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PRODUCT COMPLEX SUBMANIFOLD 
OF INDEFINITE COMPLEX SPACE FORMS 

TOSHIHIKO IKAWA, HISAO NAKAGAWA AND ALFONSO ROMERO 

ABSTRACT. We study product complex submanifolds of 
indefinite complex space forms and characterize a submani-
fold which corresponds to the Segre imbedding in a definite 
complex space form. 

0. Introduction. It is well-known that for complex hyperbolic 
spaces an analogue to the Segre imbedding cannot be given. The key to 
this is that if there is a holomorphic isometric immersion of a product of 
two Kaehler manifolds into a complex space form, then the holomorphic 
sectional curvature of the ambient space has to be non-negative (see 
[8]). A careful observation to the proof of this fact tells us that the 
positivity of the metric in each normal space to the submanifold also 
must be taken into account. Thus the following problems arise in a 
natural way: 

1. Does a product of two complex hyperbolic spaces admit a holomor­
phic isometric imbedding in an "indefinite" complex hyperbolic space? 

2. If the answer is yes, find the smallest possible dimension and index 
of such an indefinite complex hyperbolic space. 

3. Characterize this holomorphic isometric imbedding when dimen­
sion and index are as small as possible. 

In this paper these problems will be solved in a more general context. 
In §1, an indefinite analogue to the Segre imbedding for indefinite com­
plex projective (and hyperbolic) spaces is given. Using the relationship 
between indefinite complex hyperbolic spaces and indefinite complex 
projective spaces, we obtain a holomorphic isometric imbedding of a 
product of definite complex hyperbolic spaces into an "indefinite" com­
plex hyperbolic space. In §2, some basic formulas are recalled for later 
use. In §3, an answer to the second problem is given (Corollary 3.2) 
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as a consequence of a more general result (Theorem 3.1), which is ob­
tained under the assumption that manifolds are complete. As one can 
see from the proofs, the corresponding local versions are also true, pro­
vided that this hypothesis is dropped. In §4 parallelism of the second 
fundamental form provides us a characterization of the indefinite Segre 
imbedding. Finally, the Segre imbedding of a product of two definite 
complex hyperbolic spaces into an indefinite complex hyperbolic space 
is characterized in §5 by using the length of its second fundamental 
form. 

1. The indefinite Segre imbedding. Let CP™(c) be the indefinite 
complex projective space of complex dimension n, index 2s and con­
stant holomorphic sectional curvature c > 0. We recall that CP™(C) = 
S'|^+1(c/4)S1 where Sl"+1(c/4) i s t h e (2n + l)-dimensional indefinite 
sphere with index 2s and of sectional curvature c/4. Thus a point 
of CP™(c) can be represented by [(2, w)] where z = (21, . . . zs) G C s , 
w = (u»!,. . . ,u;n_.+ 1) € Cn-s+1,(z,w) e Sl:+1 C C ? + 1 and [(*,«,)] 
denotes the class {z,w) • S1. 

We consider a mapping 

0 : CP?(c) x CPr(c) - CPjJ r o
r a l i ( )(c) 

with 

N(ni m) = n + m + nm and R(n, m, 5, t) = s(m — t) + t(n — s) + s + t 

given by 

0([(2>w)]>[(*>y)l) = [(ZiVaiWkXaiZjXbiWiyß)], 

where 

and 

i, j = 1,2, . . . , s ; k,£= 1,2, . . . , r a - s + 1 

a, 6 = 1,2,..., t\ a, ß = 1,2,..., n - t + 1. 

Then (fi is a well-defined holomorphic mapping and, from the results in 
[1], it is easy to see that <fi is also an isometric imbedding. It is called the 
"indefinite Segre imbedding" of CP?(c)xCP™(c) into CP^^st)(c). 
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Note that if s = t = 0, then R{n, ra, s, t) = 0 for ail n, m and (j) 
becomes the classical Segre imbedding (see [3] or [4]). 

In the definite case CPx(c) x CP1^) is the complex quadric CQ2 in 
CP3(c). However CP}(c) x CPl{c) and CPl{c) x CPl{c) are mutually 
different complex quadric in CP^ic); in fact, they are respectively 
denoted CQ\ and CQ\ in [7]. 

By using the fact that the indefinite complex hyperbolic space 
CH™(—c) of complex dimension n, index 2s and holomorphic sectional 
curvature - c , c > 0 is obtained from CP%_s(c) by changing the Kaehler 
metric of CP^_s{c) to its negative. Another indefinite Segre imbedding 

<fi : CH-(-c) x CH?{-c) - CH^}t){-c) 

is given, where 

S(n1 m, 5, t) = (n — s)(m — t) + st + s H- t. 

In particular, for s — t = 0 we have a holomorphic isometric imbed­
ding 0 of a product of definite complex hyperbolic spaces CHn(—c) x 
CHm(—c) into an indefinite complex hyperbolic space 

2. Some basic formulas. In this section some basic results will be 
outlined for later use. 

Let M be an indefinite Kaehler manifold isometrically and holomor-
phically immersed in an indefinite complex projective space CP^(c). 
Let g and J be the Kaehler metric and the complex structure of 
CPj[{c), also its induced ones on M. Let V and V denote the metric 
connections of CPR(C) and M. The pull back of the tangent bundle of 
the ambient space is expressed as an orthogonal sum TM&NM, where 
TM and NM denote the tangent bundle and the normal bundle of M, 
respectively. Let D be the normal connection on NM induced from V. 
Then the Gauss and Weingarten formulas are given respectively by 

(2.1) VXY = VXY + B(X,Y), 

(2.2) Vxt = -AtX + Dxï, 



604 INDEFINITE COMPLEX SPACE FORMS 

for any X, Y, TM and £ € NM. The tensors B and ^ are called the 
second fundamental form and the Weingarten endomorphism associ­
ated with £, respectively. B(X, Y) is symmetric with respect to X and 
Y and related to A by 

(2.3) g(AtX,Y)=g(B(X,Y),0-

Moreover, for a Kaehler submanifold of an indefinite Kaehler manifold 
the following formulas are given: 

(2.4) B( JX, Y) = B(X, JY) = JB(X, Y), 

(2.5) AtJ = -JAz = -Ajz, 

(2.6) DxK = JDxC 

The usual connection V induced from V and D is defined by 

(VX£)(Y, Z) = DX{B{Y, Z)) - £ ( V X Y, Z) - B{Y, VXZ) 

for vector fields X, Y and Z tangent to M. 

By using the fact that CP^(c) has constant holomorphic sectional 
curvature c, the Gauss equation for the curvature tensor R of M and 
the Codazzi equation are given respectively by 
(2.7) 

g(R(X, Y)Z, W) = l(g(Y, Z)g(X, W) - g(X, Z)g(Y, W) 

+ g(JY, Z)g(JX, W) - g(JX, Z)g(JY, W) 

+ 2g(X, JY)g(JZ, W)) + g(B(Y, Z), g(X, W)) 

-g(B(X,Z),B(Y,W)), 

(2.8) (VXB)(Y,Z) = (VYB)(X,Z), 

and we have 

(2 9) ( ^ ß ) ( F - Z " > = (VxB)( JY, Z) = (yxB)(Y, JZ) 
= J(VXB)(Y,Z). 
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The curvature tensor R1- of the normal connection D, since CPR(c) 
has constant holomorphic sectional curvature c, is given by the Ricci 
equation 

(2.10) 9(1^ (X, Y)Ç, v) = 9(X, JY)g(J^, r,) + </([% A„]X, Y) 

for any vector fields X, Y tangent to M and any vector fields £, rj normal 
to M in CPg{c). 

Let M™ and M/m be indefinite Kaehler manifolds of complex dimen­
sions n, m and index 25,2£, respectively. Assume that the Riemannian 
product M™ x M/m admits a holomorphic isometric immersion into 
CPN(c). Tangent vector fields to M? or to M/m can be regarded as 
one to M™ x M't

m in a natural way. Then we have 

(2.11) 9{R{X,Y)Z,W) = Q 

if X, W are tangent to M™ and Y", Z tangent to M't
m or if X, Y, Z are 

tangent to M™ (resp. Mt'
m) and W tangent to M't

m (resp. MJ1). 

3. Product submanifolds. This section will be concerned with the 
following theorem: 

THEOREM 3.1. Let MJ1 and M't
m be complete indefinite Kaehler 

manifolds with complex dimensions n, m and index 2s, 2t, respectively. 
Assume that there exists a holomorphic isometric immersion <p of 
Mn x Mim int0 CPg(c), c> 0. Then 

(1) N > 7V(n, m) and R > R(n, m, s,t). 

(2) If N = N(n,m), then R = R{n,m,s,t), M™ is holomorphically 
isometric to CP™{c), Mr

t
m is holomorphically isometric to CP™(c) and, 

by identifying M™xMlm with CP™(c)xCP™{c), the immersion <p is an 
imbedding obtained by the composition of the indefinite Segre imbedding 

* : CP?(c) x CPt(c) - CP^lt){c) 

and a rigid motion °f CPR}^^8 t\(c)> 
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PROOF. We choose a local orthonormal frame of vector fields 
{Xu . . . , Xn, JXX,..., JXn} and {X[,..., X[, JX[,..., JX[} respec­
tively in M™ and M/m , that is, they are mutually orthogonal vector 
fields and satisfy 

g(Xi, Xi) = —1 or 1 according tol<i<sois + l<i<n 

g(X'ai X'a) = — 1 or 1 according tol<a<tort + l<a<m. 

From (2.11) it follows that 

(3.2) g(R(Xu X'a){X'h, Xj)) = g(R(Xu JX'a)JX'h, Xj) = 0. 

In this section the following convention on the range of indices is used 
unless otherwise stated: i, j = 1 , . . . , n and a, ò = 1 , . . . m. 

The Gauss equation (2.7) and (3.2) imply 

g(B(Xi,X'b),B(Xj,X'a)) -g(B(Xi,Xj),B(X'a,X'b)) 
( 3-3 ) = ^g(Xi,Xj)g(X'a,X'b) 

and 

g(B(Xi, JX'b), B{Xh JX'a)) - g(B(Xu Xj), B(JX'a, JXb)) 
( 3-4 ) =-ig(Xi,Xj)g(X'a,X'b). 

So from (2.4), both (3.3) and (3.4) give us 

(3.5) g(B(Xiy X'b), B(Xj, X'a)) = jg(Xu Xj)g(X'a, X'b). 

A similar reasoning from 

(3.6) g(R(Xi, X'a)JX'b, Xj) = g(R(Xi, JX'a)X'b, Xj) = 0 

provides us with 

(3.7) g{B{Xi,X'a), JB(Xj,X'b)) = 0. 

Thus if a vector field &a is defined by •j^B(XiìX'a)ì then it follows 
that {&a, JÇia} are orthogonal vector fields normal to MJ1 x M/m which 
satisfy 

(3.8a) if 1 < i < s and t + 1 < a < m 

o r s + l < i < n l < a < £ , and 
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g(Çia,£ia) = 1 

(3.86) if 1 < i < s and 1 < a < t or 

s + 1 < i < n and t + 1 < a < m. 

Hence the normal space at each point has complex dimension > nm 
and index > 2s(m — t) 4- 2t(n — s), and the dimension N and the index 
2R satisfy N > iV(n, m) and R > R(n, m, s, t). 

Now suppose that N — iV(n,ra). In this case {&a, J& a} is a basis of 
the normal space at each point and hence it follows from (3.8) that the 
index is given by 2R = 2R(nìmìs,t). In order to prove that M™ and 
M't

m are holomorphically isometric to complex projective spaces, it is 
first shown that M5

n and M[m are totally geodesic in C P ^ | j t ) ( c ) . 
In fact, again, (2.11) implies 

(3.9) giRiXitX^X'^Xk) = giR^X^X^X^JX^ = 0 

(3.10) g(R{XuXj)JX'„ Xk) = ä(R(JXu Xj)X'a, JXk) = 0 

But from the Gauss equation (2.7), both (3.9) and (3.10) give 

(3.11) g(B(Xi,Xk),B{Xó,X'a)) = g{B{XhXk), JB(Xj, JX'a)) = 0. 

This equation means that B(Xi,Xk) is orthogonal to each vector field 
of the basis {£za, JÇia} and hence B(Xi,Xk) = 0 for all i, k = 1 , . . . , n, 
that is, M™ is totally geodesic. By means of a similar reasoning, 
M't

m is tot ally geodesic. By means of a result in [1], both M™ and 
M't

m have constant holomorphic sectional curvature c. Therefore M™ 
(respectively M/m) is an open set of CP™(c) (respectively CP t

m(c)), 
but the assumption that M™ is complete (respectively M't

n is complete) 
implies Ms

n = CP?(c) (respectively M't
m = CP t

m(c)). 

Finally, for each holomorphic isometric imbedding <p of CP™(c) x 
CP^(c) into CPx^l8t)(c) it is verified that there exists a rigid 

motion of F of CPo/"Ìml 0 *\ (c) such that (p = F o 6. In fact we choose 
a local orthonormal frame of vector fields { X i , . . . , X n , JXi,..., JXn} 
and {X{, . . . , X'm, JX[,..., JX'm} in CPf{c) and CP?{c) respectively 
satisfying (3.1). We denote by B and B the second fundamental 
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forms of (j) and ip respectively and define fya = -j^B(Xi,X'a),Çia = 

^B{Xi,X'a). Then {£ia, J£ia} and {£ia, j | i a } are orthonormal bases 
of the normal spaces of (j) and <p, because both (j) and (p induce totally 
geodesic immersions of CP£(c) and CP™(c) into CPR^^\tAc). In 
this case it is claimed that the Weingarten endomorphisms A^ia and 
AÏ corresponding to f$a and £ia according to (j) and tp coincide. In 
fact, from the Gauss equation (2.7), we have 

(3.12) AB(Y,Z)X - AB(x,z)Y = AB(Y,Z)X ~ AB(x,z)Y 

for all X ,F ,Z tangent to CP?(c) x CP^(c). Changing X and Z in 
(3.12) into JX and JZ and taking into account (2.4) and (2.5) we have 

(3.13) AB{YiZ)X + AB{XyZ)Y = Äe{YZ)X + Aè{XìZ)Y 

(3.12) and (3.13) imply 

AB(Y,Z)X = AB(Y,Z)X 

for all X tangent to CP?(c) x CP^ic), and so 

AB(Y,Z) = A
B(Y,Z) 

which yields 

(3-14) Mi«=ha-

Now, for any point p of CP™(c) x CP™(c), let U be an open neighbour­
hood of p on which £ia and £za are defined as above. A holomorphic 
linear isometry 

L . T0 ( p )CPÄ ( n j m j M )(c) -+ Î V ^ C P ^ ^ ^ ^ l c ) 

is given by 

( 3 1 5 ) Ì(6«(P)) = £a(p), Ì(J€Ì«(P)) = 4ia(p) 
L(d<t>p(X)) = d(y?p(X) for all X in Tp(CPs

ri(c) x CPt
m(c)), 
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where TqCPj[{c) denotes the tangent space of CP^(c) at the point q. 
As in [6] there exists a unique holomorphic motion F of CP^m s t) (c) 
such that F((j)(p)) = ip(p) and that the differential of F at (ß(p) coincides 
with L, which means 

F((j)(p)) = cp(p). dF^ydcßp = dcpp 

and 

*fy(j>)(6a(p)) =&a(jp). 

Moreover, by (3.14), an analogous result to the local rigidity theorem 
of Calabi [2 ] shows that the imbedding is determined up to within the 
group of motions in the ambient space, which implies that F o f = çp 
on U. From considerations of analyticity it follows that the extension 
theorem for local mappings in [6] guarantees that the relation Fo(j> = cp 
remains true on Cpf(c) x CP t

m(c) .DO 

By using the fact that an indefinite complex hyperbolic space can be 
obtained from an indefinite complex projective space we have 

COROLLARY 3.2. Let Mn and Mfm be complex Kaehler mani­
folds with complex dimensions n and m, respectively. Assume that 
there exists a holomorphic isometric immersion tp of Mn x Mfrn into 
Ci7^(-c) ,c>0. Then 

(1) N > JV(n,ra) and S > nm, 

(2) If N — N(n,m), then S = nm, Mn is holomorphically iso­
metric to CHn(—c),M,m is holomorphically isometric to CHm(—c) 
and cp is given- by the Segre imbedding of CHn(—c) x CHm(—c) into 
CHnm (—c) and a rigid motion of CHn7ù (—c). 

REMARK. The corresponding local versions of Theorem 3.1 and Corol­
lary 3.2 are also true. 

4. Parallel second fundamental form. From the Codazzi 
equation (2.8) it is easy to see that the indefinite Segre imbedding 

0 : CP:(C) x CPr(c) - CP^lt){c) 
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has parallel second fundamental form. In the definite case this prop­
erty gives a well-known characterization of the Segre imbedding (see 
[4] and [8] for instance). Then it seems natural to study an analogous 
indefinite case. In this case we have 

THEOREM 4.1. Let M™ and M/m be complete indefnite Kaehler 
manifolds with complex dimensions n, ra, and indices 2s, 2t, respec­
tively. Assume that there exists a holomorphic isometric immersion 
(f of M™ x Mt

/m into CPft, m s t)(c), c > 0, with parallel second funda­
mentalform. Then M™ (respectively M'™) is holomorphically isometric 
to CP™(c) (respectively CP™(c)) and <p is given by the indefinite Segre 
imbedding (\> ofCP?(c) x CP^(c) into CP^^st)(c) and a rigid mo­
tion ofCPR}™'™8 t)(c). The corresponding local version is also true. 

PROOF Let v = ^^{B{XuX
,
a), JB(Xi,X'a)}. From (3.8) and the 

assumption on the index it follows that the orthogonal complement v1-
of v is a positive definite subspace of the normal space at each point. 

By using (3.11), a linear subspace ji defined by 

M = Span{B(Xi,-X'i),JB(-Y<,Xi)} 

satisfies 

(4.1) / i C i / 1 

and hence /x is a positive definite subspace. 

On the other hand, (2.5) and the Ricci equation (2.10) imply 

9{R^(JX'a, X'JBiX^Xj), JB(Xh Xj)) 
( 4 ' 2 ) = l\\X'\\2\\B(Xi,Xj)\\

2 + 2g(A2
B{Xi,Xj)X'a,X'a). 

Now the assumption that the second fundamental form is parallel yields 
the relation 

(4.3) Dx'.BiXitXj) = B(Vx'aXi,Xj) + B(XuVX'aXj) = 0, 
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because Vx' Xi = 0. Therefore (4.3) says that the left hand side of 
(4.2) vanishes identically, and so from (2.3) it reduces to 

(4 4) IWX'tfWBiX^XM2 

= ^giBiAB^x^X'^X'^BiX'^X'j)). 

But according to (3.3) and (3.4) we have 

(4.5) g(AB{XitXj)X'b,X'c) = gWXitX&BiKX'c)) = 0 

and also 

(4.6) g(AB{XitXj)X'b,JX'c) = g{B(XiìXj)ìJB{X'hìX'c)) = 0. 

Both (4.5) and (4.6) imply that AB(Xiixj)X'b ^ e s m Span{JQ, JJ*Q}, 
i.e., in the tangent space of Mf at each point. Hence, from (3.11), the 
right hand side of (4.4) vanishes. So 

(4.5) \\B{XiiXi)\\* = Q. 

Prom (4.1) and (4.5) we conclude that M™ is totally geodesic. By 
means of a similar discussion, M/m is also totally geodesic. 

Now the normal space at every point is equal to i/1 0 z/, where 

(4.6) vL = Span{£|j4$ = 0}. 

If i € vL, then it follows from (2.6) that 

(4.7) g{DXiB{Xj,X
f
h\£>) = 9{Dx'bB{XuXj\0-^ 

(4.8) g(Dx'aB(XJ^Xb)^) = 9(DXjB(Xf
a1X

f
b),a = 0, 

and, by using (2.9), the following equations are obtained: 

(4.9) g{DJXiB{Xi,X'b),0 = -g^B^Xj),^) = 0, 

(4.10) giDjx^BiX^X'M) = -g(DXtB(X'a,Xi),J0 = 0 
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(4.7) ~ (4.10) imply that v is parallel with respect to the normal con­
nection. Prom [5], there exists a totally geodesic CPR/£'™\ ts (c) in 

CPg(c) such that <p{CP?{c) x CPPic)) lies into CPg^™^t)(c). From 
Theorem 3.1, ip is given by the indefinite Segre imbedding and a rigid 
motion of CP$:£lt)(c)0 

COROLLARY 4.2. Let Mn and M'm be complete positive definite 
Kaehler manifolds with complex dimension n and m. Assume that 
there exists a holomorphic isometric immersion (p of Mn x M'm into 
CH^mi—c)^ > 0. / / the second fundamental form of (p is parallel, 
then Mn is holomorphically isometric to CHn(—c),M,m is holomor-
phically isometric to CHm(—c) and, by identifying M™ x mt

n with 
CP™(c) x CPp(c), the immersion tp is obtained from the Segre imbed­
ding (t> ofCHn(-c) x CHm(-c) into CH%+m+nm(-c) C CH%m(-c) 
and a rigid motion of CH^Tn+nrn(—c). The corresponding local ver­
sion is also true. 

5. Length of the second fundamental form. Finally, this section 
is devoted to giving a characterization of the Segre imbedding 

(j) : CHn(-c) x CHm(-c) - C t f£+ m + n m ( - c ) 

in terms of the square of the length of its second fundamental form. 
We know that CHn(—c) and CHm(—c) are totally geodesic, so 

n m 

\\B\\2 = ±Y,Y,\\B(x"x*w2 = -cnm 

i=l a=l 

according to (3.5). Conversely this equality can characterize the Segre 
imbedding <j>. So we have 

THEOREM 5.1. Let Mn and M,rn be complete positive definite Kaehler 
manifolds with complex dimensions n and m, respectively. Assume that 
there exists a holomorphic isometric immersion cp of Mn x M'm into 
CH^^—c)^ > 0. Let \\B\\2 denote the square of the length of the 
second fundamental form of ip. Then 

(5.1) | | ß | | 2 < -cum 
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and the equality holds if and only if Mn is holomorphically isometric 
to CHn(—c), M,m is holomorphically isometric to CHm(—c) and the 
immersion (p is an imbedding obtained by composition of the Segre 
imbedding 

* : CH»(-c) x CH™{-c) - CflJ+m + I M*(-c) C CH»m(-c) 

and a rigid motion of CH^m+nm{-c). 

PROOF. We choose a local orthonormal frame of vector fields {Xi,..., 
Xn, JXU . . . , JXn} and {*£,..., X'mi JX[,... JX'm} in Mn and M'm, 
respectively. Then 

n m 

| | S | | 2 = 2 ^ \\B(Xi,Xj)\\
2 + 2 £ \\B(X'a,X'b)\\* 

(5.2) iJ=1 ° '6 = 1 

+ 4 £ \\B{XuX'a\\\ 

l < a < m 

But an analogue to (3.5) gives 

(5-3) \\B(XuX'a)\\
2 = -\-

By substituting (5.3) into (5.2), the square of the length of B can be 
reduced to 

\\B\\2 = -cnm + 2j2\\B(Xi,Xj)\f 

m 

+ 2 | ] T \\B(X'a,X'b) 
(5-4) m

 Ì , Ì = 1 

L6;il • 
a,6=l 

Now note that v = Spa,n{B(Xi,X'a), JB(Xi,X'a)} is a complex nra-
dimensional subspace of the normal space at each point and that v is 
negative definite according to (5.3). On the other hand, it follows from 
(3.11) that B(Xi,Xj) and B(X'a,X'h) are both orthogonal to i/, hence 
\\B{Xi,Xj)\\2 > 0 and | |£(X^,X£)||2 > 0, from which, together with 
(5.4), (5.1) holds true. 
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If the equality of (5.1) holds, (5.4) means 

(5.5) UBiXuXW = \\B{X'a,X'b)\\* = 0. 

Since the orthogonal complment v1- of v is a positive definite subspace 
of the normal space at each point, (5.5) implies 

(5.6) B(Xi,Xj) = B(X'a,X'b) = 0, 

which shows that Mn and M,m are totally geodesic in CH^m(—c), 
Again, a property in [1] implies that Mn and M / m are definite complete 
space forms with constant holomorphic sectional curvature — c. Hence 
Mn = CHn(-c) and M,m = CHm(-c). 

Now the normal space at each point can be decomposed as v1- 0 v. 
From (5.6) we have that v is the first normal space at each point, and 
then 

(5.7) vL = Span{£|^ = 0}. 

If £ G i/-1, then, from (2.6), it follows that 

g(DXiB(Xj,X'b),0 = 9((VxtB)(XjtX'b),t) 

(5-8) =g({Vx,,B)(Xi,Xj),t) 

= g(DXbB(Xi,Xj),O = 0. 

In a similar way 

(5.9) 0(£>XiB(X,-,*£),O = g(DXiB(X'aiX'bte) = 0, 

and by using (2.9) one obtains 

(5.10) g{DjXiB(Xj,X'bU) = -g{Dx.hB{Xi,Xj),Ji) = 0, 

(5.11) g(DJXLB{Xj,XlU) = -g{DXjB{X'a,X'b),Ji) = 0. 

(5.8) ~ (5.11) imply that v is parallel with respect to the normal connec­
tion D. By means of [5], there exists a totally geodesic CH%+m+nm(—c) 
in CH^m(-c) such that ip(CHn(-c) x C i î m ( - c ) ) C C # £ + m + n m ( - c ) . 
From Theorem 3.1, <p is the composition of the Segre imbedding and a 
rigid motion of C # ^ m + n m ( - c ) . D 

REMARK. Since the scalar curvature p of Mn x M,m is p = 
(—c)(n + m)(n + ra + 1) — ||J5||2, condition (5.1) can be replaced by 
p > (—c)(n2 + m2 + mn + ra + n) and one obtains the same results as 
in Theorem 5.1. 
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