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COMPACT REPRESENTATION OF
QUADRATIC INTEGERS AND INTEGER POINTS
ON SOME ELLIPTIC CURVES

FILIP NAJMAN

1. Introduction. Let Q(v/d) be a real quadratic field. Following
[17] we define a compact representation of an algebraic number 8 €

Q(+/d) to be

&) 6= f[ (3—)

where d; € Z, aj = (a; +b;v/d)/2 € Q(Vd), aj,b; € Z, j = 1,... k.
Bounds on k, o and d; are given in [17], and all depend polynomially
on logd. Compact representations are used to store the fundamental
unit of the quadratic order O. The reason for doing this is that, as
is shown in [15], there is an infinite set of quadratic orders, such that
the binary length of the fundamental unit is exponential in log d. This
makes it impossible to create an algorithm for solving the Pell equation
with complexity less than exponential. Compact representations are
polynomial in logd, and allow faster algorithms for solving the Pell
equation.

This representation is a extension of a compact representation as
defined in [2] from algebraic integers to all elements of Q*(v/d). It
is often useful to do modular arithmetic on compact representations,
for example for determining the solvability of certain Diophantine
equations, as seen in [14]. We present an algorithm for computing the
value of a quadratic integer represented by a compact representation
as defined in [17]. In [2, 14] there are algorithms for doing modular
arithmetic on compact representations as defined in [2], but to our
knowledge there are no algorithms for doing modular arithmetic on
compact representations as defined in [17]. The main problem is that
the [2] representation requires that the partial products
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be quadratic integers. Using Maurer’s methods, we obtain representa-
tions that do not satisfy this requirement. On such a representation,
using algorithms from [2, 14] is not possible.

It is expected that the number of integer points on an elliptic curve
E in Weierstrass form depends on the rank of E(Q). More precisely,
Lang conjectured that it grows exponentially with the rank (see [21]).
Since not much is known on the distribution of ranks in parametric
families of elliptic curves, this makes it hard to expect to find (or even
predict) all integer points on a family of elliptic curves in Weierstrass
form. However, for some families of elliptic curves not in Weierstarss
form, there are results which give evidence that the number of integer
points might not depend on the rank, and that actually the number of
points can be the same for all curves in a family. Several such results
involve so called D(n)-m-tuples.

A set of positive integers {a1,as,...,a,} is called a Diophantine
D(n) m-tuple if a;a; + n is a perfect square for all 1 < i < j < m.
Using our algorithm we shall improve the following results. In [10], the
following theorem is proved:

Theorem 1. Let {1,2,c} be a D(—1)-triple and E the elliptic curve
given by

(3) Ep:y?=(z+1)(2z+1)(cx +1).

Assume that ¢ — 2 is square-free and that the rank of E over Q equals
two. Then, the integer points on E are given by

(4) (z,y) € {(—1, 0), (0,+1), (%, +s(c— 2)> , (s(3s — 2t),
£ (t—s)(2s — t)(st — ¢)),

(s(3s+2t), £(t + s)(2s + t)(st + c))}

where s =+/c—1 and t = \/2¢c — 1.

It is also shown in [10] that ¢ = ¢, = 1/8((1+v/2)** +(1—v/2)%* + 6)
k € N. It should mentioned that the assumption that rk (Ex(Q)) =
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does not always hold. One example of this is that rk (E4(Q)) = 4.
Also ¢ — 2 does not always have to be square-free. Examples of
this are cog — 2 and cg9 — 2. Fujita showed that Theorem 1 holds
without the assumptions on the rank and ¢ — 2 for £ < 40, except
for £ € {4,7,8,11,12,15,20, 24,25,27,30,36,39}. We will exclude
the cases k = 4,7,8,11,12,15,20,25,27,30 and under the extended
Riemann hypothesis, also the case k = 39.

In [11] it is proved

Theorem 2. Let k > 1 be an integer, and let Ey be the elliptic curve
given by
(5) Ek, : y2 = (F2k+1 + 1)(F2k+3.’E + 1)(F2k,+5$ + l)

If the rank of Ey over Q equals one, then the integer points on Ey are
given by

(6) (z,y) € {(0,£1), (4Fokt2F2k+3F2k+4,
£ (2Far42Forrs + 1) (2F5 45 — 1) (2Fo43Forra — 1))}

Note that {For11, Fokt3, Fakys} is a D(—1)-triple.

As in Theorem 1, in Theorem 2 the assumption rk (Fx(Q)) = 1 does
not always hold. For example, rk (E,(Q)) # 1 for k = 2,3,4,5,7,9, 10.
Fujita showed that Theorem 2 holds without the assumption on the
rank of Ey, for f < k < 50, except for the cases k € {9, 20, 24, 25, 32, 43}.
We shall eliminate the cases k = 9, 20, 24, 25 and, under the extended
Riemann hypothesis, also the case k = 43.

In [5] it is proved
Theorem 3. Let Ej, be the elliptic curve given by
(7) Ep:y?=((k—Dz+1)((k+ 1)z + 1)(4kz + 1).

If the rank of Ey over Q equals one or 3 < k < 1000, then all integer
points on Ey are given by

(8)  (z,y) € {(0,%1), (16k> — 4k, +£(128k° — 112k* + 20k — 1))}.
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We shall extend this result to 3 < k& < 5000.

Note that {k— 1,k + 1,4k} is a D(1)-triple. In [3] it was proven that
this triple extends uniquely to a Diophantine quadruple {k — 1,k +
1,4k, 16k® — 4k}. Note also that in [5] it was shown that the statement
of Theorem 3 is valid for some subfamilies with ranks 2 and 3, which
makes the conjecture that for all & > 3 all integer points on (7) are
given by (8) plausible.

In [6] it is proved

Theorem 4. Let E}, be the elliptic curve given by
(9) Ey 1 y® = (Far + 1) (Fagom + 1) (Fogpaw + 1).

If the rank of Ey over Q equals one or 2 < k < 50, then all integer
points on E} are given by

(10)  (,y) € {(0,£1), (4F2p+1F2r+2F2k+s,
+ (2P 41 Fopo — 1) (2F3 10 + 1) (2Fok 12 Forys + 1))}

We shall extend this result to 2 < k& < 200.

Note that {Fak, Fogt2, Fartat is a D(1)-triple. In [4] it was proven
that this triple extends uniquely to a Diophantine quadruple { For, Far12,
Fopt4,4F 41 Fop o Fok 3}

2. An algorithm for modular arithmetic on compact rep-
resentations. We develop an algorithm, which for a given compact
representation (1) of a quadratic integer

ok—i

7

4+ yvVA B i ( aj >

2 e d;
where (z + yv/A)/2 is the standard representation of the given quadratic
integer, and a positive integer n, computes the values z and y mod-
ulo n. Our algorithm is a modification of the algorithm described in
Theorem 5.7 in [2].
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Algorithm 1.

mdl:=n-2F~1 Hle dz.

a[l]:==c; (mod mdl), b[1]:=f; (mod mdl), rem:=1

For (i=2,i<k—1,++i)

{

xtmp:=(a[i—1]?+b[i—1]2A) a; + 2Aa[i—1]b[i—1]b; (mod mdI)
ytmp:=(a[i—1]*+b[i—1]2A) b; + 2a[i—1]b[i—1]a; (mod mdl)

rem:=rem>

divisor:=gcd(4d?_, ,xtmp,ytmp)

4d1271 -rem
rem:—= “divisor
ivisor

. mdl
mdl:= i, divisor)

a[i]::d’iz'ir;gr (mod mdl)

alil: =22 (mod mdl)

while (gcd(reduction, mdl) > 1)

rem
ged(rem, mdl)

If reduction# 1

{

mult:=reduction ! (mod mdl)

reduction:=

rem
reduction

afil:=a[i]- mult (mod mdl)
b[i]:=b[i]- mult (mod mdl)
}
}

This algorithm would be exactly the same algorithm as the one from
Theorem 5.7 in [2] if all the ;, as defined in (2), are quadratic integers.
Algorithm 1 takes polynomial time. As in the algorithm from [2], we
make use of the recursive equation

(11) Ad?_ v =77

If v; is not a quadratic integer, then 4d? | does not divide the right
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hand side in (11), so we must remember the part that does not divide
(remin the algorithm). Also, it may occur that a factor of n is canceled,
so we actually get z (mod n’) and y (mod n'), where n’ divides n. To
correct this we have Algorithm 2:

Algorithm 2. Algorithm 2 receives as input a compact represen-
tation of a quadratic integer P, and a positive integer n. It also uses
a version of Algorithm 1, algl(P,n,k), which receives P and n, and
stores the value of n’ in k. Also this version prints the obtained val-
ues of z (mod n') and y (mod n') if n’ = n. Algorithm 2 actually
finds a multiple of n, n'' such that algl(P,n”, k) returns P (mod n),
as wanted.

algl(P,n k)

pot:=20;

While (k<n)

{

fix:=( )Pt

ko:=k;

fix:=fix - n

fixo:=fix;

alg1(P,fix,k)
if(fixo==fix and ko==k) pot:=pot+20;
¥

If (n<k) algl(P,&x2 k)}

Algorithm 2 also runs in polynomial time.

3. The solvability of az? — by? = ¢. The main method of
improving Theorems 1-4 is going to be, for given a,b,c € Z, proving
the insolubility of a given Diophantine equation of the type

(12) az® —by* =,

where a,b,c € Z, one of a,b is greater than one, gcd(a,b) =



QUADRATIC INTEGERS AND INTEGER POINTS 1985

ged (ab,¢) = 1 and ab is not a perfect square. For doing this when
a, b, c are large, we will need a fast way to solve the Pell equation. Let
Ry = logng, where 7y is the fundamental unit of the real quadratic
field Q(v/d). Ry is called the regulator. Tt is shown in [2] that, given
Ry, there is a polynomial time algorithm for computing a compact rep-
resentation of e(d) = x1 + y1V/d, where z; + y;1/d is the fundamental
solution of the Pell equation 22 — dy? = 1. We use the well-known fact
that e(d) = 3, where v = 1,2,3 or 6. It is always possible to determine
the exact value of v, as shown for example in [14]. Maurer in [17] ex-
plicitly shows methods for computing the compact representation. We
will use Maurer’s methods.

The most time consuming part of solving the Pell equation is comput-
ing Ry. We will use two methods for doing this. Both these methods
also compute the class group.

The first is the Babystep-Giantstep method of Shanks described
in [20]. This method has running time complexity of O(d'/?), and
the result is unconditionally correct. We used the implementation of
this algorithm in LiDIA, the quadratic_order: :regulator_shanks ()
function.

The second method is the subexponential algorithm first described
in [1] that gives a multiple of the regulator, mR; where m = 1
under the extended Riemann hypothesis. As explained in [14], we
can unconditionally compute an odd multiple of the regulator. We
used the implementation of this algorithm in PARI, the quadclassunit
function.

All of our programs were written in C++, using the LiDIA library
[16].

First we examine the case when ¢ = 1,2. Using the subexponential
algorithm we unconditionally compute an odd multiple of the regulator,
and then compute a power product that is an odd power of the
fundamental solution of the Pell equation.

Theorem 5. Let m be an odd integer. If c = 1,2, equation (12) has
a solution in integers if and only if

2 2b
(_a) | vm + 1 and <—> | U — 1,
c c

where vy, + umVab = £(ab)™.
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Proof. See [14, Theorem 4.2].

Now using Algorithm 2 we can compute the value of v,,, and by
Theorem 5 we get an answer to the solvability of (12). We will always
use this method if ¢ = 1, 2, unless said otherwise. This method was used
by the authors of [14] to eliminate the exceptional cases and extend
the results from [9].

If ¢ # 1,2, suppose that ax? — by? = c has a solution. Then,
z2 — aby? = ac has a solution, i.e., there exists x + yvab € OQ(«/E)’

such that N(z + yvab) = ac. Then there exists a principal ideal
(z + yv/ab) that has norm ac. It follows that, to show that (12) has
no solution, it is sufficient to show that there are no principal ideals
of norm ac in OQ( Vab)* For checking whether an ideal is principal we
again need to compute the regulator and class group. So, we can, as
explained in [22], find all ideals in OQ( Vab) of norm ac, then, after
computing Rgp, check whether they are principal. We do this with the
function quadratic_ideal::is_principal() from LiDIA that is an
implementation of the methods described in [13]. If none are, (12) is
insoluble. We have to test at most 2¢(¢D ideals. If a, b are small enough
(ab < 10*°) we use the algorithm of Shanks to compute the regulator.
If we get that (12) is insoluble and R, was computed by the algorithm
of Shanks, this is unconditional.

4. Improvements of Theorem 1. As shown in [10], proving that
(4) are the only integer points on (3) is equivalent to proving that the
following system has no integer solutions:

dQCE% — dll'g = ].,
(13) d3$% — dlil,'g = jQ,

2 2 _ .
dsxy — dyzy = ji,

where ¢ = Ck, d1 = Dl, d2 = 2D2, d3 = C, jl = (C— 2)/D1,
jo = (¢ —1)/D2, and Dy and D; are square-free integers dividing ¢ — 2
and ¢ — 1 respectively. This system is obtained by eliminating = from
the system (4.18) in [10].

By examining these equations modulo various primes, it can be shown
that all except the following cases can be eliminated:
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k (D1, D)

4 (407,17)

7 (3,2), (2175243841,1)

8 (470831,1)

11 (248375433167, 2026573)

12 (543339719, 1153), (543339719, 2306)

15 (264489, 5945), (1343597439, 5945), (2300867879, 1),
(43756594946086091, 11890)

20 (1,1330561), (ca0 — 2,20213),
(ca0 — 2,2661122), (ca0 — 2, 26894629493)
24 (1,5654885), (c24 — 2,7921633),

(ca4 — 2,11309770), (co4 — 2, 1345510645)
25 | (1,2433376321462076761), (co5 — 2,4866752642924153522)

27 (1,985), (car — 2,1970)
30 (1,93521), (1,161669), (1,15119446549)
(c30 — 2,187042), (csp — 2,323338), (c30 — 2, 30238893098)
36 (1283229546787304717998403161, 1409409905),
(1283229546787304717998403159, 2818819810)
39 (254072969141257218722003304911, 1791421633)

All these systems are locally solvable. The reason Fujita could not
eliminate these systems is because the fundamental solutions of the
attached Pell equations are too large. We overcome this problem
by using compact representations. Using the methods described in
Chapter 3, we are able to eliminate some of the cases.

k=4

We get that the first and third equation of (13) have solutions, but the
second equation,
16646527 — 40723 = 9792

is not solvable. This can be easily proven using (more powerful)
methods from Chapter 3, but we will demonstrate a nice elementary
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way of solving the Diophantine equation az? — by? = c. Suppose
az? —by? = c has a solution. We can suppose without loss of generality
that ¢ > 0 (otherwise we multiply the equation with —1).

az® — by* = ¢ = (Vaz + Vby)(Vaz — Vby) = c = (Vaz — Vby)
c T b
T Var+vhy vy Va

~ yvalvaz +Vby)

Because ¢ > 0, it follows that v/az > v/by. Combining this, we get
x b c

14 - — \/j < —.

(14) Iy | SN

Theorem 6. Let a be a real number and c a positive real number.
If a rational number p/q satisfies the inequality

a

then
D TPp £ 8pn_1

q  TqnE£Sqn-1’

for some non negative integers n,r,s, such that rs < 2c, where p,/qn
1s the nth convergent in the continued fraction of «.

Proof. See [7, Theorem 1].

Using this theorem and computing 9792/(21/407(/166465 + 1/407))
~ 0.56679, it follows that rs < 1.133, i.e., for solutions of our equation,
we only have to check the following possibilities: p/q = (pn/qn),
(p/a) = (Pn+1+Pn)/(Gn+1+an) or p/q = (Pnt1— Pn)/(Gnt1 = qn),
where p,, /g, is the nth convergent in the expansion of /407/ 16646

to a continued fraction.

Lemma 1. Let a8 be a positive integer which is not a perfect square,
r,u integers and let p,/q, denote the nth convergent of the continued



QUADRATIC INTEGERS AND INTEGER POINTS 1989

fraction expansion of \/a/B = v/aB/B, where a,b,d are integers. Let
the sequences (s,) and (t,) be defined by so =0, to = 8, d = a8 and

sn—i—\/E

d—sii
tn '

ln

(15)  a, = \‘

J 3 Sn+1 = antn — Sn, tn+1 -

Then

(16) a(an+1 + UQn)z - ﬂ(rpn—i-l + Upn)2
= (=1)"(Wtny1 + 2rusp o — ritay2)

Proof. See [8, Lemma 2].

Since the values s, and ¢, from Lemma 1 are periodic and start
repeating after half of a period, it follows that the values of ap® — bg?
start repeating after half a period. Thus we only have to check half of
the period of the expansion of 1/407/166465 to a continued fraction.
The length of the period is 240. After checking that 166465p% —407q¢% #
9792 for all p,q as above, we conclude that 166465x2 — 407x2 = 9792
has no solutions. We will also use this method for £ = 7, 8.

We can also examine the minimal value that az? — by? can obtain. If
this is larger than ¢, the equation is not solvable. Let a = [ay, a1, .. .],
Q; = [ai, Aj41,-- ] and ﬂz = Qi—Q/Qi—l- We see that

1
N q%(an+1 + ﬂn+1),

Pn
o Pn
Gn

and o, € (an,a, + 1), B € (0, 1), from which it follows that

1
y*(ant1 +2)

T b

Yy a

C

2y2v/ab’

<

and furthermore

2v/ab

an + 2’
where a,, is the largest value that appears in the continued fraction
expansion of y/b/a. Since we only have to remember the largest a,
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and don’t have to compute p,, and g, this method is much faster and
can be used on equations with larger coefficients.

We will use this method for the cases & = 11,12 and some of the
cases for k = 15.

E=7

For the system (D, D3) = (3,2) we get that the third equation,
261029261z3 — 235 = 2175243841

is not solvable. For the system (D1, D3) = (2175243841,1), we get that
the first equation,

2x7 — 217524384123 = 1,

has no solutions.

k=38

We obtain that the first equation,
223 — 470831z3 = 1

has no solutions.

k=11

We obtain that the first equation,
405314627 — 24837543316722 = 1

has no solutions. Using the method mentioned above we get that
|40531462% — 2483754331673 has to be at least 10. This is the case
with the largest coefficients for which we used the continued fraction
method. The length of the period was more than 124000000 and the
largest a,, that appeared was 222965633.

k=12
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For (Dy,D2) = (543339719, 1153), (543339719,2306), we obtain that
for both systems the first equation is not solvable. These equations are

115322 — 54333971923 = 1,

and
2306z — 54333971922 = 1,

respectively.

k=15

For all the cases, the first equation is unsolvable. The equations are:

(264489, 5945) : 118907 — 26448923 = 1,
(1343597439, 5945) : 11890xF — 134359743923 = 1,
(2300867879,1) : 2x3 — 2300867879z3 = 1,
(43756594946086091, 11890) : 594527 — 4375659494608609123 = 1.

We also note that the last equation is the first one we were not able
to eliminate using the continued fraction method described for k£ = 4.
Here we were forced to use the more powerful methods from Section 3.

k=20

For the case (D1,D2) = (1,1330561) we will demonstrate another
method to prove the insolubility of the second equation

52355804823523233317300682758527—x3 = 393486693383642187898944.

We compute the regulator R = 34.90836989050174. From £(d) = n? =
2R it follows that u ~ vv/d ~° /2.

Theorem 7. Let u+vvd be the fundamental solution of the equation
2 — dy?> = 1. Then for every fundamental solution a + bv/d of the
equation x> — dy? = N the following inequalities hold:

VN

0<b< V'

> \/i(u—i—a)’
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1
lal < 4/ 5(a+2)IN]

Proof. See [19, Theorems 108 and 108al.

where € = sign (N).

Using this theorem we obtain a bound on the possible solutions
3 < 641892709406285410143744897, which is still too large to check if
we run through all the numbers. We now note that

523558048235232333173006827585 =5-389-4605197-1746860020068409.
If the equation is soluble, then
T3 = —393486693383642187898944
= 1312874810 (mod 1746860020068409),

from which we obtain
x3 = +£696660282513640 (mod 1746860020068409).

Likewise,
x5 = 4204250 (mod 4605197),

z3 = +3171874 (mod 4605197).
Using the Chinese remainder theorem, we get
3 = 1661420046287125561041, 3112159696733073182126,
4932474827105903739447 or 6383214477551851360532
(mod 8044634523838976921573).

So we only have to check z3 satisfying the above congruences and
r3 < 641892709406285410143744897. We get that none are solutions
to the starting equation. Note that this method can be used effectively
only when the regulator is small enough. For the remaining three cases,
we get that the equations

(cao — 2,20213) : 52355804823523233317300682758523
— 4042623 = 1,
(cap — 2,2661122) : 133056127
— 523558048235232333173006827583x3 = 1,
(cap — 2,26894629493) : 52355804823523233317300682758523
— 537892589863 = 1,
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are insoluble.

k=24

For the first case (D1,D2) = (1,5654885), we get that the second
equation

41256188322316038185038425132023297 — =3
= 12329678695647863708137647360

is not solvable. For the cases (ca4 — 2,7921633) the first equation,
1584326622 — 697229582647141045327149384731193599x2 = 1,

is not solvable. In the case (cgq — 2,1345510645), the third equation is
not solvable,

4125618832231603818503842513202329x3 — 269102129023 = 1.

All these results were obtained by methods from Section 3.

k=25

In the case (co5 — 2,4866752642924153522), the first equation

2368528128740923335446826998022500448523
— 2433376321462076761x3 = 1,

has no solution.

In the case (1,2433376321462076761) we get that all three equations
have solutions. We examine the equation 4866752642924153522x2 —
r3 = 1, and compute a compact representation of the fundamental
solution u + vv/d. Using Algorithm 2, we test whether u and v are
divisible by primes smaller than 100000000. We obtain that u is
divisible by 127. In this case we again first used the subexponential
algorithm to compute the regulator. We get R = 43.7221057. Seeing
that the regulator is small, we recompute it using the algorithm of
Shanks. This makes the result unconditionally correct.
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Theorem 8. Let a > 1, b > 0 be square-free positive integers. If
(z1,y1) is the minimal solution in positive integers of the equation

az? —by? =1,
then all solutions of this equation in positive integers are of the form
zv/a+yvVb = (z1va + y1Vb)",

where n is a odd positive integer. Furthermore, x|z i y1|y.
Proof. See [18, Theorem 11.1].

From the above theorem we conclude that 127 divides z2. Using this,
from the first and third equations of the system (13), we get 23 = 107
(mod 127), z% = 88 (mod 127). Then the second equation implies
42 = 38 (mod 127), a contradiction. Hence, the system is unsolvable.

k=27

For the case (1,985), the first and third equations are solvable, so
we are forced to examine the second equation. We first compute the
regulator with the subexponential algorithm, since the d is large and
we expect the algorithm of Shanks to be too slow in this case. We get
R = 47.24760010877535070, a very small regulator. Seeing this, we
redo the computation using Shanks’ algorithm, and obtain the same
result in less than a second. We now obtain that the second equation,

273327940811476617288697287480790195969012% — x5
= 27749029524007778404943887053887329540,

has no solutions. Since we used the algorithm of Shanks, the result is
unconditional.

In the second case, (D1, D2) = (c27 — 2,1970), the third equation,

2733279408114766172886972874807901959690125 — 98527 = 1,
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has no solution.

k=30

In the cases (D1, D2) = (1,93521), (1,161669), (1,15119446549) the
second equation is unsolvable. Since the coefficients on the left side are
the same for all three equations, all three cases have the same attached
quadratic field. The regulator of that quadratic field is R = 52.53584,
so we can compute it with the algorithm of Shanks implying the
unconditional unsolvability of these three cases. The equations are

10715001928719210524480100610550443415064900012% — =3
= 11457321808705221848012853381112737690000,

10715001928719210524480100610550443415064900012% — x5
= 6627740586457026717849495333397524210000,

107150019287192105244801006105504434150649000127 — x>
= 70869008954748417123956066909010000,

respectively.

In the cases (czo — 2, 187042), (c30 — 2, 323338), (c30 — 2, 30238893098)
the third equation is unsolvable. The equations are

2733279408114766172886972874807901959690125 — 98523 = 1,
10715001928719210524480100610550443415064900013 — 9352123 = 1,
1071500192871921052448010061055044341506490001 23
— 1511944654923 = 1,

respectively.

k=36

In the case (D;,D2) = (1283229546787304717998403161,1409409905)
the first equation,

28188198107 — 1283229546787304717998403161x3 = 1,
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is not solvable. We prove this using methods from Section 3.

k=39

The first equation is solvable, so we examine the third equation. The
coefficients are too large to use the algorithm of Shanks, so we are
forced to use the subexponential algorithm. We get

R =5104775786742513766375293263.2217080210

after ten days of computation on an Intel Xeon 2.66 GHz. We obtain
that the equation

381970849989670076489450487891525660225286704502736272829x3
— 358284326622 = 254072969141257218722003304909

is unsolvable. Since the right hand side is not 1 or 2 and we used the
subexponential algorithm, the correctness of this result depends on the
truth of the extended Riemann hypothesis.

Remaining cases. For the system
k =36, (1283229546787304717998403159, 2818819810)

we get that the first and third equation are solvable, while for the
second equation the coefficients are too large for the regulator to be
computed, even with the subexponential algorithm. For the system
k = 24, (caq — 2,11309770) the first and third equation are solvable,
while for the second the coefficients are too large for the regulator to
be computed.

5. Improvements of Theorem 2. Asin Theorem 2, it can be easily
shown that (6) are all integer points on (5) if the following system has
no solutions:

dya? — dyx} = jjs,
(17) dgxf — dll‘g = jg,

2 2 :
d3£E2 — d2$3 = J1,
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where @ = Foy1, b = Fopys, ¢ = Fopys, di = aDy, d2 = bDo,
ds = cDs, j1 = (¢ =b)/D1, j» = (c—a)/Ds, js = (b—a)/Ds, while
D,, Dy and D3 are square-free integers dividing c — b, c—a and b — a
respectively.

Examining the system modulo various primes, as noted in [11], we
are able to eliminate all but the following cases:

(D1, D2, D3)
9 (89, 29, 2255)
20 (1174889, 144481, 5473)
24 (1563, 2, 503450761)
25 (98209, 1, 47140601)
32 (303955413, 4021, 1762289)
43 | (3932105689, 22235502640988369, 153088726119)

Using methods from Section 3, we prove that the following equations
are unsolvable

k=9, 6462153527 — 372109x3 = 844

k = 20, 6211325049410z7 — 194538286279349x3 = 6700,
k = 24, 40730022148z% — 12158173822587z3 = 25,
k =25, 5331629117327 — 2000027372566466x3 = 699,

k = 43, 713400599237553863213884440771z3
— 2673405776262313785746935762x3 = 732449080.

The case kK = 9 can be eliminated using elementary methods, without
using compact representations. For the cases k = 20,24,25, the
regulators were computed using the algorithm of Shanks, while for
k = 43 we had to use the subexponential algorithm, so the result is
conditional on the truth of the extended Riemann hypothesis. The
computation of this regulator lasted 26 hours. For the case k = 32 we
obtain that all three equations in (17) are solvable.
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6. Improvements of Theorem 3. Here we examine, for a given
k, the system

dlﬂ«“% - d2$§ = J1,
(18) dgmf — dgl'g = jg,
dyz3 — dswi = js,

where dy = (k+1)p2, po is a square-free factor of 3k+1, do = (k—1)uq,
w1 is a square-free factor of 3k — 1, (ds, j1, j2) = (4k,2, (3k + 1/u2)) or
(8k, ]., (3k‘ + 1/”2)) and ]3 = (j1d3 - jgdl)/dg if d2 divides j1d3 7j2d1.
If jids — jody is not divisible by ds, we can eliminate the case. We use
all the tests as in [5], and in addition add the following tests:

If p is an odd prime dividing d3j; — d1j2 and not dividing dyd2ds,
((d1ds3)/p) = =1 and (((d1j1)/p) = —1 or ((dsj2)/p) = —1) then the
system (18) is not solvable.

If p is an odd prime dividing d3j; — d2j3 and not dividing d;ds>ds,
((d2ds)/p) = —1 and (((—dsjs)/p) = —1 or ((—dzj1)/p) = —1) then
the system (18) is not solvable.

If p is an odd prime dividing jod; — jsd2 and not dividing d;d-ds,

((did2)/p) = —1 and (((=daj2)/p) = =1 or ((djs)/p) = —1) then
the system (18) is not solvable. The proof of these statements can be
found in [14]. Also, if p is an odd prime dividing j2 such that ord,ja

is even, and ((dsd2)/p) # 1 and (((—dsjs)/p) # 1 or ((—daj1)/p) # 1)
then the system (18) is not solvable. If p is an odd prime dividing j3
such that ordyjs is even, and ((dsdy)/p) # 1 and (((d1j1)/p) # 1 or
((dsj2)/p) # 1 then the system (18) is not solvable. If a system passes
all these tests we test whether each equation has a global solution
using methods from Section 3. The only systems that passed the test
for 1001 < k£ < 5000 are the following two cases:

k = 3192, di = 30579361, d» = 3191,
ds = 25536, j1 =1, jo =1, j3 = —9575

and

k = 3836, dy = 44160033, do = 141895,
dy = 15344, j1 =1, jo =1, j3 = —311.
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k= 3192

We examine the first equation
3057936125 — 3191z3 = 1.
We obtain the fundamental solution of this equation ag,bg, i.e.,

21v30579361 + x3v/3191 = (aox/30579361 + bO\/3191)", where n is
odd. We obtain that

ap is the 3513 digit integer 12461 ---47471
bo is the 3515 digit integer 21984 - - - 47440

By Theorem 8 this implies, since by is even and by|z2, that 5 is even.
But then the second equation

2553623 — 3191z3 = 1

is not solvable.

k = 3896

We examine the second equation
959a% — 14189523 = 1,

where a = 4xy. As in the previous case we find the fundamental
solution agv/ 959 + bgv/141895. We compute

ao = 3972124728871352748146248224225361253889831055731137874
81194749939623321602689392120346256970570871390845891427276129
513517872,

by = 326549207978216061572049902148838109063570553218599839
603117470148096142282478889347992316537301393043425948230559
313290158013.
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We see that 103 divides by, so 103 divides x;. From the second
equation we get 2 = 34 (mod 103), and from the third equation we get
z3 = 68 (mod 103). But then the first equation gives 2 = 1 (mod 103),
a contradiction.

We have proven

Theorem 9. All integer points on the elliptic curve
Er:y?=((k—Dz+1)((k+ 1)z + 1)(4kx + 1)

are given by (8) for 3 < k < 5000.

7. Improvements of Theorem 4. For Theorem 4 we examine, for
a given k, the system of equations:

d12} — dox3 = ji,
(19) d3x? — dax3 = ja,

2 2 _ -
dyzy — d3zsy = j3,

where di = Fbiy12D2, Dy is a square-free factor of Forigq — Fop,
de = Fo D1, D, is a square-free factor of Fogy4, ds = FopyaD3s, D3 is
a square—free factor of F2k+1, j1 = (F2k+1)/D3, j2 = (F2k+4 — ng,)/Dg
and jg = (j1d3 — j2d1)/d2 if d2 divides j1d3 7j2d1. If]ldg 7j2d1 is not
divisible by ds, we can eliminate the case. In fact, the vast majority
of the cases was eliminated by this test. The only case that passed all
the above tests for 50 < k£ < 200 is the case

k =67,d; = 11825896447871834976429068427,

dy = 4517090495650391871408712937
ds = 3389580060344630223665064551797129030591864726456,
Jj1 = 66759010, jo = 26443508352314721186469779407,

J3 = —19134702400093278081449423917.

We have proven



QUADRATIC INTEGERS AND INTEGER POINTS 2001

Theorem 10. All integer points on the elliptic curve (9) are given
by (10) for 2 < k < 200, except maybe for k = 67.
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