≥ 0 for all large n,

which contradicts that (x(d1, d2, . . . , dw, n)) oscillates. Thus, x(d1, d2,
. . . , dw, n) = 0, eventually. Thus, for every w-tuple (d1, d2, . . . , dw) with
d1 + d2 + · · · + dw = −1, we have x(d1, d2, . . . , dw, n) = 0, eventually.
The proof of part (V) of the theorem is complete.

Let a point

(c1, c2, . . . , cw) with − 1 < c1 + c2 + · · ·+ cw = c ≤ 1,

and a point

(d1, d2, . . . , dw) with d1 + d2 + · · ·+ dw = 1.

Taking into account part (III), it suffices to show part (VI), only for
c = 1. From parts (i) and (iii) of Lemma 2.1, we have

lim
n→∞

w∑
j=1

cjx(c1, c2, . . . , cw, τj(σ(n))) = A.

Thus, for every ε > 0, there exists n6 ∈ N such that

w∑
j=1

cjx(c1, c2, · · ·, cw, τj(σ(n))) ≥ A+ ε, for all n ≥ n6

or ( w∑
j=1

cj

)
x(c1, c2, . . . , cw, τρ(n)(n)) ≥ A+ ε,
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or

x(c1, c2, . . . , cw, τρ(n)(n)) ≥
A+ ε

c
.

Assume, for the sake of contradiction, that A > 0. Taking into account
the fact that

lim
n→∞

x(c1, c2, . . . , cw, n) = 0

when
0 < c1 + c2 + · · ·+ cw < 1,

there exists n7 ∈ N such that

x(c1, c2, . . . , cw, x(τρ(n)(n))) <
A

2
, for all n ≥ n7,

since limn→∞ x(c1, c2, . . . , cw, x(τρ(n)(n))) = 0. But (A+ ε)/c > A/c >
A/2, since c < 1. Therefore, A = 0, i.e.,

lim
n→∞

z(d1, d2, . . . , dw, n) = 0,

which means that

lim
n→∞

x(d1, d2, . . . , dw, n) = 0.

The proof of part (VI) of the theorem is complete.

The proof of Theorem 3.1 is complete. �

As a consequence of Theorem 3.1, we postulate the following corol-
lary:

Corollary 3.2. For equation (E′), the following hold :

(i) Every nonoscillatory solution is unbounded if c < −1.
(ii) Every solution oscillates if c = −1.
(iii) Every nonoscillatory solution tends to zero if c > −1.

If any solution of (E1) is continuous with respect to c, then
the following statements are true:

(iv) Every solution is eventually zero, if c ≤ −1.
(v) If additionally, any solution of (E1) has continuous derivatives

of any order and convergent Taylor series for every cj ∈ R,
then the solution is zero.
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Proof. Assume that the constants cj are all nonpositive and c < −1.
If

∑∞
i=n0

p(i)x(n ± b) = S0 < +∞, then, in view of part (i), (2.4) is
satisfied, i.e.,

lim
n→∞

z(n) = A = lim
n→∞

w∑
j=1

cjx(n− aj ± b),

which guarantees that A ≤ 0.

Let A < 0. Since limn→∞ x(n ± b) = 0, it is obvious that
limn→∞ x(n) = 0, and consequently limn→∞ x(n − aj) = 0. Thus,
limn→∞ z(n) = 0, which contradicts A < 0. Hence, A = 0.

Taking into account that the sequence (z(n)) is eventually strictly
decreasing, it is obvious that z(n) > 0 eventually, or

x(n) > −
w∑

j=1

cjx(n− aj) ≥
(
−

w∑
j=1

cj

)
x(n− a

φ1(n)
)

= −cx(n− a
φ1(n)

) > · · · > (−c)
m(n)

x(n∗ − a
φm(n)

).

Thus,

lim
n→∞

x(n) ≥ lim
n→∞

[
(−c)

m(n)
x(n∗ − aφm(n)

)
]
= +∞,

which contradicts (2.9). Therefore,
∑∞

i=n0
p(i)x(σ(i)) = +∞. Now,

summing up (2.2) from n0 to n, we obtain

(2.8) z(n+ 1) = z(n0)−
n∑

i=n0

p(i)x(n± b).

Taking limits on both sides of (2.8) we obtain

lim
n→∞

z(n) = −∞,

or

lim
n→∞

[
x(n) +

w∑
j=1

cjx(n− aj)

]
= −∞,

or

lim
n→∞

[
x(n) +

( w∑
j=1

cj

)
x(n− aρ(n))

]
= −∞,
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or
lim

n→∞

[
x(n) + cx(n− aρ(n))

]
= −∞.

Since c < −1, the last relation guarantees that

lim
n→∞

x(n− aρ(n)) = +∞,

which means that (x(n)) is unbounded. The proof of part (i) of the
corollary is complete.

Part (ii) follows directly from part (I) of Theorem 3.1.

As we have proved in parts (III) and (IV) of the Theorem 3.1, if
c > −1, then

lim
n→∞

x(σ(n)) = 0,

and consequently,
lim

n→∞
x(n± b) = 0,

which means that
lim
n→∞

x(n) = 0.

The proof of part (iii) of the corollary is complete.

In view of part (V) of Theorem 3.1, it suffices to consider the case
c < −1.

Let M > 0. Then there exists an index n5 such that x(c1, c2, . . . , cw,
n − aρ(n)) > M , for all n ≥ n5. Since the function x(c1, c2, . . . , cw, n)
is continuous, so is x(c1, c2, . . . , cw, n− aρ(n)). Therefore,

lim
(c1,c2,...,cw)→(d1,d2,...,dw)

x(c1, c2, . . . , cw, n− aρ(n))

= x(d1, d2, . . . , dw, n− aρ(n)) = 0

for all n ≥ n5. Hence, there exists h > 0 so that, if c1 + c2 + · · ·+ cw >
−1− h, then x(c1, c2, . . . , cw, n− aρ(n)) < M , for all n ≥ n5. But that
is a contradiction to x(c1, c2, . . . , cw, n− aρ(n)) > M .

This implies that there exists an open ball B((a1, a2, . . . , aw), r) such
that

x(c1, c2, . . . , cw, n) = 0

for all (c1, c2, . . . , cw) ∈ B((d1, d2, . . . , dw), r) eventually. Let



ASYMPTOTIC BEHAVIOR 153

R = sup {r | x(c1, c2, . . . , cw, n) = 0

for all (c1, c2, . . . , cw) ∈ B((d1, d2, . . . , dw), r)} .

Let
(b1, b2, . . . , bw) with b1 + b2 + · · ·+ bw < −1

be the intersection of the line connecting the origin of Rw and
(d1, d2, . . . , dw) with the surface of B((d1, d2, . . . , dw), R). Then, for
all (c1, c2, . . . , cw) ∈ B((d1, d2, . . . , dw), R), we have

lim
(c1,c2,...,cw)→(b1,b2,...,bw)

x(c1, c2, . . . , cw, n) = x(b1, b2, . . . , bw, n)

by continuity. But, x(c1, c2, . . . , cw, n) = 0. Thus,

x(b1, b2, . . . , bw, n) = 0, eventually.

Thus, by a similar procedure, we obtain an open ball B((b1, b2, . . . , bw),

R
′
) such that

x(c1, c2, . . . , cw, n) = 0

for every (c1, c2, . . . , cw) ∈ B ((b1, b2, . . . , bw) , R
′) eventually.

Repeating the above procedure infinitely many times, we conclude that,
for every point (c1, c2, . . . , cw) with c1+c2+· · ·+cw < −1 which belongs
to the line connecting the origin of Rw and (d1, d2, . . . , dw), we have

x(c1, c2, . . . , cw, n) = 0, eventually.

Therefore, every point (c1, c2, . . . , cw) with c1 + c2 + · · · + cw ≤ −1,
on any line passing through the origin, satisfies x(c1, c2, . . . , cw, n) = 0,
eventually. Thus,

x(c1, c2, . . . , cw, n) = 0 eventually

for every (c1, c2, . . . , cw) with c1 + c2 + · · · + cw ≤ −1. The proof of
part (iv) of the corollary is complete.

Finally, since x(c1, c2, . . . , cw, n) has a convergent Taylor series, we
have

x(0, . . . , aj , . . . , 0, n)

=

∞∑
m=0

∂m

∂cmj
x(0, . . . ,−1, . . . , 0, n)

m!
(aj + 1)

m
= 0, for every dj ∈ R.
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Assume that dj ≤ 0 and pick dℓ ≤ 0 too. Then we have

x(0, . . . , dj , 0, . . . , dℓ, . . . , 0, n) =

∞∑
m=0

∂m

∂cmℓ
x(0, . . . , aj , . . . , 0, n)

m!
dmℓ = 0.

After w − 2 steps, we obtain that x(d1, d2, . . . , dw, n) = 0 when
d1, d2, . . . , dw ≤ 0. By a similar procedure, we have x(d1, d2, . . . , dw, n)
= 0 when d1, d2, . . . , dw ≥ 0. Therefore, x(c1, c2, . . . , cw, n) = 0. The
proof of part (v) of the corollary is complete.

The proof of Corollary 3.2 is complete.
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