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FOURIER TRANSFORM FOR INTEGRABLE BOEHMIANS

PIOTR MIKUSINSKI

ABSTRACT. Basic properties of the Fourier transform for
intgrable Boehmians are discussed. An inversion theorem is
proved.

Introduction. The Fourier transform for Boehmians has been
defined independently by J. Burzyk (oral communication) and D.
Nemzer [5]. The definition given by J. Burzyk is very general and in this
case the Fourier transform of a Boehmian is not necessarily a function
(like the Fourier transform of a tempered distribution). D. Nemzer
was particularly interested in the Fourier transform of Boehmians with
compact support. This note will discuss basic properties of the so-
called integrable Boehmians. In this case the Fourier transform is
always a continuous function and has all basic properties of the Fourier
transform in £;. In particular, we will prove an inversion theorem
which has the form of a classical theorem in £;.

1. Integrable Boehmians. A general construction of Boehmians
was given in [2]. In this note we are interested in a special case of
that construction. Denote by £; the space of complex valued Lebesgue
integrable functions on the real line R. By || - || we mean the norm in
Li(|lfIl = Jg|f(z)|dz). If f,g € L, then the convolution product f *g,
ie.,

(f+9)(z) = /R f(wg(z — u)du,

is an element of £y and ||f *g|| < || ]| - lgll-
A sequence of continuous real functions é,, € £; will be called a delta
sequence if

Jpbn(z)dz =1 for every n € N,
[16n]] < M for some M €R and alln € N,
limp o fi4 (5 16n(2)ldz =0 for each & > 0.
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If (¢n) and (v, ) are delta sequences, so is (¢p, * ). If f € £, and (6,)
is a delta sequence, then ||f * 6, — f]| — 0 as n — oo. Delta sequences
are also called approximate identities or summability kernels.

A pair of sequences (fn,¢n) is called a quotient of sequences, and
denoted by fn/¢n, if fn € L1(n = 1,2,...), (¢o) is a delta sequence,
and fo, * ¢p = fn * ¢ for all m,n € N. Two quotients of sequences
fn/¢n and gn /1y are equivalent if fp, %1, = gn*¢, for every n € N. The
equivalence class of a quotient of sequences will be called an integrable
Boehmian. The space of all integrable Boehmians will be denoted by
Be,.

The space By, is a convolution algebra when the multiplication by
scalar, addition, and convolution are defined as follows:

’\[fn/gn] = [/\fn/§n]a

[fn/gn] + [gn/'wn] = [(fn *Yn + gn * §n)/§n * "/’n]s
(fn/$n] * [gn/%n] = [fn * gn/¢n * ¥n].

A function f € L; can be identified with the Boehmian [f * 6,/6,)
where (6,) is any delta sequence. It is convenient to treat £; as a
subspace of Bz,. Note that if F = [f,/6y], then F %6, = f, and hence
Fxé,€ L, foreveryne N.

We say that a sequence of Boehmians F, is A-convergent to a
Boehmian F (A-lim F,, = F) if there exists a delta sequence (6,)
such that (F, — F) * 6, € L, for every n € N and ||(F, — F) *6,|| — 0
as n — o0o. From a general theorem proved in [3] it follows that B,
with A—convergence is a complete metric (quasi-normed) space.

In practice it is often more convenient to use other types of conver-
gence in Bp,: we say that a sequence of Boehmians F;, is §-convergent
to F(6-lim F,, = F) if there exists a delta sequence (6,) such that
Fo*6x € Ly and Fxé; € L, for every n,k € N and ||(F, —F) *6|| — 0
for each k € N. The following equivalence explains how these two types
of convergence are related (see [3]).

(*) A-lim F;, = F if and only if each subsequence of (F,) contains a
subsequence which is §-convergent to F.

The above fact can be used to prove the following: if A-lim F,, = F
and A-limG, = G, then A-lmF, *G, = F+xG. If (§,) is a
delta sequence, then &, /6, represents an integrable Boehmian. Since
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the Boehmian [6,/6,] corresponds to the Dirac delta distribution, we
denote it by §. All derivatives of § are also integrable Boehmians.
Since, there are delta sequences (6,) such that all functions 6, are
infinitely differentiable and have bounded support, we can define the
k—derivative of § by 6(%) = [6(”)/6,,]. It is easy to check that 6(*) € B,
for any k € N. The k-th derivative of a Boehmian F € B;, can be
defined as F®) = F x §(%). From the continuity of the convolution in
B, it follows that if A-lim F,, = F, then A-lim F, *) = F(® for any
keN.

Let F = [fn/6n] € Bz,. Then for each n € N we have f1 %6, = fr*6;.
Since [ 6n(z)dz = 1 for each n € N, we have also

/R fi(z)dz = /R (f1 + 6)(2)dz = /R (fu * 61)(2)dz = /R fa(@)dz.

This property allows as to define the integral of a Boehmian: if
F = [fn/6a] € Bz, then [, F(z)dz = [, fi(z)dz. For a function from
L, this integral is the same as the Lebesgue integral. However, there
are functions which are inegrable as Boehmians but not integrable as
functions. To see this, consider a continuously differentiable function
from £; such that its derivative is not in £;.

2. Fourier transform. To define the Fourier transform of an
integrable Boehmian we will use Burzyk’s method.

LEMMA 1. If (fn/6n] € Bc,, then the sequence

falz) = / fa(t)e = dt
R
converges uniformly on each compact set in R.
PROOF. If (6,) is a delta sequence, then (é,) converges uniformly on

each compact set to the constant function 1. Hence, for each compact
K, 6, > 0 on K for almost all k € K and

; (fn * 51:) (fi * 6n5 i 2
= -_— = = =6, on K.

In view of the above lemma, the Fourier transform of an integrable
Boehmian F = [f,,/6,] can be defined as the limit of ( fa) in the space
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of continuous functions on R. Thus, the Fourier transform of an inte-
grable Boehmian is a continuous function.

THEOREM 2. Let F,G € Bg,. Then

(a) ()\F) AF (for any complez \) and (F + G) F+@G,

(b) (F * G)

(¢) (F(z - a)5 = eﬁ‘wﬁ,

(d) (F™) = (-iz)"F,

() If F=0, then F =0, X

(f) If A-lim F,, = F, then F,, — F uniformly on each compact set.

PROOF. Properties (a) through (d) follow directly from the cor-
responding properties for the Fourier transform in £;. (Note that
F € B, implies F(™) € Bp,). To prove (e) we can use uniqueness
of the Fourier transform in £; or Theorem 4. From (*) it follows, that
to prove (f) ir suffices to show that 6-lim F,, = F implies F,, — F
uniformly on each compact set. Let (6,) be a delta sequence such that
Foxbg,F*x6x € Ly for all n,k € N and ||(F, — F) *6k|| — 0 as n — o0
for each k € N and let K be a compact set in R. Then 51: >0o0on K
for some k € N. Since bx is a continuous function, it is enough to show
that F, - 6k - F. 6k uniformly on K. But Fp-bp—F-b = (Fn— )*6k)
and ||(F,, — F) * 6k|| — 0 as n — oo. The proof is complete.

To prove the inversion theorem we are going to use the following
property of the Fourier transform in £; (see, e.g., [1]).

LEMMA 3. Let f € L, and

fa(z) = % /_: (1 - I%l)f(t)e““dt.

Then (fn) converges to f in the L1 norm.

THEOREM 4. Let F € By, and

@) =g [ (1- ) bwerar

-n

Then 6—-lim f, = F (hence also A-lim f, = F).
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PROOF. Let F = [g,/6,]) and k € N. Then

(fo * 8)(z) = /R fo(@ = )6k (w)du

_1 n 8]\ it(z—u) 2
o /R /_,. (1 - ;)e F(t)8 (u)dtdu
1

(1 - 'ﬂ)emﬁ(t) / €6 (u) dudt
n R

—_— ﬁ .

_ 1 " Itl itz Iy

= /_n (1- Z)e Ft)be(t)dt
1 n

t .
(1 - In—l)e““F + 8 (t)dt.

_ﬂ_n

Therefore, by Lemma 3, ||fp * 6x — F * 6|| — 0 as n — oo. Since k
is an arbitrary positive integer, we have proved that é—lim f, = F.

By (e) and (f) in Theorem 2, the family of linear continuous function-
als on By, separates points. As a consequence we have the following

THEOREM 5. If a function 7(t) defined on the interval [0,1] with
values in Bp, 1s such that the derivative F'(t) ezists and is equal to 0
at each point, then ¥ is a constant function.

PROOF. See [6, p. 155].

A similar problem for the field of Mikusinski operators instead of B,
is still open.

REMARK. The space B, contains some elements which are not
Schwartz distributions. Some connections between Boehmians and
other types of generalized functions are discussed in [31] and [4].

. Another approach to the Fourier transform of convolution quotients
is presented in [7] and [8].
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