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SEARCHING FOR CUTKOSKY’S EXAMPLE

FRANCESCA DI GIOVANNANTONIO, ANNA GUERRIERI AND IRENA
SWANSON

ABSTRACT. We provide a concrete class of rings in
which there exists a primary ideal with respect to the
maximal ideal that has only one Rees valuation.

1. Motivation. In this work all rings are commutative with iden-
tity, and most are Noetherian domains. If I ⊆ R is an ideal, I denotes
the integral closure of I, namely,

I = {r ∈ R : rn + a1r
n−1 + · · ·+ an = 0 for some aj ∈ Ij}.

It is well known that I =
∩

V IV ∩R, where V varies over all valuation
rings between R/P and Q(R/P ), and P varies over the minimal primes.
If R is Noetherian, there exist finitely many valuation rings that
determine not just the integral closure of I but also the integral closure
of all its powers. A minimal set of these valuation rings is called the
set of Rees valuation rings of I. We give the necessary background on
Rees valuations in the next section.

In [2], Cutkosky proved the existence of a two-dimensional complete
integrally closed local domain (R,m) in which every m-primary ideal
has more than one Rees valuation. However, no explicit example of
such a ring has been found. Our work narrows the classes of rings
in which Cutkosky’s example can be found. In Section 3, we prove
that if R is a power series ring modulo a quasi-homogeneous prime
ideal, there always exists in R an m-primary ideal with only one Rees
valuation (see Theorem 3.3). In Section 4, we identify an additional
concrete class of polynomial and power series rings in which there exists
a zero-dimensional primary ideal that has only one Rees valuation.
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2. Background.

Definition 2.1. ([9]). The Rees valuation rings of I are valuation
rings V1, . . . , Vs such that:

1. Each Vi is Noetherian and is not a field;
2. For each i = 1, . . . , s, there exists a minimal prime Pi in R such

that Vi is a ring between R/Pi and Q(R/Pi);
3. In = ∩s

i=1(I
nVi) ∩R, for all n ∈ N;

4. The set {V1, . . . , Vs} satisfying the above conditions is minimal.

Let RV(I) denote the set of Rees valuation rings of I. In [9], Rees
proved the existence and uniqueness of Rees valuations for any ideal
in a Noetherian ring R. If R is a domain, there are different ways of
constructing the Rees valuations (see [4, Chapter 10] for more details),
we use the following.

Let U be a generating set of I. Assume 0 /∈ U . For each a ∈ U ,
we find all prime ideals Ka1

, . . . ,Kal
of R

[
I
a

]
that are minimal over

aR
[
I
a

]
. Then

RV(I) =
∪
a∈U

{
R

[
I

a

]
Kai

: i = 1, . . . , l

}
.

Observation 2.2. Let I be an ideal. By the construction above, it is
straightforward to prove that, for all positive integers n,

RV(I) = RV(I) = RV(In),

and that if R′ is an integral extension of R with the same field of
fractions, then

RV(I) = RV(IR′).

Consequently, if I = (x1, . . . , xn) is a finitely generated ideal, for
any positive integer m, one has RV(I) = RV((x1, . . . , xn)

m) =
RV((x1

m, . . . , xn
m)). This holds because

RV((x1, . . . , xn)m) = RV((x1
m, . . . , xn

m)),

since
(x1, . . . , xn)m = (x1

m, . . . , xn
m).
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A ring R is called equidimensional if dimR = dimR/P for all min-
imal primes P in R. A Noetherian local ring is a formally equidimen-
sional ring (or alternately, quasi-unmixed ring) if its completion in the
topology defined by the maximal ideal is equidimensional.

A fundamental tool in streamlining the construction of Rees valua-
tions is the following theorem of Sally [10].

Theorem 2.3. Let (R,m) be a Noetherian formally equidimensional
local domain of dimension d > 0, and let I = (a1, . . . , ad) be an m-
primary ideal generated by a system of parameters. Then, for every
Rees valuation ring V of I and every i = 1, . . . , d, V is the localization

of R
[

I
ai

]
at a suitable height one prime ideal minimal over ai.

A consequence of this is that, given V ∈ RV(I), where I is a
parameter ideal, one may take any minimal generator a of I to obtain
V as a localization of the integral closure of R

[
I
a

]
at a prime ideal

minimal over a. More generally, we get the following useful corollary:

Corollary 2.4. Let (R,m) be a Noetherian formally equidimensional
local domain of dimension d > 0, let I be an m-primary ideal and
let J be a parameter ideal that is a reduction of I. Then, for every
Rees valuation ring V of I and every minimal generator a of J , V is

the localization of R
[
I
a

]
at a suitable height one prime ideal minimal

over a.

Proof. As in Observation 2.2, RV(I) = RV(I) = RV(J) = RV(J).
Also, R

[
I
a

]
= R

[
J
a

]
. Thus, the conclusion follows from Theorem 2.3.

�

Observation 2.5. Let (R,m) be a Noetherian local ring, and let X
be a variable over R. Let R(X) denote R[X]mR[X]. Then R ⊆ R(X) is

a faithfully flat extension of Noetherian local rings. The residue field
of R(X) is

R(X)

mR(X)
∼=

R[X]

mR[X]mR[X]

,

which is the field of fractions of (R/m)[X], therefore infinite. By
[1, Proposition 5.13], if R is an integrally closed domain so is R(X).
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Moreover, for any ideal I of R, if IR(X) has only one Rees valuation
in R(X) so I has only one Rees valuation in R. This follows in a
straightforward way from [4, Proposition 1.6.2].

Observation 2.6. Let R be a homomorphic image of a finitely gener-
ated polynomial or power series ring over a field K. Let K be the alge-
braic closure of K. Let S denote the faithfully flat R-algebra R⊗K K.
By [4, Proposition 1.6.2], for any ideal I of R, IS ∩ R = I. This im-
plies that RV(I) ⊆ {V ∩Q(R) : V ∈ RV(IS)}, where Q(R) is the field
of fraction of R. In particular, if IS has only one Rees valuation, so
does I.

In the constructions we will need to determine the integral closure of
various rings. We recall here the main methods by which one decides
if a ring is an integrally closed domain.

Observation 2.7. Let K be a field, R an equidimensional finitely
generated K-algebra, and P a prime ideal in R. Then, if JR/K , the
Jacobian ideal of R over K, is not contained in P , it follows that RP

is a regular ring. Conversely, if RP is a regular ring and Q(R/P ) is
separable overK (say ifK is a perfect field), then JR/K is not contained
in P . This statement is called the Jacobian criterion (see [4, Theorem
4.4.9]).

The following is a computationally useful consequence:

Proposition 2.8. ([6, Theorem 23.8] or [4, Corollary 4.5.8]). If R
is a finitely generated equidimensional reduced algebra over a perfect
field K, then RP is integrally closed for all prime ideals P of R if and
only if the Jacobian ideal JR/K is R or it contains a regular sequence
of length 2.

3. Quasi-homogeneous complete local rings. Let K be a field,
let X1, . . . , Xn be variables over K, let P be a prime ideal in
K[[X1, . . . , Xn]], and let R = K[[X1, . . . , Xn]]/P . In this section
we prove that there exists a particular set of prime ideals P ⊆
K[[X1, . . . , Xn]] such that R has an (X1, . . . , Xn)-primary ideal with
only one Rees valuation.
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First, we need some definitions.

Definition 3.1. A polynomial f ∈ K[X1, . . . , Xn] is quasi-homogeneous
if it is possible to assign positive degrees to the variables to make f ho-
mogeneous. An ideal I ⊆ K[X1, . . . , Xn] is a quasi-homogeneous ideal
if it is possible to assign positive degrees to the variables to make all
elements of some generating set of I homogeneous.

Example 3.2. Let a, b, c be nonnegative integers. The polynomial
f = Xa + Y b + Zc ∈ K[X,Y, Z] is quasi-homogeneous.

Now we show that, when P is a quasi-homogeneous ideal, and
thus also when P is a homogeneous ideal, there exists in R =
K[[X1, . . . , Xn]]/P an (X1, . . . , Xn)-primary ideal with only one Rees
valuation.

Theorem 3.3. Let R be a domain which is a homomorphic image
of a power series ring K[[X1, . . . , Xn]] in variables X1, . . . , Xn over a
field K. If there exists a positive integer grading degXi = ai that makes
R homogeneous, then (Xa2a3···an

1 , Xa1a3a4···an
2 , . . . , X

a1a2···an−1
n )R is pri-

mary to the unique maximal ideal of R and has only one Rees valuation.

Proof. Write R = K[[X1, . . . , Xn]]/P , where P = (f1, . . . , fl). Let
xi denote the image of Xi in R. Thus, R = K[[x1, . . . , xn]]. We
denote by F the quotient field of R and by F the algebraic closure
of F . For i = 1, . . . , n, let yi ∈ F be such that yai

i = xi. Then

R ⊆ S = K[[y1, . . . , yn]] is an integral extension contained in F . Note
that S is a homomorphic image of a power series ring over a field K
that is generated over the field by homogeneous elements yi, each of
which has degree 1 in F . By Observation 2.2, if e = a1a2 · · · an, then

RV((y1, . . . , yn)) = RV((y1e, . . . , yne))

= RV((xa2a3···an
1 , . . . , xn

a1a2···an−1)S)

= RV((xa2a3···an
1 , . . . , xn

a1a2···an−1)R).

Thus, it suffices to prove the theorem for S, i.e., in the case where all
ai equal 1.
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As noted in Observation 2.5, one may pass to a faithfully flat
extension R′(t) (with the degree of t being 0) to assume that K is
infinite. In that case, after a linear change of variables, we may assume
that x1 is part of a minimal generating set of a parameter ideal that is
a reduction of (x1, . . . , xn). The rest of this paragraph is a proof of this
fact. Namely, by Northcott and Rees [7], there exist z1, . . . , zd of R that
generate a minimal reduction of (x1, . . . , xn). Clearly, zi =

∑n
j=1 aijxj

where aij ∈ R. Write aij = aij0 +
∑

h aijhxh for some aij0 ∈ K and
aijh ∈ (x1, . . . , xn). Let ui =

∑n
j=1 aij0xj . Then, zi−ui =

∑n
j=1(aij0+∑

h aijhxh)xj −
∑n

j=1 aij0xj =
∑n

j=1(
∑

h aijhxh)xj ∈ (x1, . . . , xn)
2,

that is, zi ≡ ui modulo (x1, . . . , xn)
2. By [4, Lemma 8.1.8], (u1, . . . , ud)

is a reduction of (x1, . . . , xn). Thus, by possibly replacing the zi with
the ui, we may assume that all aij ∈ K. Then all zi are homogeneous
of degree 1. By possibly relabeling and renaming the variables, we may
assume that x1 = z1.

By [8, Theorem 6.23] or [5, Theorem 5.3], it suffices to prove
that the homomorphic image R′ = K[x1, . . . , xn] ⊆ R of the poly-
nomial ring K[X1, . . . , Xn] has the property that the maximal ideal
(x1, . . . , xn)R

′ has only one Rees valuation. By Corollary 2.4, it suf-
fices to prove that there is only one prime ideal of height one in the
integral closure of S1 = R′[(x1, . . . , xn)/x1] that contains x1. Write
R′ = K[X1, . . . , Xn]/(f1, . . . , fl) for some homogeneous polynomials
f1, . . . , fl. If α2, . . . , αn stands for X2/X1, . . . , Xn/X1, then

S1
∼= K[X1, α2, . . . , αn]

and X1 is a variable over T = K[α2, . . . , αn]. Some obvious relations
on the αi are f1(1, α2, . . . , αn), . . . , fl(1, α2, . . . , αn). Certainly, T is
a domain, so also its integral closure T is a domain. Note that
S1

∼= T [X1] and that the integral closure of S1 is thus up to isomorphism
S1 = T [X1]. But, under this isomorphism, X1 stands for x1, so that
any prime ideals in S1 that are minimal over x1 correspond to the
minimal prime ideals in

S1

x1S1

∼=
T [X1]

X1T [X1]
∼= T ,

which is a domain. Thus, there is only one such prime ideal, so
(x1, . . . , xn)R

′ has only one Rees valuation. This finishes the proof
of the theorem. �
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We give an explicit example.

Example 3.4. Let K be a field. Let R = K[X,Y, Z]/(f) = K[x, y, z],
where f = XY + Y Z + XZ is homogeneous and irreducible in
K[X,Y, Z]. By Theorem 3.3, (x, y, z) has only one Rees valuation
in R. Instead of going through the construction as in the proof of
Theorem 3.3 and first finding a two-generated reduction of (x, y, z), we
simply rely on the original general construction of Rees valuations: if
we can find a localization of the integral closure of

S = R

[
(x, y, z)

x

]
∼=

K[X,Y, Z, α, β]

(Xα− Y,Xβ − Z,α+ αβ + β)
∼=

K[X,α, β]

(α+ αβ + β)

at a prime ideal minimal over x (respectively, X), then that will be the
desired valuation. First of all, S is integrally closed by Proposition 2.8:
JS/K = (1+β, 1+α)S = S, and then X generates a prime ideal in the
integral closure of S, so that V = K[X,α, β]/(α+ αβ + β)(X).

It is not true that the maximal ideal in a quasi-homogeneous homo-
morphic image of a power series ring over a field always has only one
Rees valuation. Here is an example:

Example 3.5. Let f = X3 + Y 3 + Z4 ∈ R[X,Y, Z]. This is a
quasi-homogeneous and irreducible polynomial. Let us denote R =
R[X,Y, Z]/(f) = R[x, y, z]. By Theorem 3.3, (x12, y12, z9) has only one
Rees valuation. We prove that the maximal ideal (x, y, z) has more than
one Rees valuation. Clearly, (x, z) is a minimal reduction of (x, y, z).
By Theorem 2.3, all Rees valuations of (x, y, z) are localizations of the
integral closure of S = R[(x, y, z)/x] at prime ideals minimal over x.
Note that

S ∼=
R[X,Y, Z, α, β]

(Xα− Y,Xβ − Z, 1 + α3 + β4X)
∼=

R[X,α, β]

(1 + α3 + β4X)
.

We prove that S is integrally closed. The Jacobian ideal of S over
R is JS/R = (β4, 3α2, 4β3X). Any prime ideal in S containing JS/R
contains α and β. But, this prime ideal also contains 1 + α3 + β4X,
so 1 ∈ JS/R. By Proposition 2.8, S is integrally closed. But then the
only prime ideals in the integral closure S of S that are minimal over
xS are the isomorphic images of

P = (X, 1 + α) and P = (X, 1− α+ α2).
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Thus, the maximal ideal (x, y, z) of the quasi-homogeneous R has more
than one Rees valuation. (Note that with the base field C instead there
would be three Rees valuations.)

4. Classes of non-quasi-homogeneous rings. The Cohen struc-
ture theorem (see [3, Theorem 7.7]) states that a two-dimensional com-
plete Noetherian local integrally closed domain (R,m) can be written
as a power series ring K[[X1, . . . , Xn]] modulo a prime ideal P , where
K is a field or a complete Noetherian valuation domain and X1, . . . , Xn

are variables over K.

If we consider the case with n = 3, since R is two-dimensional,
P must be principal and, since R is integrally closed, by Proposi-
tion 2.8, the Jacobian ideal of P , JR/K , is (X1, X2, X3)-primary. We
write P = (f). Then f is an irreducible power series. Samuel [11]
showed that, whenever P ≡ I modulo m(JR/K)2, there exists a for-
mal isomorphism of K[[X1, X2, X3]] which takes P onto I. Then,
K[[X1, X2, X3]]/(f) ∼= K[[X1, X2, X3]]/(g), where g is a polynomial
such that f − g ∈ m(JR/K)2. Moreover, if K[X1, X2, X3]/(g) has
an (X1, X2, X3)-primary ideal with only one Rees valuation, then also
K[[X1, X2, X3]]/(g) and R have a (X1, X2, X3)-primary ideal with only
one Rees valuation (see [8, Theorem 6.23] or [5, Theorem 5.3]). Thus,
to study Rees valuations of ideals of a two-dimensional complete Noe-
therian local integrally closed domain that is a hypersurface, it suffices
to take R = K[X1, X2, X3]/(f), with f being an irreducible polyno-
mial.

By Theorem 3.3, it remains to analyze the non-quasi-homogeneous f
for two-dimensional complete hypersurface rings K[[X1, X2, X3]]/(f).
Our goal is to find (X1, X2, X3)-primary ideals in K[X1, X2, X3]/(f)
with only one Rees valuation. Below we provide a class of concrete
locally integrally closed rings for which this holds. We first use
Observation 2.7 to prove the integral closure of our class of rings.

Proposition 4.1. Let a, b, c, d, e be positive integers such that (a −
1 − d)b ̸= ae ̸= (a − d)b. Let K be an algebraically closed field of
characteristic not dividing c and e, and let R = K[X,Y, Z]/(f) =
K[x, y, z], where f = Xa + Y b +Zc +XdY e +Xd+1Y e is a non quasi-
homogenous polynomial. Then R is integrally closed.
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Proof. The Jacobian ideal of R over K,

JR/K = (aXa−1 +Xd−1(d+ (d+ 1)X)Y e, bY b−1

+ eXd(1 +X)Y e−1, cZc−1).

By Proposition 2.8, it suffices to prove that JR/K contains a regular
sequence of length 2, or equivalently, that every prime ideal P of R
that contains JR/K contains a regular sequence of length 2. Since

∂f/∂Z = cZc−1 ∈ P , and since c ̸= 0 in K, necessarily c > 1 and P
contains Z. If Y ∈ P , then Xa = f−Y b−Zc−Y e(Xd+Xd+1) ∈ P , so
X ∈ P , whence P = (X,Y, Z)R contains a regular sequence of length 2,
and we are done. So we may assume that Y /∈ P . Similarly we may
assume that X /∈ P .

We know that P contains f − Zc = Xa + Y b + XdY e(1 + X) and
Y (∂f/∂Y ) = bY b+eXdY e(1+X), whence it contains eXa+(e−b)Y b.
Since X /∈ P and e is non-zero, it follows that e ̸= b.

Also, P contains ∂f/∂X = aXa−1 +Xd−1(d+(d+1)X)Y e, so that
modulo P ,

(aXa−1)b ≡ (−Xd−1(d+ (d+ 1)X)Y e)b

= (−Xd−1(d+ (d+ 1)X))bY eb

≡ (−Xd−1(d+ (d+ 1)X))b
(

e

b− e

)e

Xae.

Thus, P contains the polynomial

g = (aXa−1)b − (−Xd−1(d+ (d+ 1)X))b
(

e

b− e

)e

Xae.

We claim that this is a non-zero polynomial. If a is a multiple of
the characteristic of K, as either d or d + 1 is not zero in K, it
follows that g = −(−(d + (d + 1)X))b(e/(b− e))eXb(d−1)+ae is non-
zero. So we may assume that a is not a multiple of the characteristic
of K. By assumption (a − 1 − d)b ̸= ae, so that if d + 1 is not a
multiple of the characteristic of K, then either abX(a−1)b or −(−(d +
1)Xd)b(e/(e− b))eXae is the leading term of g, so that g is non-trivial.
So we may assume that d+ 1 is a multiple of the characteristic. Then
g = abX(a−1)b − (−dXd−1)b(e/(e− b))eXae, and since (a − d)b ̸= ae,
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again it follows that g is a non-trivial polynomial. So in all cases g is
non-trivial in K[X] ∩ P .

As K is algebraically closed, P must contain one of the factors X−r
for some r ∈ K. But then P contains era + (e− b)Y b, which is a non-
trivial polynomial in Y , so that P also contains a factor Y −s. Thus, P
contains X−r, Y −s and Z, so that P must have height 2, and since R
is Cohen-Macaulay, P must contain a regular sequence of length 2. �

Proposition 4.2. Let a, b, c be positive integers such that 1 < a ≤ b, let
K be an algebraically closed field of characteristic not dividing a−1, and
let R = K[X,Y, Z]/(f) = K[x, y, z], where f = X+Xb−a+1Y b+Za−1+
Xc+b−a+1Y b + Xc+b−a+2Y b is a non quasi-homogenous polynomial.
Then R is integrally closed.

Proof. The Jacobian ideal of R over K is

JR/K = (1 +Xb−aY b[(b− a+ 1) + (c+ b− a+ 1)Xc

+ (c+ b− a+ 2)Xc+1],

bY b−1Xb−a+1(1 +Xc +Xc+1), (a− 1)Za−2).

By Proposition 2.8, it suffices to prove that JR/K contains a regular
sequence of length 2, or equivalently, that every prime ideal P of
K[X,Y, Z] that contains f , ∂f/∂X, ∂f/∂Y , and ∂f/∂Z, contains a
regular sequence of length 3. Since ∂f/∂Z = (a − 1)Za−2 ∈ P , since
a− 1 is not a multiple of the characteristic, and since 1 /∈ P , it follows
that a > 2 and Z ∈ P . If Y ∈ P , then since ∂f/∂X ∈ P , we have
also that 1 ∈ P , which is a contradiction. So Y /∈ P . It follows that
P contains the following simplifications of f and its partial derivatives
(modulo the known elements of P ):

Z,X(1 +Xb−aY b(1 +Xc +Xc+1)),

1 +Xb−aY b[(b− a+ 1) + (c+ b− a+ 1)Xc + (c+ b− a+ 2)Xc+1],

Xb−a+1(1 +Xc +Xc+1).

If X ∈ P , then the following simplifications are also in P : Z,X, 1 +
Xb−aY b(b− a+1), which says P contains a regular sequence of length
3. Thus, we may assume that X /∈ P . Then P contains in particular
the elements 1+Xb−aY b(1+Xc+Xc+1) and 1+Xc+Xc+1, whence it
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contains 1 = (1+Xb−aY b(1+Xc+Xc+1))−Xb−aY b(1+Xc+Xc+1),
which is a contradiction. �

Now, we consider a non-quasi-homogeneous integrally closed two-
dimensional ring as in Proposition 4.1, and we show that it cannot pro-
vide a concrete example for the context described by Cutkosky, namely,
that it has a zero-dimensional ideal with only one Rees valuation. The
zero-dimensional ideal is actually even the maximal ideal.

Example 4.3. Let R = K[X,Y, Z]/(Xa + Y b + Za−1 + XcY b +
Xc+1Y b) = K[x, y, z], where a, b, c are positive integers, 1 < a ≤ b,
and where K is a perfect field whose characteristic does not divide
a− 1, b. We prove that I = (x, y, z) has only one Rees valuation.

By Observation 2.6, it suffices to consider the case where K is
algebraically closed. Now we use Proposition 4.1: the characteristic
does not divide a − 1 and c, and, in the notation of that proposition,
(a − 1 − d)b, ae, (a − d)b are in this example the quantities (a − 1 −
c)b, ab, (a − c)b, and clearly the middle quantity does not equal the
other two. Thus, by Proposition 4.1, R is integrally closed.

As xa+yb+ za−1+xcyb+xc+1yb = 0 in R, za−1+(xa+yb+xcyb+
xc+1yb) = 0, where xa+yb+xcyb+xc+1yb ∈ (x, y)min{a,b} ⊆ (x, y)a−1.

So, z ∈ (x, y). Since (x, y) is a minimal reduction of I, we may use
Corollary 2.4 to get all the Rees valuations from localizations of the
integral closure of S = R[(x, y, z)/x] at all height one prime ideals
containing x. Then

S ∼= K[X,Y,Z,α,β]
(Xα−Y,Xβ−Z,X+Xb−a+1αb+βa−1+Xc+b−a+1αb+Xc+b−a+2αb)

∼= K[X,α,β]
(X+Xb−a+1αb+βa−1+Xc+b−a+1αb+Xc+b−a+2αb)

.

By Proposition 4.2, S is integrally closed. Then S/xS is isomorphic
to K[α, β]/(βa−1), which has only one minimal prime ideal, so that
(x, y, z) has only one Rees valuation.
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