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ρ-HOMOGENEOUS BINOMIAL IDEALS
AND PATIL BASES

H. BRESINSKY, F. CURTIS AND J. STÜCKRAD

ABSTRACT. The paper first generalizes the construction
of generating sets for binomial ideals as given in [6]. For this,
ρ-homogeneous binomial ideals are introduced. The resulting
generating sets are called Patil bases. It is shown that they
are reduced and normalized Gröbner bases. An algorithm for
binomials is given to obtain a minimal generating set from
a Patil basis. This is applied to the particular case of Patil
bases of prime ideals p(n1, . . . , n4) generated by {xα − xβ |
α, β ∈ N4, (α − β)(n1, . . . , n4)T = 0} in K[x1, . . . , x4], K a
field. We note that our ideals are toric ideals, see [7].

0. Introduction and notation. Assume K is a field and R :=
K[x1, . . ., xr] the polynomial ring in r indeterminates over K, m :=
(x1, . . . , xr)R. Let T := {xα1

1 · . . . · xαr
r =: xα | α := (α1, . . ., αr) ∈ Nr}

(N is the set of nonnegative integers) be the set of terms in R and < an
admissible term order on T . (For undefined terminology for Gröbner
bases we refer the reader to [2]).

Remark 1. If clear from the context, we will use interchangeably the
symbol < to denote an admissible term order as well on T as on Nr,
i.e. α < β means the same as xα < xβ . xα | xβ (or equivalently α | β)
denotes monomial division, xα ‖ xβ (or equivalently α ‖ β) proper
division.

Definition 0.1. Assume f ∈ R, f =
∑

t∈T at · t with at ∈ K and
at = 0 for almost all t ∈ T . Then supp (f) := {t | t ∈ T, at �= 0}.

Let n1, . . ., nr be positive integers with gcd (n1, . . ., nr) = 1. De-
fine the weighted degree for R by degxi := ni, 1 ≤ i ≤ r. Let
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p(n1, . . ., nr) =: p be the ideal in R, generated by

{xα − xβ |, α, β ∈ Nr, (α− β)(n1, . . ., nr)
T = 0} ⊆ R.

Assume an admissible lexicographical term order on T (or equivalently
on Nr). In this setting Patil bases were introduced by Patil in his thesis
[6].

In this paper in Section 1 we first introduce the ρ-degree, which
includes the usual polynomial degree and the above weighted degree.
In Section 2 we then define Patil bases for ρ-homogeneous binomial
(toric) ideals IL := ({xα − xβ | α, β ∈ Nr, α − β ∈ L})R, where
L is a subgroup of Zr (Z the integers), for arbitrary admissible term
orders. It is then shown that such a Patil basis is a normalized and
reduced Gröbner basis with respect to a term order related to the
initial term order. In Section 3 we present an algorithm how to obtain
a minimal generating set for a ρ-homogeneous binomial ideal from a
reduced and normalized Gröbner basis. The algorithm is essential to
obtain a minimal generating set for p(n1, . . . , n4) in Section 4.

1. ρ-degree. Assume ρ is a map such that:

(i) ρ : Nr → N.

(ii) ρ(α) = 0 if and only if α = 0.

(iii) For all α, β, γ in Nr, ρ(α) < ρ(β) implies ρ(α + γ) < ρ(β + γ)
and ρ(α) = ρ(β) implies ρ(α+ γ) = ρ(β + γ).

Definition 1.1. For α ∈ Nr ρ(α) is called the ρ-degree of α.

Example 1.1. ρ-degrees, which are not standard.

(a) A map ϕ : Nr → N is linear if ϕ(ν1 + ν2) = ϕ(ν1) + ϕ(ν2) for all
ν1, ν2 ∈ Nr. The ordinary degree mapping δ given by δ(

∏r
i=1 x

ni

i ) :=∑r
i=1 ni (n1, . . . , nr ∈ N) is linear if

∏r
i=1 x

ni

i is identified with
(n1, . . . , nr). Assume ϕ satisfies (i) (iii) and ψ : N → N is such that
ψ(0) = 0 and ψ(n1) < ψ(n2) if n1 < n2. Then ψϕ satisfies (i) (iii), but
ψϕ need not be linear if ψ is not linear. For instance if ψ(n) := n2 for
all n ∈ N, then ψϕ is not linear.

(b) Let c1, . . . , cr be integers with c1, . . . , cr > 1. Define ϕ : Nr → N
by

ϕ((a1, . . . , ar)) := ca1

1 · . . . · car
r − 1, a1, . . . , ar ∈ N.

For ϕ (i) (iii) are satisfied. (If the ci are pairwise distinct prime
numbers, then ϕ is injective.)



ρ-HOMOGENEOUS BINOMIAL IDEALS AND PATIL BASES 825

Proposition 1.2. For α =: (a1, . . . , ar) ∈ Nr, let |α| := ∑r
i=1 ai.

Then
|α| ≤ ρ(α) for all α ∈ Nr.

Proof. We induct on |α|. The statement is true if |α| = 0 (since
|α| = 0 ⇔ α = 0). Let α ∈ Nr with |α| > 0. If α =: (a1, . . . , ar),
there is some j, 1 ≤ j ≤ r with aj ≥ 1. Let α′ := α − ej ,
ej = (0, . . ., 0, 1, 0. . ., 0) with 1 in the jth coordinate. Then α′ ∈ Nr and
0 = ρ(0) < ρ(ej) implies (by (iii)), ρ(α′) = ρ(0+α′) < ρ(ej+α

′) = ρ(α).
By the induction hypothesis

|α| = |α′|+ 1 ≤ ρ(α′) + 1 ≤ ρ(α).

Definition 1.3. By #X we denote the cardinality of a set X .

Corollary 1.4. Let N be a fixed nonnegative integer. Then

#{α ∈ Nr |ρ(α) ≤ N}<∞, in particular #{α ∈ Nr |ρ(α) = N}<∞.

Proof. Let α ∈ Nr with ρ(α) ≤ N , and assume α =: (a1, . . ., ar).
Then

0 ≤ ai ≤ |α| ≤ ρ(α) ≤ N, 1 ≤ i ≤ r,

from which the claim is derived.

By Proposition 1.2 and its Corollary 1.4 it follows readily that
ρ defines a graded structure on R. Therefore if f1, . . ., fs are ρ-
homogeneous, then {f1, . . . , fs} contains a minimal generating set for
the ideal I = (f1, . . . , fs)R.

2. Patil bases.

Definition 2.1. Let L be a subgroup of Zr and ρ a ρ-degree
such that, for all α, β ∈ Nr, if α − β ∈ L, then ρ(α) = ρ(β). Let
IL := {xα − xβ | α, β ∈ Nr, α − β ∈ L} · R (i.e., IL is the ideal
generated by the indicated binomials which is ρ-homogeneous).

Lemma 2.2. For α ∈ Nr, #((α+L)∩Nr) <∞ and L∩Nr = {0}.
Proof. Let L(α) := {λ | λ ∈ L, α+ λ ∈ Nr}. Let ϕ : L(α) → Nr be

defined by ϕ(λ) = α + λ ∈ Nr for all λ ∈ L(α). Clearly ϕ is injective
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and, for λ ∈ L(α), ρ(ϕ(λ)) = ρ(α+λ) = ρ(α) since (α+λ)−α = λ ∈ L.
Thus, if α := {β | β ∈ Nr, ρ(β) = ρ(α)}, then ϕ(λ) ∈ α. Since
#α <∞, by Corollary 1.4, and ϕ is injective, #L(α) <∞.

Next assume α = 0. Then L(0) = L ∩ Nr and, for λ ∈ L(0),
0 + λ ∈ Nr. By the previous ρ(λ) = ρ(0 + λ) = ρ(0) = 0, thus
λ = 0.

Example 2.1. Assume f : Zr → Z is linear (i.e. f(z1 + z2) =
f(z1) + f(z2) for all z1, z2 ∈ Zr) such that ni := f(ei) ∈ N+ for
all i, 1 ≤ i ≤ r (ei ∈ Nr with the ith coordinate 1 and all other
coordinates 0). Let ρ := f |Nr : Nr → N be the restriction of f to
Nr, which is a ρ-degree and ρ is linear. If α := (a1, . . ., ar) ∈ Nr, then
ρ(α) =

∑r
i=1 aini. For ni = 1, 1 ≤ i ≤ r, this ρ-degree is the usual

degree. For n1 < n2 < · · · < nr, gcd (n1, . . ., nr) = 1, this ρ-degree is
a frequently used weighted degree. For this degree the defining ideal
of a curve in affine r-space with parametric representation xi = tni ,
i = 1, . . . , r, is ρ-homogeneous.

Since ρ is linear, condition (iv) is fulfilled with L = ker f .

Assume next that < is an admissible term order on Nr, L as before.

Definition 2.3. For α ∈ Nr let σ(α) := max<[(α+ L) ∩Nr]

We now define an admissible term order <′ on Nr as follows.

Definition 2.4. For α, β ∈ Nr let α <′ β if

(1) ρ(α) < ρ(β) or

(2) ρ(α) = ρ(β) and β < α.

Lemma 2.5. <′ is an admissible term order.

Proof. Assume β ∈ Nr, β �= 0. Then ρ(β) > 0 = ρ(0), hence
0 <′ β. Next let α, β, γ be in Nr with α <′ β. If ρ(α) < ρ(β), then
ρ(α+ γ) < ρ(β + γ); thus, α+ γ <′ β + γ. If ρ(α) = ρ(β), then β < α;
therefore, β+γ < α+γ. And ρ(α+γ) = ρ(β+γ); thus, α+γ <′ β+γ.
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Assume next that (μi)i∈N+ is a sequence in Nr such that:

(1) {μi | i ∈ N+} = Nr\{0}.
(2) μi − μj /∈ Nr for all i, j in N+ with i < j.

We now inductively define subsets of Nr as follows:

M0 := ∅

Mi+1 :=

⎧⎪⎨
⎪⎩
Mi, if σ(μi+1) = μi+1 or if there exists

μ ∈Mi with μi+1 − μ ∈ Nr.

Mi ∪ {μi+1}, otherwise.

We have M0 ⊆ M1 ⊆ · · · . By Dickson’s lemma there exists an s ∈ N
such that Ms =Ms+j for all j ≥ 0. Let

M :=
∞⋃
i=0

Mi ⊆ Nr.

Then M =Ms, and therefore #M ≤ s <∞.

Definition 2.6. PL := {xμ − xσ(μ) | μ ∈ M} is called a Patil basis
of IL with respect to <.

Remark 2. Note that if μ and ν are in M , μ �= ν, then xμ � xν and
xν � xμ. If μ ∈M and xμ

′ ‖ xμ for μ′ ∈ Nr \ {0}, then σ(μ′) = μ′.

Definition 2.7. Let b = m1 −m2 be a binomial (m1,m2 ∈ T ). We
define

|b| :=
{
b if m1 ≥ m2

−b otherwise.

Moreover, if m1 > m2 then, as before, the leading term (lt<(b)) of b
is m1, the lower term, or not the leading term (nlt<(b)) of b, is m2. If
clear from the context, < will be deleted as subscript.

Proposition 2.8. PL is a reduced and normalized Gröbner basis of
IL with respect to <′.

Proof. By Definition 2.3 PL ⊆ IL. For xμ − xσ(μ), μ ∈ M ,
lt<′(xμ − xσ(μ)) = xμ.
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Let α, β ∈ Nr with 0 �= α − β ∈ L. We first show that xα − xβ has
a reduction modulo PL. Without loss of generality assume lt<′(xα −
xβ) = xα. Then α �= σ(α). Thus, by construction of M , there exists
a μ ∈ M with α − μ ∈ Nr, i.e., xμ|xα. Therefore, xα+σ(μ)−μ − xβ =
xα − xβ − xα−μ(xμ − xσ(μ)) ∈ IL. Since α+ σ(μ)−μ <′ α and β <′ α,
we have lt<′(xα+σ(μ)−μ − xβ) <′ xα = lt<′(xα − xβ), i.e., xα − xβ has

a reduction xα − xβ
xμ−xσ(μ)−→ xα+σ(μ)−μ − xβ modulo PL as claimed.

Therefore PL is a Gröbner basis of IL with respect to <′. PL is clearly
normalized; thus, it remains to show that PL is reduced. Suppose this
is not the case. Then there exist μ, μ∗ ∈ M,μ �= μ∗, such that either
xμ

∗ |xμ or xμ
∗ |xσ(μ). The first case is impossible by Remark 2. Suppose

therefore xμ
∗ |xσ(μ), i.e., there exists γ ∈ Nr such that μ∗ + γ = σ(μ).

Then since μ∗ ∈M,σ(μ∗) > μ∗, thus σ(μ∗)+γ > μ∗+γ = σ(μ). Since
σ(μ∗)+γ−σ(μ) = σ(μ∗)−μ∗ ∈ L, this means σ(μ∗)+γ ∈ (μ+L)∩Nr

and σ(μ∗)+γ > σ(μ), a contradiction to σ(μ) = max<[(μ+L)∩Nr].

3. Binomial Gröbner bases and minimal generating sets.
Assume I ⊆ R is a ρ-homogeneous binomial ideal (i.e., generated by
ρ-homogeneous binomials). Also always take < to be an admissible
term order on T , which respects the ρ-degree. In the sequel we will
consider only ρ-homogeneous binomials.

For the formation of Gröbner bases we specify the following rules:

1. Reduction to a reduced set always takes precedence over s-
polynomial formation.

2. For a polynomial p, reduction of t ∈ supp (p) by an irreducible set
F (if possible) is done by selecting f ∈ F such that lt (f)|t and lt (f)
is maximal with respect to this property.

3. If a polynomial p has a term t ∈ supp (p) such that there exists an
f ∈ F with lt (f)|t, then t is taken to be maximal within supp (p) with
this property.

We note that by our assumptions above each reduction step and each
formation of an s-polynomial leads automatically to a normalized
polynomial, provided this polynomial is �= 0.

Also the production of a (normalized) polynomial b ∈ R by a
Buchberger algorithm, starting from a non-empty set F of non-zero
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(normalized) polynomials of R, can be described by a directed tree
with vertices consisting of (normalized) polynomials of R ending in b
such that the vertices of incoming degree zero correspond to elements of
F , the vertices of incoming degree one are obtained by reductions and
the vertices of incoming degree two indicate s-polynomial formation.

Definition 3.1. Assume b = m1 −m2 is as in Definition 2.7 with
m1 > m2. If m is a term and q2m2 = m with q2 ∈ T , then q2m1 is
a reduction up of m mod b. If m = q1m1 with q1 ∈ T , then q1m2 is a

reduction down of m mod b (write m
b→ q1m2).

Let B be a set of nonzero binomials. A sequence of reductions (up,
down or both) of a termm by binomials of B, is said to be a reduction of
m modulo B (mod B). We also refer to them as a chain of reductions.
If b∗ = m∗

1 − m∗
2 is a binomial, then a reduction of m∗

1 or m∗
2 (up

or down) is said to be a reduction of b∗ (up or down) to a binomial

b̃ mod B. (In this setting b̃ = 0 is considered to be a binomial.) For

such reductions down we write b∗ = b0 → b1 → · · · → bn = b̃ mod B.
(If required we also indicate the binomials in B by which reduction is
achieved.)

Example 3.1. Let b∗ := x21 − x22, b := x1 − x2, x1 > x2. Then
x1x2−x22 is a reduction down of b∗ by b since x21 > x1x2 and x21−x1x2
is a reduction up of b∗ by b since x1x2 > x22.

Definition 3.2. A term m is lower reduced modB if nlt (b) � m for
all b ∈ B. Similarly m is defined to be upper reduced modB.

For completeness we define s-polynomials for binominals.

Definition 3.3. Let b1 = m11 − m12 and b2 = m21 − m22 be
binomials, where m11, m12, m21, m22 are terms such that m11 > m12,
m21 > m22. Assume mi1 = qid,mi2 = q′id

′, i = 1, 2, with terms
q1, q2, q

′
1, q

′
2, d, d

′ such that gcd (q1, q2) = gcd (q′1, q
′
2) = 1. Then the

s-polynomial s(b1, b2) of b1 and b2 is defined to be:

s(b1, b2) := |q2b1 − q1b2|
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Remark 3. Let b1, b2 be binomials as in Definition 3.3. If 0 �= s(b1, b2),
then s(b1, b2) has a two step reduction up to 0 mod {b1, b2}.

Let G be a reduced and normalized Gröbner basis of I with respect
to < (consisting of ρ-homogenous binomials).

Definition 3.4. Let ≺ be defined for the binomials of G as follows.
For b, b′ in G, b ≺ b′ if and only if either ρ(b) > ρ(b′) or ρ(b) = ρ(b′)
and lt (b) < lt (b′).

We now state and prove some lemmata using the previous notation.

Lemma 3.5. Let G′ be a proper subset of G such that G′ · R = I.
Then we have:

Each b ∈ G \G′ is obtained by a Buchberger algorithm applied to G′,
i.e., there is a directed tree as described above ending in b having the
following additional properties.

(a) The vertices of this tree consist of ρ-homogeneous normalized
binomials contained in I.

(b) Each vertex of incoming degree zero is immediately followed by a
vertex of incoming degree two.

Proof. Since G is a reduced and normalized Gröbner basis of I, G is
uniquely determined by I and the given term order <. Moreover, G is
produced by a Buchberger algorithm applied to a generating set of I.
This proves the first part of the statement.

Now (a) is clear by our previously stated assumptions for a Gröbner
algorithm. Property (b) follows since G′ is part of a reduced (and
normalized) Gröbner basis.

Lemma 3.6. Let f ∈ I, f �= 0. Assume that G′ is a subset of G
such that b′ ∈ G′ for all b′ ∈ G with ρ(b′) ≤ ρ(f).

Then f can be reduced by an element of G′. Consequently, f reduces
to 0 by elements of G′.

Proof. This is immediate from the definitions of G and G′.
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Remark 4. A consequence of Lemma 3.6 is: If f
b→ g with b ∈ G and

g ∈ R then b ∈ G′.

Lemma 3.7. Let G′ be a proper subset of G such that G′ · R = I.
Let b ∈ G\G′, and assume that b′ ∈ G′ for all b′ ∈ G with ρ(b′) < ρ(b).
Then

(a) The directed reduction tree of Lemma 3.5 to produce b by a
Buchberger algorithm applied to G′ has the form

b1�
�
�
��

b′0 � · · · � b′t = b,

b2

�
�
���

where b1, b2 ∈ G′, b1 �= b2, t ∈ N and b′0 = s(b1, b2).

(b) Let t > 0 and assume that the reduction steps b′j → b′j+1,
0 ≤ j < t, are performed by b∗j ∈ G. Then b∗0, . . . , b

∗
t−1,∈ G′ and

b ≺ b∗j for all j = 0, . . ., t− 2.

Proof. By Lemma 3.5 (b) the Buchberger algorithm applied to G′

must start with an s-polynomial formation of binomials b1, b2 ∈ G′,
b1 �= b2 giving b′0. Assume this s-polynomial formation would be
followed after a possibly empty chain b′0 → · · · → b′t, t ∈ N, of
reductions by another s-polynomial formation resulting in a binomial
b′′0 . We then have ρ(b′0) = ρ(b′t) < ρ(b′′0) ≤ ρ(b). Thus we have b′ ∈ G′

for all b′ ∈ G with ρ(b′) ≤ ρ(b′t) by our assumption. Since b′t ∈ I and
b′t �= 0 (otherwise the s-polynomial formation following the vertex b′t
would be impossible), b′t is reducible by an element of G′ by Lemma 3.6.
But this contradicts our preference rule 1. Thus b′t = b, which proves
(a).

(b) It is clear by the structure of the Buchberger algorithm and by our
preference rules that for the reductions following the first s-polynomial
formation we can only use elements of G′. Therefore, b∗0, . . . , b

∗
t−1 ∈ G′.

Let 0 ≤ j < t, set b∗ := b∗j and consider the reduction step b′j
b∗→ b′j+1.
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Case 1. lt (b′j) > lt (b). Then in some step lt (b′j) has to have a
reduction down. By our preference rule 3 this must happen immedi-
ately, i.e., lt (b∗) | lt (b′j). If lt (b∗) ‖ lt (b′j), then ρ(b

∗) < ρ(b′j) = ρ(b).
If lt (b∗) = lt (b′j), then ρ(b

∗) = ρ(b′j) = ρ(b) and also lt (b∗) = lt (b′j) >
lt (b).

In any case b ≺ b∗.

Case 2. lt (b′j) ≤ lt (b). Then lt (b′j) = lt (b) since reduction lowers
terms. Since b is irreducible modulo G\{b}, lt (b′j) is irreducible modulo
G′, i.e., lt (b∗) � lt (b′j). Therefore lt (b∗) | nlt (b′j). As before we
conclude that lt (b∗) ‖ nlt (b′j) implies ρ(b∗) < ρ(b′j) = ρ(b), i.e., b ≺ b∗.

So assume lt (b∗) = nlt (b′j), i.e., b
′
j+1 = b′j + b∗. Since b∗ ∈ G′ ⊆ G,

nlt (b∗) is reduced modG, and this implies b′j+1 = b′j + b∗ = b and
therefore j = t− 1.

The following algorithm A defines a subset F of G as follows:

begin

F:=G, H:=G

while H �= ∅ do

take b ∈ H minimal with respect to ≺, Fb := {b}, H := H\{b}
while Fb �= ∅ do

if 0 ∈ Fb then F := F \ {b}
else

choose c ∈ Fb

Fb := (Fb \ {c}) ∪ {|c− nlt (c)
nlt (b′)b

′| | b′ ∈ H, nlt (b′)|nlt (c)}
end

Remark 5. By Corollary 1.4, A terminates.

Theorem 3.8. The set F , produced by the algorithm A from the
given Gröbner basis G, is a minimal ρ-homogeneous generating set of
binomials of I.

Proof. By Remark 5 all that is needed is correctness for A. F
is part of a homogeneous generating set, minimal in number, from
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which the uniquely determined reduced and normalized Gröbner basis
is obtainable (this follows by Lemmata 3.5, 3.6, 3.7). Therefore F is a
minimal generating set.

In the next corollary we give a slight modification of the algorithm
A. This allows us to finish the inner “while”-loop probably earlier than
in the original version.

Corollary 3.9. Assume F ′ is obtained from F by also deleting
any binomial b, which becomes divisible by an indeterminate during
the “while” loop of A. Then F ′R = FR.

Proof. F ′R �= FR contradicts the graded Nakayama lemma.

Remark 6. We note that our binomial ideal I is of the form I = IL
with L a subgroup of Zr (see Definition 2.1); thus, I : xi = I for all
i = 1, . . . , r. Therefore, if a binomial b ∈ I is divisible by a variable xi,
then b ∈ mI.

Remark 7. For completeness there are algorithms for minimal gener-
ating sets for some binomial ideals in [4, 5]. The results in Section 4
depend strictly upon algorithm A.

4. An application. Assume throughout this section that n1, . . . , nr

are positive integers with gcd (n1, . . . , nr) = 1.

Let ρ : Nr → N be a function as introduced in Section 1. Assume
throughout this part of Section 4 that ρ is linear, i.e., ρ = f |Nr , where
f : Zr → Z is a linear map and we have ρ(ei) = ni (ei as before,
i = 1, . . . , r).

Let < be an admissible term order on T (or equivalently, on Nr),
set L := ker f . Then IL = p(n1, . . ., nr) =: p as before. As already
mentioned in Section 2, Example 2, p is a ρ-homogeneous prime ideal
in R with dimR/p = 1. (More precisely, R/p ∼= K[tn1 , . . ., tnr ] ⊆ K[t],
t an indeterminate.)

Assume P := PL is a Patil basis of p with respect to <. Since xi /∈ p
for all i = 1, . . ., r we can use the version of Corollary 3.9 if we want
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to apply our algorithm A of Section 3 to P . (Note that P is a reduced
and normalized Gröbner basis of p with respect to the term order <′,
see Definition 2.4 and Proposition 2.8.)

If μ ∈ Nr we also will write σ(xμ) instead of xσ(μ), i.e., if m ∈ T ,
m = xμ, then σ(m) := xσ(μ), see Definition 2.3.

Definition 4.1. For i = 1, . . ., r we define

αi := min{α ∈ N+ | xαi −m ∈ p for some m ∈ T \ {xαi }}.

Remark 8. If ni = qidij , nj = qjdij , ni �= nj , gcd (ni, nj) = dij , then
x
qj
i − xqij ∈ p; thus, qj = αi.

Proposition 4.2. (1) For each i = 1, . . ., r there exists at least one
m ∈ T such that |xαi

i − m| ∈ P . If, in addition, m = σ(xαi

i ) then
xαi

i − σ(xαi

i ) is the unique binomial in P with a pure power of xi in its
support.

(2) Assume m1−m2 ∈ p and m−σ(m) ∈ P . If mm2 < m1σ(m) and
m2|σ(m), then m and m1 are relatively prime.

(3) Let < be the lexicographical term order on T given by x1 > x2 >

· · · > xr and assume m̃ − xγi ∈ p, m − xβi ∈ P , 1 ≤ i ≤ r, with

xβi = σ(m) and γ ≤ β.

If γ < β or m < m̃, then m and m̃ are relatively prime.

Proof. (1) is immediate since P is a reduced and normalized Gröbner
basis of p with respect to the term order <′ (see Definition 2.4 and
Proposition 2.8).

To prove (2) assume xj | m and xj | m1 for some j, 1 ≤ j ≤ r.
Then we have with m′ := m−1

2 σ(m) ∈ T and b := x−1
j m− x−1

j m1m
′ =

x−1
j (m − σ(m) − m′(m1 − m2)) ∈ p : xj = p and lt<′b = x−1

j m.

Therefore, x−1
j m possesses a reduction modP , i.e., there is a μ ∈ M

such that xμ = lt<′(xμ − xσ(μ)) | x−1
j m. But then xμ ‖ m, a

contradiction (see Remark 1).

(3) Since xβi = σ(m) > m, we have i < j (< in N) for all j ∈ N with

xj | m. Therefore, mxγi < m̃xβi and (3) follows from (2).
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Corollary 4.3. Let < be a term order with t < x1, for all terms
t ∈ K[x2, . . ., xr]. Let p ∈ {2, . . ., r}, and assume that there is an
m ∈ T with x1 | m and x

αp
p −m ∈ p.

Then x
αp
p < σ(x

αp
p ), x

αp
p − σ(x

αp
p ) ∈ P , and this binomial is the only

binomial in P with a pure power of xp in its support. It is not contained
in K[x2, . . ., xr].

Proof. Since x1 | m we have x
αp
p < m, and therefore x

αp
p < m ≤

σ(m) = σ(x
αp
p ). Then x1 | σ(xαp

p ) by our assumption on <.

Let b′ := x
αp
p − m (∈ p). Since lt<′(b′) = x

αp
p , there is a b ∈ P

with lt<′b | xαp
p , i.e., lt<′b = x

αp
p by Proposition 4.2 (3) and by the

minimality of αp. Then b = x
αp
p − σ(x

αp
p ), and this is the unique

binomial in P with a pure power of xp in its support by Proposition
4.2 (1). It is clear that b /∈ K[x2, . . ., xr] (since x1 | σ(xαp

p )).

Assume for the remainder of Section 4 that r=4, IL=p(n1, n2, n3, n4)
=: p and P is a Patil bases for p with respect to a given term order <
on T (or equivalently on N4). In order to indicate the term order under
consideration we sometimes write P<. To obtain minimal generating
sets for p from P , we consider the following two cases where the
situation described in Case 2 is the more general one:

Case 1. There are i, j, k, l ∈ N with {i, j, k, l} = {1, 2, 3, 4} and
mj ,mk,ml ∈ T such that xi | mj , xi | mk, xi | ml and {xαj

j −mj, x
αk

k −
mk, x

αl

l −ml} ⊆ p.

Case 2. For some 3-element subset, say {i, k, l} of {1, 2, 3, 4} there
aremk,ml ∈ T with xi | mk, xi | ml such that {xαk

k −mk, x
αl

l −ml} ⊆ p.

Using the notation introduced at the beginning of this section we
have:

Theorem 4.4. Let P< be a Patil basis of p with respect to a given
term order < on T (or equivalently on N4), and denote by F< the
minimal set of generators for p obtained from P< by applying algorithm
A of Section 3. Then we have:

(1) Assume we are in Case 1, and let < be any lexicographical term
order on T with xi > xj , xk, xl. Then F< = P<, i.e., the Patil bases of
p with respect to < is already a minimal generating set for p.
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(2) Assume we are in Case 2 but not in Case 1. Let < be a
lexicographical term order on T with xi > xj > xk, xl. Then

F< =
{
b ∈ P<

∣∣∣xαj

j � nlt<(b)
}
,

i.e., we have for b ∈ P<, b = m− σ(m) (m ∈ T ) : b /∈ F< if and only
if x

αj

j | m.

(3) Assume we are not in Case 2. Then there are i, j, k, l ∈ N with
{i, j, k, l} = {1, 2, 3, 4} and xαi

i − x
αj

j , xαk

k − xαl

l ∈ p. Let < be the
lexicographical term order on T given by xi > xj > xk > xl. Then
there is a uniquely determined γ ∈ N+ with xγk − σ(xγk) ∈ P<, and we
have

F< =

{
P< \ {xγk − σ(xγk)} if xl | σ(xγk)
P< otherwise.

In order to prove this theorem we state and prove the following
lemmata.

Lemma 4.5. Assume we are in Case 2, and let < be a lexicographical
term order on T with xi > xj > xk, xl.

If P< ∩K[xj , xk, xl] �= ∅ then P< ∩K[xj , xk, xl] = {xγkxδl − x
αj

j } for

suitable γ, δ ∈ N+. Moreover, xγkx
δ
l − x

αj

j is the only binomial in P<

with x
αj

j in its support.

Proof. Assume without loss of generality that i = 1, j = 2, k = 3,
l = 4. For p = 3, 4 let bp := x

αp
p − σ(x

αp
p ). By Corollary 4.3 we have:

bp ∈ P< =: P, bp is the only binomial in P with a pure power of xp in
its support and bp /∈ K[x2, x3, x4], p = 3, 4.

Assume now that P ∩K[x2, x3, x4] �= ∅, and let b ∈ P ∩K[x2, x3, x4].
Since b is irreducible, b contains a pure power in one of the indeter-
minates x2, x3 or x4 in its support. By our previous considerations b
cannot contain a pure power in x3 or x4 since otherwise b = b3 or b = b4,
and therefore b /∈ K[x2, x3, x4], a contradiction. Thus, b = xβ3x

γ
4 − xα2

for suitable α, β, γ ∈ N+. It is clear that α ≥ α2 and xα2 = σ(xβ3x
γ
4 )

(since b ∈ P ). Now let b′ ∈ P ∩ K[x2, x3, x4] be another binomial.

Then again b′ = xβ
′

3 x
γ′
4 − xα

′
2 for suitable α′, β′, γ′ ∈ N+, α′ ≥ α2 and
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xα
′

2 = σ(xβ
′

3 x
γ′
4 ). Now Proposition 4.2 (3) implies α = α′ and therefore

we have σ(xβ3x
γ
4 ) = σ(xβ

′
3 x

γ′
4 ). But then xβ3x

γ
4 = xγ

′
3 x

β′
4 by Proposition

4.2 (2), i.e., b′ = b.

Now by Proposition 4.2 (1) there is an m ∈ T with |m − xα2
2 |∈ P .

If x1 | m, then xα2
2 −m is the only binomial in P with a pure power

in x2 in its support by Proposition 4.2 (1) since then m > xα2
2 , and

therefore m = σ(xα2
2 ). But this is a contradiction, since b ∈ P

also has a pure power in x2 in its support, but b ∈ K[x2, x3, x4],
xα2
2 −m /∈ K[x2, x3, x4], and therefore b �= xα2

2 −m.

Hence x1 � m, i.e.,m−xα2
2 ∈ P∩K[x2, x3, x4]. Therefore,m−xα2

2 = b,
i.e., α = α2.

Lemma 4.6. Suppose we are in Case 2 but not in Case 1.

(1) If m ∈ T \ {xαj

j } with x
αj

j −m ∈ p, then xi � m and xk · xl | m.

(2) If m ∈ T with xαi

i −m ∈ p, then x
αj

j � m.

(3) Assume b ∈ p, b = m1 −m2 (m1,m2 ∈ T ) with x
αj

j | m1, xi | m2.
If m2 ∈ (xk, xl) ·R, then b ∈ m · p.
Proof. Assume without loss of generality i = 1, j = 2, k = 3, l = 4.

(1) x1 � m is immediate since we are not in Case 1. By the minimality
of α2 we have x2 � m, i.e., m ∈ K[x3, x4]. If m = xγ3 with γ ∈ N+,
then γ ≥ α3 and x

αj

j − xγ−α3

3 m3 = x
αj

j −m + xγ−α3

3 (xα3
3 −m3) ∈ p.

But x1 | m3, contradicting the fact proved just before.

Using the same argument we see that m cannot be a pure power of
x4, and therefore x3 · x4 | m.

(2) Suppose there is an m ∈ T with xα2
2 | m and xα1

1 −m ∈ p. Let
< be the lexicographical term order given by x1 > x2 > x3 > x4.
By Proposition 4.2 (1) there is an m′ ∈ T with |xα2

2 −m′| ∈ P< and
(1) shows |xα2

2 −m′| ∈ K[x2, x3, x4], i.e., P< ∩K[x2, x3, x4] �= ∅. By

Lemma 4.5 there are β, γ ∈ N+ such that xβ3x
γ
4 − xα2

2 ∈ P< ⊆ p.

If x4 | m3 or x3 | m4, we are then in Case 1, since xα1
1 −mx−α2

2 xβ3x
γ
4 =

xα1
1 −m −mx−α2

2 (xβ3x
γ
4 − xα2

2 ) ∈ p (take i = 4 or i = 3, j = 1,mj =

mx−α2
2 xβ3x

γ
4 , k = 2, mk = xβ3x

γ
4 and l = 3 or l = 4), a contradiction.

Therefore, m3,m4 ∈ K[x1, x2] since x3 � m3 and x4 � m4 by the
minimality of α3 and α4. Assume x2 � m3. Then m3 = xδ1 with
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δ ∈ N+. Clearly δ ≥ α1, and we get with m′
3 := xδ−α1

1 m : xα3
3 −m′

3 =
xα3
3 − xδ1 + xδ−α1

1 (xα1
1 −m) ∈ p. Since x2 | m′

3, we can assume without
loss of generality that x2 | m3 and, using the same argument, x2 | m4.
But then we are again in Case 1 with i = 2, j = 1, mj = m, k = 3 and
l = 4, a contradiction, and this proves (2).

(3) By (1) we have xα2
2 ‖ m1. Let m

′ := m1x
−α2
2 ∈ T . Then m′ ∈ m.

Choose m ∈ T \ {xα2
2 } with xα2

2 −m ∈ p. Then x3x4 | m by (1). Now
b = m′(xα2

2 −m) +m′m−m2. Assume without loss of generality that
x3 | m2. Then m′m −m2 = x3b

′ with a binomial b′ ∈ R, and we get
x3b

′ = b−m′(xα2
2 −m) ∈ p; therefore, b′ ∈ p : x3 = p. But this implies

b = m′(xα2
2 −m) + x3b

′ ∈ mp.

Lemma 4.7. The following conditions are equivalent:

(i) Case 2 does not hold for p.

(ii) There are i, j, k, l ∈ N with {i, j, k, l} = {1, 2, 3, 4} such that
xαi

i −x
αj

j , xαk

k −xαl

l ∈ p, and both these binomials are the only ones in
p containing one of the powers xα1

1 , xα2
2 , xα3

3 or xα4
4 in their support.

Proof. (i) ⇒ (ii). For p ∈ {1, 2, 3, 4}, let Ap :=
{
ip

∣∣ xip |
mp, x

αp
p −mp ∈ p

}
. Since we are not in Case 2, the sets Ap are pairwise

distinct and p /∈ Ap.

Let j := i1. Then j �= 1 and m1 = xβj with β ∈ N+, β ≥ αj . Let

q := ij . Then q �= j and mj = xγq with γ ∈ N+, γ ≥ αq, and we get

xα1
1 − x

β−αj

j xγq = xα1
1 − xβj + x

β−αj

j (x
αj

j − xγq ) ∈ p.

By the uniqueness ofm1, we therefore have β = αj , q = 1 and γ = α1,
i.e., xα1

1 −xαj

j ∈ p. This is the only binomial in p with xα1
1 in its support.

Repeating this argument for the remaining indeterminates we get (ii).

(ii) ⇒ (i) is immediate.

Lemma 4.8. Assume we are not in Case 2. Using the notation of
Lemma 4.7 (ii) we have:

(1) Let < be a lexicographical term order on T with xi > xj > xk, xl.
Then P< ∩K[xj , xk, xl] = {|xαl

l − xαk

k |}.
(2) Let < be a lexicographical term order on T with xi, xj > xk > xl.

Then P< ∩K[xi, xj , xl] = {|xαj

j − xαi

i |}.
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Proof. (1) Let b ∈ P< ∩ K[xj , xk, xl], and assume without loss of
generality that xk > xl. Let b = m1 −m2 (m1,m2 ∈ T ), m1 < m2.
Since xi � m1, xi � m2, we therefore have xj � m1 (otherwise m1 > m2).
By Proposition 4.2 (1) x

αj

j −xαi

i and xαl

l −xαk

k are contained in P< =: P ,
and they are the only binomials in P with a pure power of xj and xl,
respectively, in their support.

Let m1 = xγkx
δ
l with γ, δ ∈ N. For γ, δ > 0 we have m2 = xβj with

β ∈ N+. Then β ≥ αj , a contradiction, since this would imply that b is
reducible modx

αj

j − xαi

i ∈ P . Therefore, γ = 0 or δ = 0. If γ > 0, i.e.,

m1 = xγk , we have γ ≥ αk and m2 = xβj x
ε
l with β, ε ∈ N, and β < αj ,

ε < αl (otherwise b would be reducible modx
αj

j − xαi

i or xαl

l − xαk

k ).

But then xαk

k xεl (x
γ−αk

k xαl−ε
l − xβj ) = xαl

l b + xβj x
ε
l (x

αl

l − xαk

k ) ∈ p, and

therefore xγ−αk

k xαl−ε
l − xβj ∈ p, a contradiction, since β < αj . Thus

γ = 0, δ > 0, i.e., b = xαl

l − xαk

k since xαl

l − xαk

k is the only binomial in
P with a pure power of xl in its support by Proposition 4.2 (1).

(2) Assume without loss of generality that xi > xj , and let b ∈
P< ∩ K[xi, xj , xl], b = m1 − m2 (m1,m2 ∈ T ), m1 < m2. Then
xi � m1. If xj � m1, i.e., m1 = xδl , δ ∈ N+, b would be reducible
mod xαl

l −xαk

k ∈ P< =: P since then δ ≥ αl, a contradiction. Therefore,

xj | m1 and m1 = xβj x
δ
l with β, δ ∈ N, β > 0. Clearly, β ≤ αj and

δ < αl, since otherwise b would be reducible modP . If δ > 0 we have

m2 = xαi with α ∈ N+ and α ≥ αi. But then xβj (x
δ
l − xα−αi

i x
αj−β
j ) =

b − xα−αi

i (x
αj

j − xαi

i ) ∈ p, i.e., xδl − xα−αi

i x
αj−β
j ∈ p, a contradiction,

since δ < αl. Therefore, δ = 0, i.e., m1 = xβj . By Proposition 4.2 (1)

we now get b = x
αj

j − xαi

i since x
αj

j − xαi

i is the only binomial in P
with a pure power of xj in its support.

Proof of Theorem 4.4. (1) Assume without loss of generality that
i = 1, j = 2, k = 3, l = 4 and that < is given by x1 > x2 > x3 > x4.
Suppose there is a b ∈ P< =: P with (P \ {b}) · R = p. Let
b = m1 −m2, m1 < m2 (m1,m2 ∈ T ). Since b ∈ (P \ {b}) · R there

must be a b̃ ∈ P \ {b}, b̃ = m̃1 − m̃2, m̃1 < m̃2 (m̃1, m̃2 ∈ T ) with
m̃2 | m1. (Note that lt<′(b′) � m1 for all b′ ∈ P \ {b}, since P is a
reduced Gröbner basis for <′). Since b is irreducible and m1 < m2,

we have x1 � m1 and therefore x1 � m̃2. Thus, b̃ ∈ P ∩ K[x2, x3, x4],

and hence b̃ = xβ3x
δ
4 − xα2

2 for suitable β, γ ∈ N+ by Lemma 4.5.
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But this contradicts Corollary 4.3 which says that xα2
2 − σ(xα2

2 ) is
the only binomial in P with a pure power of x2 in its support and
xα2
2 − σ(xα2

2 ) �∈ K[x2, x3, x4]. This proves (1).

(2) Assume without loss of generality that i = 1, j = 2, k = 3, l = 4
and that x1 > x2 > x3 > x4. Let b ∈ P< =: P , b = m1 −m2, m1 < m2

(m1,m2 ∈ T ). Assume b /∈ F . By our algorithm A there is a sequence
of reductions up to b using elements of P \{b} ending in 0. Among these
reductions a reduction must occur of m1, since otherwise m1(= lt<′b)
would be a multiple of the leading term (with respect to <′) of some
b′ ∈ P \ {b} contradicting the fact that P is a reduced Gröbner basis.

Therefore, there is some b̃ ∈ P \ {b}, b̃ = m̃1 − m̃2, m̃1 < m̃2

(m̃1, m̃2 ∈ T ) with m̃2 | m1. Since b is irreducible and m1 < m2, we

get x1 � m1; therefore, x1 � m̃2, i.e., b̃ ∈ K[x2, x3, x4]. By Lemma 4.5

we obtain b̃ = xβ3x
γ
4 − xα2

2 for suitable β, γ ∈ N+ and this implies
xα2
2 = m̃2 | m1 = nlt<b. Therefore,

{
b ∈ P

∣∣xα2
2 � nlt<b

} ⊆ F .

Next let b ∈ P , b = m1 −m2, m1 < m2 (m1,m2 ∈ T ), and suppose
xα2
2 |m1. Then x2 � m2 since b is irreducible. If m2 ∈ (x3, x4) · R

then b ∈ mp by Lemma 4.6 (3) and therefore b /∈ F by Corollary 3.9.
Now assume that m2 /∈ (x3, x4) · R, i.e., x3 � m2 and x4 � m2. Then
m2 = xα1 for some α ∈ N+ and α ≥ α1. Lemma 4.6 (2) shows that
α > α1 (since xα2

2 | m1). By Proposition 4.2 (1) there is an m ∈ T
with |xα1

1 −m| ∈ P . Since x1 � m, m < xα1
1 , i.e., m − xα1

1 ∈ P . Since
α1 < α we have ρ(m − xα1

1 ) < ρ(b), i.e., b ≺ m − xα1
1 where ≺ is the

order on P derived form <′, see Definition 3.4.

Therefore, m − xα1
1 can be used for a reduction up of b when b is

“tested” in the outer “while”-loop of the algorithm A′ of Corollary 3.9.
The result of such a reduction up of b (via m1 = xα1 ) is b′ :=
m1 − xα−α1

1 m ∈ p. If x3 | m or x4 | m, then b′ ∈ mp by Lemma
4.6 (3) and b /∈ F by Corollary 3.9. Suppose x3 � m, x4 � m, i.e.,

m = xβ2 with β ∈ N+. Then b′ = x2b
′′ with b′′ ∈ R and b′′ ∈ p : x2 = p.

Again b′ ∈ mp, and therefore b /∈ F by Corollary 3.9. This shows (2).

(3) Since xni

k − xnk
i ∈ p, there must be a b ∈ P< =: P such that

lt<′(b)|lt<′(xni

k − xnk

i ) = xni

k , i.e., lt<′(b) = xγk with γ ∈ N+. It is
then clear that b = xγk − σ(xγk) and x

γ
k < σ(xγk). Since P is a reduced

Gröbner basis with respect to <′ there is only one binomial in P of this
form.
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Assume now without loss of generality that i = 1, j = 2, k = 3,
l = 4. By Lemma 4.8 and Proposition 4.2 (1) we have xα2

2 − xα1
1 ,

xα4
4 − xα3

3 ∈ P . By the minimality of α3 we have γ ≥ α3, and since P
is a reduced Gröbner basis of p with respect to <′, γ > α3. Assume
x4 | σ(xγ3 ). Then xγ3 − σ(xγ3 ) = x4b

′ − xγ−α3

3 (xα4
4 − xα3

3 ), where
b′ := xγ−α3

3 xα4−1
4 − x−1

4 σ(xγ3 ). Since x4b
′ ∈ p we have b′ ∈ p : x4 = p,

i.e., xγ3 − σ(xγ3 ) ∈ mp, and therefore xγ3 − σ(xγ3 ) /∈ F< =: F by
Corollary 3.9.

Assume now that there is a b ∈ P with b /∈ F . We need to show that
b = xγ3 − σ(xγ3 ) and x4 | σ(xγ3 ). Let b = m1 − m2 with m1,m2 ∈ T ,
m1 < m2. Then x1 � m1. By our algorithm A there is a chain of
reductions up of b (with respect to <′) ending in 0. Since P is a

reduced Gröbner basis of p with respect to <′, lt<′ (̃b) � m1 = lt<′(b)

for all b̃ ∈ P \ {b}, i.e., a reduction of m1 must occur. Assume this

reduction step is performed using b̃ ∈ P, b̃ = m̃1−m̃2, with m̃1, m̃2 ∈ T ,
m̃1 < m̃2. Then m̃2 | m1, and therefore x1 � m̃2. Since m̃1 < m̃2, this

implies x1 � m̃1, i.e., b̃ ∈ P ∩ K[x2, x3, x4] = {xα4
4 − xα3

3 } by Lemma
4.8 (1). Hence xα3

3 | m1, and thus x3 � m2. Since P is a reduced
Gröbner basis of p with respect to <′ and b, xα4

4 − xα3
3 are in P , we

have xα3
3 ‖ m1 = lt<′(b).

Suppose x4 � m2. Then m2 = xα1 x
β
2 with α, β ∈ N and β < α2

(since P is reduced and b, xα2
2 − xα1

1 ∈ P ). Hence α > 0 (by the
minimality of α2). Suppose x2|m1. Then β = 0 and xα1 = σ(m1). Since
xα2
2 − xα1

1 ∈ P , and therefore xα1
1 = σ(xα2

2 ), we get by Proposition
4.2 (3) that m1 and xα2

2 are relatively prime, a contradiction. Thus
x2 � m1, and we have m1 = xε3x

δ
4 with δ, ε ∈ N, ε ≥ α3 and δ < α4

(since P is reduced and b, xα4
4 −xα3

3 are in P ). Now m2 has a reduction

up by a binomial b̃ ∈ P \ {b}. Let b̃ = m̃1 − m̃2 with m̃1, m̃2 ∈ T ,
m̃1 < m̃2. Then m̃2 | m2, and therefore x3 � m̃2 = σ(m̃1). Since
m2 = σ(m1) and m1m̃2 < m̃1m2 if m̃2 ‖ m2,m1 and m̃1 are relatively
prime by Proposition 4.2 (2). Since x3 | m1, we therefore get x3 � m̃1,

i.e., b̃ ∈ P ∩ K[x1, x2, x4] = {xα2
2 − xα1

1 } by Lemma 4.8 (2). Hence,

b̃ = xα2
2 −xα1

1 . Performing p reductions up ofm2 using x
α2
2 −xα1

1 (p ≥ 1),

we obtain xα−pα1

1 xβ+pα2

2 <′ m1. But at some stage of the reduction
up chain of m2 (contained in the reduction up chain of b ending in
0) we must obtain a term which is bigger then m1, i.e., after p ≥ 1
reductions up of m2 using xα2

2 −xα1
1 there must occur a reduction up of
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xα−pα1

1 xβ+pα2

2 using a binomial b∗ ∈ P \{xα2
2 −xα1

1 }, say, b∗ = m∗
1−m∗

2

with m∗
1,m

∗
2 ∈ T , m∗

1 < m∗
2. Then x3 � m∗

2 but x3 | m∗
1 (otherwise

b∗ = xα2
2 − xα1

1 ) and x2 � m∗
1 (otherwise x2 � m∗

2, and therefore
m∗

2 = xα
∗

1 , α∗ ∈ N+, a contradiction as we have seen above when

we proved that x2 � m1). Therefore, m∗
1 = xγ

∗
3 xδ

∗
4 ,m

∗
2 = xα

∗
1 xβ

∗
2

with α∗, β∗, γ∗, δ∗ ∈ N and where γ∗ > 0, 0 ≤ δ∗ < α4 (since P is
reduced), 0 < α∗ ≤ α − pα1 ≤ α − α1 (since b∗ /∈ K[x2, x3, x4], see

Lemma 4.8 (1), and m∗
2 | xα−pα1

1 xβ+pα2

2 ) and 0 ≤ β∗ < α2 (since P
is reduced). If β∗ ≤ β, i.e., m∗

2 ‖ m2, we would get that m1 and
m∗

1 are relatively prime by Proposition 4.2 (2), a contradiction. Hence
β < β∗ < α2. Let c := α2 − β∗ + β. Then 0 < c < α2, and we
get with b′ := m1x

−1
3 − xα−α∗−α1

1 xc2m
∗
1x

−1
3 : lt<′(b′) = m1x

−1
3 and

xβ
∗−β

2 x3b
′ = xβ

∗−β
2 b − xα−α∗−α1

1 xα2
2 b∗ − xα−α∗−α1

1 m∗
2(x

α2
2 − xα1

1 ) ∈ p,

i.e., b′ ∈ p : xβ
∗−β

2 x3 = p. Therefore, there is a b′′ ∈ P such
that lt<′(b′′) | lt<′(b′) = m1x

−1
3 , i.e., lt<′(b′′) | m1 = lt<′(b), a

contradiction, since P is reduced.

Therefore x4 | m2 and, consequently, x4 � m1.

Finally suppose x2 | m1. Then b = xρ2x
σ
3 − xα1 x

δ
4 with α, δ, ρ, σ ∈ N,

σ ≥ α3, 0 < ρ < α2, 0 < δ < α4. Then xδ4(x
ρ
2x

σ−α3
3 xα4−δ

4 −xα1 )
= xρ2x

σ−α3
3 (xα4

4 −xα3
3 )+b ∈ p, and therefore xρ2x

σ−α3
3 xα4−δ

4 − xα1 ∈
p : xδ4 = p, i.e., α ≥ α1 by the minimality of α1. But then
m1 = xρ2x

σ
3 and xα2

2 are relatively prime by Proposition 4.2 (2), a
contradiction. Therefore x2 � m1, i.e., m1 is a pure power of x3, and
hence b = xγ3 − σ(xγ3 ) and x4 | σ(xγ3 ).

Example 4.1. 1. n1 = 5, n2 = 6, n3 = 7, n4 = 9. Then α1 = 3,
α2 = α3 = α4 = 2 and {x22 − x1x3, x

2
3 − x1x4, x

2
4 − x1x2x3} ⊂ p :=

p(5, 6, 7, 9).

Hence we are in Case 1 (i = 1, j = 2, k = 3, l = 4) and, with a
lexicographical term order on T with x1 > x2, x3, x4, we obtain

{x22 − x1x3, x2x4 − x31, x
2
3 − x1x4, x3x4 − x21x2, x

2
4 − x1x2x3}

as a Patil basis (see Remark 9 below) for p. By Theorem 4.4 (1) this
is already a minimal generating set for p.

2. n1 = 6, n2 = 7, n3 = 8, n4 = 9. Then again α1 = 3, α2 = α3 =
α4 = 2 and {x22−x1x3, x24−x31} ⊂ p(6, 7, 8, 9) =: p. Now it is easy to see
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that we are in Case 2 but not in Case 1 (take i = 1, j = 3, k = 2, l = 4)
and, with a lexicographical term order on T with x1 > x3 > x2, x4, we
obtain

{x22 − x1x3, x2x3 − x1x4, x2x4 − x23, x
2
4 − x31, x

3
3 − x41, x

2
3x4 − x31x2}

as a Patil basis for p. By Theorem 4.4 (2),

F := {x22 − x1x3, x2x3 − x1x4, x2x4 − x23, x
2
4 − x31}

is a minimal generating set for p. According to Case 2 we can also
choose i = 4, j = 2, k = 1, l = 3. Now if < is a lexicographical term
order on T with x4 > x2 > x1, x3 then {x1x3 − x22, x2x3 − x1x4, x

2
3 −

x2x4, x
3
1−x24, x32−x21x4, x21x22−x3x24} is the Patil basis of p with respect

to <, and we again obtain F as a minimal generating set of p by
Theorem 4.4 (2).

We note that F is already the Patil basis of p with respect to the
lexicographical term order on T given by x1 > x2 > x3 > x4.

3. (a) n1 = 10, n2 = 15, n3 = 16, n4 = 24. Then α1 = 3, α2 = 2,
α3 = 3, α4 = 2 and {x31−x22, x33−x24} ⊆ p(10, 15, 16, 24) =: p, and both
binomials are the only ones in p with x31, x

2
2, x

3
3 or x24 in its support.

Hence we are not in Case 2 by Lemma 4.7.

{x22 − x31, x
2
4 − x33, x3x4 − x41, x

4
3 − x41x4}

is the Patil basis of p with respect to the lexicographical term order on
T given by x1 > x2 > x3 > x4. Using the notation of Theorem 4.4 (3)
we have γ = 4 and x4 | σ(xγ3 ) = x41x4. Therefore

{x22 − x31, x
2
4 − x33, x3x4 − x41}

is a minimal generating set of p by Theorem 4.4 (3).

We note that the minimal number of generators of p(n1, n2, n3, n4)
cannot be 4 when we are not in Case 2 (see, e.g., [3]). Another example
of a Patil basis not being a minimal generating set was given by Patil
in his thesis, see [6].

(b) n1 = 21, n2 = 24, n3 = 40, n4 = 49. Then α1 = 7, α2 = 5,
α3 = α4 = 3 and {x71 − x34, x

5
2 − x33} ⊆ p(21, 24, 40, 49) =: p, and these
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binomials are the only ones in p with x71, x
5
2, x

3
3 or x34 in its support.

Hence, we are again not in Case 2 by Lemma 4.7.

P := {x32x3 − x31x4, x
3
3 − x52, x2x

2
4 − x21x

2
3, x

2
3x4 − x51x2,

x3x
2
4 − x21x

4
2, x

4
2x4 − x51x3, x

3
4 − x71, x

7
2 − x81}

is the Patil basis of p with respect to the lexicographical term order on
T given by x1 > x4 > x2 > x3. We have γ = 7 and x3 � σ(x72) = x81.
Therefore, P is already a minimal generating set of p by Theorem
4.4 (3).

Remark 9. To obtain Patil bases from a generic zero see [7]. For
the particular examples above, Apery sequences [1] of the numerical
semigroup S := 〈n1, . . . , nr〉 can be used. We state without proof:
If A(n1) = {ω1, ω2, . . . , ωn1} with 0 = ω1 < ω2 < · · · < ωn1 is the
Apery sequence of S and A(n1, <) = {(ω1, α1), . . . , (ωn1 , αn1)} with
ρ(αi) = ωi and σ(αi) = αi, i = 1, . . . , n1, then

C := {(i, j) | 1 ≤ i ≤ n1, 2 ≤ j ≤ r, (ρ(αi + ej), αi + ej) /∈ A(n1, <),

σ(α) = α for all α ∈ Nr such that α ‖ αi + ej}

is a Patil basis if a1 < b1 implies α = (a1, . . . , ar) < β = (b1, . . . , br).
Here ej is as defined in Proposition 1.2 and Example 2.
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