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Introduction. Let R be a real closed field and ¥V an affine algebraic R-
variety. We assume that V(R) is Zariski-dense in V. A basic semialgebraic
set S < V(R)isaset of the form S = S(fy, ..., f,) = {(xe V(R) | f(x) >
0, i =1, ..., m} for suitable f; € R[V]. How many f; are needed for such
a representation of S? It is shown that there exists a finite upper bound
depending only on the dimension » of V. This bound is equal to » for
n £ 3.1did not succeed in proving (or disproving) this forn > 3. Anyway,
the best bound is = n. We shall also characterize the basic semialgebraic
sets among the open semialgebraic sets.

1. The real spectrum. For a quasicompact scheme S we denote by
(X(S), B(S)) the real spectrum [4]. This is a restricted topological space
X(S) with base B(S) [2]. For an R-variety V" one has also the restricted
topological space (V(R), r(V)), where 1(¥V)is the lattice generated by all
sets, which are basic semialgebraic after restriction to open affine subsets
of V. By the ultrafilter theorem [2] one has canonical isomorphisms

(PR, V) == (X(V), BV)

where A means canonical ultrafilter completion of a restricted topological
space.

Now let x;, ..., x; be real points of the R-Variety ¥V, and let A be
the semilocal ring 4 = lim_ @(U), U open in V, xy, ..., x,€ U. We set
V(x1, ..., x;) = {Fe V(R) | x(F) generalizes some x;}, and provide
this with the induced base #(x;, ..., x;). Then the projection A:
Spec(A4) — V defines an imbedding

X(2): (X(Spec(4)), B(Spec(4)) — (X(¥), B(V)),
moreover, one has the commutative diagram
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(X(Spec(A)), ﬁ(SpCC (A)) (V(xb s x1)9 f(xl’ cee xl))
S1 X(Spec (4))

o [

X)), ) (V(B), 7(V)),

where f| X(spec(A)) is an isomorphism.

We denote by (V(x, .., X)), #(x1, - .., x;) the subspace of all closed
points in (V(xy, ..., x), ?(x1, ..., x;). The map S — S defines a lattice-
isomorphism : 7(¥) — #(¥), but this no longer holds for the above sub-
lattice. Nevertheless, we have the following Proposition.

_ PROPOSITION 1. For Sy, Sy € (V) one has S§; ) Vxg, .. x) =80
V(xy, .., xp) iff in (S; U SO\Sy N Sp)? there is no generalization of
some Xx;.

(Here we need the index Z for Zariski, whereas general topological
symbols without index Z refer to the strong topology, which is generated
by the base of the corresponding restricted topological spaces.)

ProoF. See [3].

2. Relation to spaces of orderings. Let 4 be a commutative ring with
unit and W(A)its Wittring. Following Knebusch [8], [9], a homeomorphism
0: W[A] - Z is called a signature of 4. We provide the set Sign(4) of all
signatures of 4 with the base Z(A4), which is generated by all sets Z(p, n) =
{o € Sign(4) | o(p) = n} with p € W(A) and n € Z. One has a natural map

w: (X(A4), f(4)) - (Sign(4), Z(4)); (x, P(x)) = ¢
where o(p) = signp,,(k(x) (;9 ¢) and X(A4) = X(Spec(4)).

By Dress [5] z is surjective; apparently 7 is constant on connected com-
ponents, and Mahé [10] has even shown that z defines a homeomorphism
between Sign(A4) and the space of the connected components of X(A4).
Now, if A4 is semilocal and connected, each component of X(4) admits
exactly one closed point, hence z induces a homeomorphism X(4) —
Sign(A). Following Schwartz [13] this can be seen directly: o € Sign(A)
defines a canonical decompostition 4 = Q(s) U p(e) U —Q(0); p(o) is a
prime ideal and for Q(¢) the relations Q(¢) + Q(¢) = Q(o) and Q(o) -
0(0) = Q(o) hold. Moreover, Q(o) U p(o) € X(4) [6] [8].

PROPOSITION 2. Let A be semilocal and connected. The map Sign(A4) —
X(A); 0 — Qo) U p(o) inverts m; w: X(A) — Sign(A) is a homeomorphism.

Note that z need not be an isomorphism of restricted topological spaces.
Now for ¢g*(4) = {ae A4* | 0{a) = 1 for all ¢ € Sign(4)} and G(4) =
A*/q*(A) the pair (Sign(4), G(A4)) is a space of orderings in the sense of
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Marshall [11], [12]. For the proof see 6.4 in [7], 2.5a in [9]. Now, by pro-
positions 1 and 2 the theory of the spaces of orderings is made applicable
for geometrical problems. In particular, we use the following proposition.

PROPOSITION 3. Let (X, G) be a space of orderings and B = X a clopen
subset.

a) There exist elements gy, ..., g, €G, such that B = B(gy, ..., &)
iff for all fans Y < X with |Y| = 4 one has |Y () B| # 3.

b) If, moreover, for each finite fan Y < X one has 2¥|B (| Y| =0 mod|Y],
there exist gy, ..., 8, € Gwith B = B(gy, ..., g)-

Here B(gy, ..., 8) = {0 €X|o(g;) =1 fori=1, ..., k}. Without
b) this is [12, 3.16], and b) can be proved correspondingly using 5.5 in
[11].

3. Generation and characterization of basic semialgebraic sets. Let 7
be an affine algebraic R-variety, R real closed, such that V(R) is Z-dense
in V, n = dim V. Among the open semialgebraic sets S = V(R) a basic
one has the following additional properties:

(A)S N oS% = @

For U < V, U real, integral and closed, one has

(F)|Y N pS)| # 3 for all fans ¥ = X(R(U)) with Y| = 3.

Here p is defined as in §l1. If moreover S is of the form § =
S(ay, ..., a), then for the above U < ¥V one has

(Fp) 2¢Y N p(S)| = 0 mod |Y|for all finite fans ¥ = X(R(U)).

PROPOSITION 4. Let S = V(R) be open semialgebraic.

a) If (A) holds for S and also (F,) for all U < V as above. then S is basic.

b) If, moreover, for all m < n = dim V there exists a number k(m) € N
such that (F ) holds for all U < V with dim U < m then there exists a
sequence 1 < iy < +++ < i, = n withi; — i; Z 2 such that S is of the
form S = S(by, ..., by) for k £ [15=k(;).

For the proof one applies Prop. 3 on a suitable semilocalization of V.
So by Prop. 2 and Prop. 1 one gets a representation of S of the form
S = S(by, ..., brem) up to a set of lower dimension. This aberration can
be represented by further elements ¢y, . . ., ¢;(;y. Unfortunately, the number
of elements we need to drop the dimension of the defect increases multi-
plicatively in our proof. See [3] for the details.

COROLLARY. Let S = V(R) be basic semialgebraic. Then S is of the form
S =Sy, ....,b,)withm < [[L4D21(2i — (1/2)(1 — (=1)»).

This follows from the fact that stability index of F = transcendence
degree of Ffor function fields over R [1].
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COROLLARY. For n = | every open semialgebraic set S = V(R) is of the
form S = S(b).

This is more of less well known [14].

COROLLARY. Suppose that R is the field R and V(R) complete. Let
S < V(R) be semialgebraic and open. If for each pair x, y of points in V(R)
there exists an open set 0 < V(R) with x, y €0 and a basic semialgebraic
set S’ = V(R) such that S (1 0 = S’ () O then S is basic. If, moreover, S’
is always of the form S(b'), then S is of the form S(b) too.

ProoF. See [3].
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