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Dedicated to the memory of Gus Efroymson 

Introduction. Real Algebra, roughly speaking, is the study of "real" 
objects such as real rings, real places and real varieties. Becuase of the 
recent interest in developing algebraic geometry over the real numbers (or, 
more generally, over a real closed field), the algebraic study of these real 
objects has attracted considerable attention. In many ways, the role 
played by real algebra in the development of real algebraic geometry is 
analogous to the role played by commutative algebra in the development 
of classical algebraic geometry. Therefore, real algebra, like commutative 
algebra, is a subject with a great potential for applications to geometric 
problems. 

In the category of fields, the real objects (namely, the formally real 
fields) have been studied already a long time ago by Artin and Schreier, 
who recognized that formally real fields are precisely the fields which can 
be ordered. The idea of exploiting the orderings in a real field, for instance, 
was central in Artin's solution to Hubert's 17th Problem. By the 70's, 
there was already a sizable literature on formally real (or ordered) fields. 
However, real algebra in the category of rings underwent a much slower 
development. There are several possible notions of reality for rings and 
people weren't sure which one to adopt. Similarly, it was not at all clear 
how one should define for rings the notion of orderings. Fortunately, with 
the impetus given by real algebraic geometry, these problems have recently 
been successfully resolved. There is now a consensus (or almost a con­
sensus) about what an ordering on a ring should be, and, with this notion 
of orderings, there is a remarkably complete analogue of the Artin-Schreier 
theory valid for rings. Further, Coste and Coste-Roy have introduced 
the notion of the real spectrum of a ring. On the one hand, this is the 
correct generalization of the space of orderings of a field, and on the other 
hand, this offers a "real" analogue of the Zariski prime spectrum of a ring. 
With the discovery of this notion, one seems to be now fully ready for a 
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systematic study of real algebra over rings, as well as its applications to 
real algebraic geometry. 

In these notes, we shall give a self-contained introduction to these 
recent developments in real algebra. We shall not try to go deeply into any 
single topic, nor shall we try to formulate results in their greatest possible 
degree of generality. Instead, we shall focus on what we perceive to be the 
central facts, and try to organize them, with some care, into a coherent 
picture. By aiming our exposition at the nonexperts, it is hoped that this 
work will make the techniques of real algebra accessible to a general 
audience. For the experts, my exposition has probably little to offer, 
except perhaps by way of terminology. Since the subject of real algebra 
over rings is relatively new, the terminology used so far in the literature 
seemed to be in a great disarray. Needless to say, the lack of a consistent 
terminology in a subject is not in the best interest of its development. 
In view of this, I take the opportunity here to offer a remedy. In these 
notes, we shall call a ring A semireal if — 1 is not a sum of squares in A\ 
we shall call A real (or formally real) if £ 0? = 0 =*> all Û , = 0 in A* 
If (A, STO) is a local ring, we shall call A residually real if the residue fieli 
A/Wl is real. By an ordering on a ring A, we mean (essentially) an ordering 
on the quotient field of A/p for some prime ideal p cz A. For us, thfe 
system of terminology works very well throughout these notes. For better 
or for worse, we propose it for possible use by the mathematical com­
munity. 

Since this work is intended to be an exposition and not a broad survey» 
we have left out the discussion of many important topics. To get a broader 
view of the subject of real algebra, we urge our readers to consult also 
the other available survey/expository articles on the subject, for instant 
[41, [18] and [19]. Readers desiring more information about the recerf 
literature should consult the two excellent collections of articles [161 &ß 
[25] listed in the references. 

The work presented here is a revised and somewhat expanded version 
of my lecture notes circulated at the Sexta Escuela Latino Americana * 
Matematicas in Oaxtepec, Mexico, July, 1982. I thank Professor J<#* 
Adem, organizer of ELAM VI, for his kind permission for me to use tfc* 
same material for the Real Algebraic Geometry Conference. During d* 
preparation of these notes, I have had the great benefit of frequent co*" 
sultation with J. Merzel and A. Prestel. Both of them have generou^ 
given their time in helping me out when I got stuck in the writing. 1&* 
valuable suggestions have resulted in many substantial improvements 0* 
our exposition. E. Becker and G. Brumfiel have read and made ti&# 
insightful comments on the earlier version of these notes which grew 
helped me understand what I had written, and prompted the revision* 
incorporated in the present version. M. Coste and M.-F. Coste-Roy t&vg 
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useful comments on the terminology of this work and pointed out to us 
some pertinent references. To all of them, my sincere thanks. 

Finally I would like to remark that the untimely death of Gus Efroymson 
shortly after the Boulder Conference has saddened us all and has been a 
great loss to workers in real algebraic geometry. 

1. The level of a ring. In this section, we shall collect some elementary 
results about the level of (commutative) rings. Of course, for "Real 
Algebra", we shall be primarily interested in rings of infinite level, but 
for the convenience of this section we shall try to state some of the results 
in terms of the finiteness of the level. For later sections, these results can 
simply be applied in their contrapositive forms. 

First, we recall the definition of the level (Stufe) of a ring. 

DEFINITION 1.1. If - 1 is a sum of squares in a ring A, we define the 
tevel of A (denoted by s(A)) to be the smallest natural number s such that 
"•" 1 can be expressed as a sum of s squares in A. If — 1 is not a sum of 
squares in A, we define s(A) to be oo. 

If F is a field, Pfister has shown that s(F) is either oo, or else a power of 
2» and that all powers of 2 are possible (cf. [20, Ch. 11]). On the other 
hand, if A is a commutative ring, then s(A) can be oo or any given natural 
dumber n; in fact, Dai, Lam and Peng have shown that the R-algebra 

R[*i, ...,*J/(1 + * î + ••• +*S) 
has level = n. The proof is a simple application of the Borsuk-Ulam 
Theorem; cf. [12]. 

For any commutative ring A, we shall write £A2 for the set of sums 
of squares in A. If the ring A is understood, we shall simply write £ (or 
EiO for £/42. This notation will be used freely throughout these notes. 

Our first result is the following basic lemma. 

LEMMA 1.2. Let A be a commutative ring, and let £ = 2M2- Let S c A 
k a multiplicative set containing 1 but not containing 0t such that S + £ <= 5. 
*f* P be an ideal of A maximal with respect to the property that p is 
fàjointfrom S. Then p is a prime ideal, and qf(A/p) (the quotient field of 
*lp) has infinite level. 

REMARK 1.3. Assume that s(A) = oo. Then the lemma can be applied 
*° the set S: = 1 + 2 . We clearly have 1 € S and 0 # S, and it is easy 
t o check that S is a multiplicative set, with 5 + £ c S. 

PROOF (of 1.2). The fact that p is a prime ideal is well-known from com­
mutative algebra. (For this, we do not need S + £ c S.) Thus it only 
^mains to show that s(qf(A/p)) - oo. Assume, instead, that s(qf(A/p)) < 
*°* Then there exists a relation *? + *£+ ••• +é£ep , where bf € A 
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(1 <L i <* ri), and, say, bx $ p. By the maximality of p, p + (b{) must 
meet S, so we have s = rbx (mod p) for some s e S. But then s2 = r2b\ 
(mod p) and so 

(1.4) s2 + r2b\ + . -. + r2£2 = r2(£2 + . . . + jg _ 0 ( m o d p ) -

However, s2 + r2Z>| + • • • + r2b2 e S + 2 e 5, so (1.4) contradicts the 
fact that 5 p p = 0 . 

The following result has been observed by many authors, including 
Coste and Coste-Roy, and Bröcker-Dress-Scharlau (cf. [7]). 

THEOREM 1.5. For any commutative ring A, s(A) < oo if and only if for 
all prime ideals p c A, s(qf(A/\))) < oo. 

PROOF. The "only if" part is trivial. The "if" part follows immediately 
from the Lemma above (in view of Remark 1.3). 

COROLLARY 1.6. (Local-Global Criterion for Finite Level) For any com­
mutative ring A, s(A) < co if and only if for all maximal ideals SDÌ a A, 
s(Am) < oo. 

PROOF. Again, we need only prove the "if" part. Assume that s(,4) = oo. 
Let p c A be a prime ideal such that s(qf(.4/p)) = oo. (Such a prime 
exists by 1.2.) Since qf(^/p) ^ Ap/pAp, it follows that s(Ap) = oo. 
Let 9JÌ be any maximal ideal containing ^ . Then we have a homomor-
phism Am -> A9, so s(,4p) = oo implies that s(Am) = oo. 

Let A be an integral domain, with quotient field F. Of course, s(A) < 
oo => s(F) < oo, but the converse is in general not true. An easy counter­
example is given by the R-algebra 

A = R[*i, . . . , x j / ( x ? + . - . + x2). 

In qf04), — 1 is a sum of n — 1 squares so s(F) ^ n — 1, but since A 
admits a homomorphism into R, we have s(A) = oo. If we want a local 
example, we can replace A by its localization at the maximal ideal gen­
erated by Xi, . . . , xn. 

There are several important classes of integral domains A for which 
s(F) < oo does imply s(A) < oo. In the following, we shall collect some of 
the known facts in this direction. 

PROPOSITION 1.7. Let A be a valuation ring with quotient field F. Then 
s(A) = s(F). (In particular, s(A) < oo if and only ifs(F) < oo.) 

PROOF. We claim that, if — 1 is a sum of n squares in F, then — 1 is a 
sum of n squares in A. This will clearly give the Proposition. Assuming 
that — 1 is a sum of n squares in F, we can write down an equation al + 
. . . -i- a\ = 0, where #,- G A are not all zero. Using the fact_that A is a 
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valuation ring, we may assume, after reindexing, that a0 ^ 0, and a^a^ e A 
for all /. Then — 1 = (tfi/%)2 + • • • + (an/aQ)2 is a sum of« squares in A. 

COROLLARY 1.8. Let A be a Prüfer domain with quotient field F, Then 
s(A) < oo if and only if s(F) <oo. 

PROOF. One of the characterizations for A to be a Prüfer domain is 
that, for all maximal (or prime) ideals 3fl <=. A, Am is a valuation ring in 
F. /Vs$uu; that s(F) < oo. Then, by (1.7), s(Am) < oo for all maximal 
ideals 9Jt. But then by the Local-Global Criterion for Finite Level, we 
have s(A) < oo. 

The Corollary above, in particular, holds for Dedekind domains A. 
However, the technique we used to prove 1.8 did not yield any quantita­
tive results relating s(A) and s(F) for Prüfer domains. In the case of De­
dekind domains, such a quantitative result is indeed possible. We shall 
state without proof the following result of R. Baeza [3]. 

THEOREM 1.9. Let A be a Dedekind domain with quotient field F. Then 
s(A) is either s(F) or s(F) + I. In particular, s(A) is either oo, or 2n, or 
2n -f 1 (for some integer n ^ 0). 

To show the possibility of the values 2n + 1 in this theorem, we mention 
the following example from [9]. 

EXAMPLE 1.10. Consider the ring A = Q[x, y]/(l + x2 + 2y2). It can be 
shown that A is a principal ideal domain. The equation — 1 = x2 + y2 + 
y2 shows that s(F) g s(A) g 3. Using elementary considerations, one can 
show that s(F) = 2 and s(A) = 3. The details can be found in [9]. 

Even for n ^ 2, there probably exist Dedekind domains A with quotient 
field F such that s(F) = 2n and s(A) = 2n + 1. However, no such ex­
amples seem to have been exhibited in the literature. 

We now turn our attention to regular local rings. 

LEMMA 1.11. Let (A, W) be a regular local ring with quotient field F. 
Then s(A/ffi) ^ s(F). 

PROOF. We shall proceed by induction on d: = dim A. If d = 1, then 
A is a discrete valuation ring; in this case s(F) = s(A) by 1.7 so the desired 
inequality is trivial. Now assume d > 1. Fix an element p e K which is 
part of a regular system of parameters for 9Ji. Then A(p) is a discrete 
valuation ring, so by (1.7), s(A(p)) = s(F). Let B: = Aj(p). This is a regular 
local ring of dimension d — 1, with residue field ^ Aj^R, so by the in­
ductive hypothesis s(AIW) g s(qf(B)). Butqf(£) s Aip)/p-Aip) so s(qf(5)) 
^s(A{p)) = s(F). Combining the two inequalities, we get s(A/TÏ) ^ s(F). 

If the local ring (A, 9JÏ) fails to be regular, the inequality s(A/W) ^ 
s(F) may not hold, even if siA/ffl) and s(F) are both finite. Consider, for 
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example, the ring B « R[«, y, xu . . . , xr]l(i& + v2, 1 + x? + • • • 4- 3$ 
and the prime idealp « (ö, ?, 1 + x\ + - - + ^ ) i n Ä Let 4 be the 
localization 2?„ with maximal ideal 3R = p Br In qf(A)> we have - 1 •» 
(ö/?)2 so sfa/04)) « 1. However, 

AW*BJpB9*qf(Blp)*qf(R[xu...9xMl+4+ •'-+&) 

and, by a theorem of Pfister [20, p. 303], this field has level 2» where 
2» £ r < 2*+h 

Using the Lemma above, we can obtain a result on the level of a noi*-
local regular ring. Recall that a commutative ring A is said to be regular 
if A is Noetherian and the localizations of A at all maximal ideals are 
regular local rings. It is known that if A is regular, then the localizations 
of A at all prime ideals are also regular local rings. 

THEOREM 1.12. Let A be a regular domain with quotient field F. The* 
s(A) < oo if and only ifs(F) < oo. 

PROOF. TO show the "if" part, assume that s(F) < oo. By 1.5, it suffices 
to show that s(qf(A/p)) < oo for any prime ideal pa A. But qf(A/p) & 
AJpAp is the residue field of the regular local ring Ar By 1.11, ** 
have s(AJpAp) ^ s(qf(A9)) = s(F) < oo. 

Even in the case when A is a regular local ring, the exact relationship 
between s(A) and s(F) seems to be unknown. It seems reasonable to 
conjecture that, in this case, s(A) « s(F); this is known to be true for lo* 
dimensional regular local rings (in the case when 2 is invertible in A)» V 
A is not local but just a regular domain, the relationship between s(A) 
and s(F) seems to be even more inaccessible. In view of Baeza's resid* 
(1.9), one might perhaps ask whether s(A) is bounded by some function 
of s(F) and dim A. 

2. Two kinds of Reality. For commutative rings A, we can introduce 
two notions of "reality", a weak one and a strong one, as follows. 

DEFINITION 2.1. 

(1) A is said to be semireal if s(A) = oo. 
(2) A is said to be formally real (or just real) if a? + • • • + «2 m£ 

(fli 6 A) implies that each aé = 0. 
We can also define two similar notions of reality for ideals % a A-
(V) ÌI is said to be semireal if Aj% is semireal 
(2') 8T is said to be real if A/H is real. A 

Clearly, (1) and (2) define the same notion if A is a field. Therefo* 
(1') and (2') define the same notion if A is a maximal ideal. } 

Taking the definitions literally, we would have to concede that the 2£*° 
ring is real, but not semireal. This is somewhat embarrassing, but sfcl* 
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we seldom consider the zero ring, it should not cause any problem. If 
A # 0 and ÎT # A, we clearly have 

A is real => A is semireal, and 

& is real =• M is semireal. 

The example A = R[xl9 . . . , xj/(*f + • • • + xj) mentioned already in 
the last section shows that a ring may just be semireal but not real. 

REMARKS 2.2 (1) Suppose we have a ring homomorphism f: A-+ B. 
Then 

(a) B is semireal =*• A is semireal; 
(b) If / i s injective, then 2? is real =*> Ais real. 
(2) Consider a localization A -• SM4 of the ring A. Then 

(a) S~XA is semireal =* i4 is semireal; 
(b) A is real => S~XA is real. 

To prove the latter, suppose (ax/s^ + • • • + ( Ä ^ ) 2 « Oin S~lA, where 
a* € A and 5 6 5. Then for some t e 5, we have f(Û? + • • • + <# = 0 in 
A, and so (/aO2 + • • • + (tajp = 0. By the reality of A, we have each 
tai *= 0 in A, and hence each ajs = 0 in S~lA. 

THEOREM 2.3. For any commutative ring A ¥> 0, the following statements 
we equivalent. 

(1) 4 ft semireal; 
(2) 4 Aar a semireal ideal; 
(3) 4 Aay a real ideal & A; 
(4) A has a semireal prime ideal; 
(5) A has a real prime ideal; 
(6) A has a prime ideal p si/cA Ma* A, is semireal; 
0) A has a maximal ideal 2R such that Am is semireal; 
(8) Some localization S~XA is semireal. 

REMARK 2.4. Statement (5) is clearly equivalent to 
, (9) A has a homomorphism into a real field, 

***** a domain is real if and only if its quotient field is real. However, (5) 
* not equivalent to 

(5') -4 has a maximal ideal which is real. 
I* fact, the ring Z is real (and semireal), but all its maximal ideals are 
Honreal. 

PROOF (of 2.3). First we prove that (2), (4) and (5) are equivalent. Since 
*arly (5) =* (4) =* (2), we need only show that (2) => (5). Let Ä be a 
jB*M*al ideal. Then » is disjoint fromS: « 1 + EA2. By 1.2, 1.3 and 
Zorn*s Lemma, we can enlarge Ä to a real prime ideal. This proves (5). 

Next, note the trivial implications (5)=*(3)*> (2) and the trivial 
^valences (2) o (1) <>(*>. These and the above show that all state* 
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ments other than (6), (7) are equivalent. 
It is now easy to account for (6) and (7). Since (7) => (6) => (1) are 

trivial, we can finish by showing that (5) => (7). Let p be a real prime. 
Let 9K be any maximal ideal containing p. We claim that Am is semireal. 
To see this, note that 

s(qf(A/p)) = oo => s(AplpAp) = oo => s(Ap) = oo. 

Since we have a homomorphism Am -> Ap, the latter implies that s(Am) = 
oo. 

COROLLARY 2.5. Let A be either a Prüfer domain or a regular domain, 
with quotient field F. Then the statements (1) through (9) are all equivalent 
to 

(10) A is real, and (11) F is real. 

PROOF. This follows from our earlier results (1.8) and (1.12). 

For local rings, it is technically convenient to introduce a third notion 
of reality, as in the following 

DEFINITION 2.6. A local ring (A, 9R) is said to be residually real if 9JÎ 
is a real ideal, i.e., if the residue field AjSSSl is formally real. 

If {A, SDÎ) is semireal or even real, it does not follow that it is residually 
real. (An easy counterexample is Zip).) On the other hand, if (A, 3R) is 
residually real, then A must be semireal, but not necessarily real. (An 
easy counterexample is the localization of R[xl5 . . . , xn]/(xl + • • • 4- x%) 
at the maximal ideal generated by xl9 . . . , xn.) Nevertheless, we do have 
the following which is a consequence of 2.5 (see also 1.11). 

PROPOSITION 2.7. Let A be a valuation ring or a regular local ring. If A 
is residually real, then A is real. 

We shall now conclude this section with the following result which 
characterizes real rings in terms of real fields. 

THEOREM 2.8. A ring A is real if and only if A can be imbedded into a 
direct product of (formally) real fields. 

If A is a domain, this theorem becomes trivial since the quotient field 
of A will also be real. Thus the work needed for the proof of 2.8 is mainly 
in the non-domain case. We first prove the following lemma. 

LEMMA 2.9. A ring A is real if and only if A is reduced and all minimal 
primes of A are real. 

PROOF. Recall that a ring R is called reduced if its nilradical nil(R) = 
{a e R: an = 0 for some n] is zero. To prove the "only if" part, let A be 
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a real ring. Clearly A is reduced. Let p be any minimal prime ideal. By 
2.2 (2b), Ac is real, and hence reduced. Therefore, pAp = nil(^4p) = 0. 
This implies that qf(A/p) = Ap/pAp = Ap. Since Ap is real, it follows that 
the prime ideal p is real. 

For the converse, assume that A is reduced, and that all minimal 
primes are real. If I>? = 0> then each a{ must lie in each minimal prime, 
and so each a{ must lie in the intersection of all the minimal primes, 
which is nil(y4). Since A is reduced, it follows that each a{ = 0. 

PROOF (of 2.8). The "if" part is trivial. For the converse, assume that A 
is real. Let {pj be the set of minimal primes. By (2.9), the quotient fields 
F{\ •= qï(Ajpt) are real. The obvious homomorphism from A to n^* has 
kernel = f]pi = ni\(A) = 0, so we get an imbedding of A into the 
direct product of the real fields { F j . 

At this point, let us make some remarks about Lemma 2.9. According to 
this Lemma, if A is real, then A is reduced, and all its minimal primes are 
real. In view of this, one may ask whether if A is semireal, is A also reduced, 
and are all its minimal primes semireal? It is easy to see by examples that 
the answers to both questions are negative. For instance, the ring R[x]/(x2) 
is semireal, but clearly not reduced. On the other hand, consider a direct 
product A = Fi x F2 where Fr is a real field and F2 is a nonreal field. 
Then, since A has a homomorphism onto Fl9 it is semireal. The reduced 
ring A has two minimal primes, p± = Fi x {0} and p2 = {0} x F2. 
Since A/p1 = F2 and A/p2 = F l9 we see that p2 is real, but p1 is not 
real or semireal. This example suggests that, to get an analogue of 2.9 
for semireal rings, we have to replace the universal quantifier (V) by the 
existential quantifier (3). The correct statement is as follows. 

LEMMA 2.10. A ring A is semireal if and only if one of its minimal primes 
is semireal. 

This statement is just a slight refinement of the equivalence (1) o (4) 
in Theorem 2.3. We just need to make two additional observations: (a) 
any prime p c A always contains a minimal prime p0; (b) if p0 c p, 
then p is semireal => p0 is semireal. 

Finally, we would like to mention another characterization of semireal 
rings which is important from the viewpoint of studying quadratic forms. 
For any ring A, let W(A) denote the Witt ring of regular inner product 
spaces over A. By a signature over A, we shall mean a ring homomorphism 
from W(A) to the ring of integers which takes <1> to 1. It can be shown 
that the ring A is semireal if and only if there is such a signature; for a 
proof of this fact, we refer the reader to Knebusch's lecture notes in the 
Kingston Conference on Quadratic Forms (1976). 
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3. Artin-Schreier theory for commutative rings. 
The basic connection between the notion of formal reality and the 

existence of orderings was first discovered by Artin and Schreier, in the 
context of fields [2]. They showed that a field F is real if and only if F 
can be ordered. We shall begin by recalling how this theorem can be 
proved by using the convenient notion of preorderings. 

Let F be a field. A subset J c F i s called a preordering on F if T + 
T cz F, T . T cz F, F2 a F, and - 1 <£ T. A preordering T is called an 
ordering if it satisfies the further condition that T [} —T — F. The 
following two facts are both easily proved. 

(a) A preordering T is an ordering if and only if T is maximal as a 
preordering; 

(b) (By Zorn's Lemma) Any preordering T can be enlarged into an 
ordering. 
If we assume these two facts, the Artin-Schreier Theorem mentioned above 
can be proved as follows. Assume F i s real. Then — 1 <£ £ F 2 , so £ F 2 is 
a preordering. Applying (b)above to F = Zìi72, we get an ordering on F. 
Conversely, if Tis an ordering on F, then T => £ F 2 . Since — 1 £ F, we 
must have — 1 ^ £ F 2 , so Fis real. 

Suppose, instead of studying fields, we want to study commutative 
rings. It is natural to ask whether there is some sort of generalization of 
the Artin-Schreier Theorem to rings. To find such a generalization, one 
problem we have to solve is to try to come up with the right definition of 
an "ordering" for a commutative ring. We proceed as follows. 

First, we can define preorderings F in a ring A in the same way as we 
did for fields, namely, we call T cz A a preordering if F + Ta T,T • T cz 
F, A2 e F and - 1 $ F. If A were a field, then T f\ -T would be zero, 
for otherwise there would exist tÌ9 t2eT such that t1 = —t2 ¥" 0; but 
then — 1 = t1/t2 = t\t2 • (t^1)2 e F, a contradiction. If A is just a ring, 
then, for a preordering F, F f| — F need not be zero. It is easy to see that 
9( ••= F fi — F is an additive subgroup of A, i.e., since 8( = — ST, it suffices 
to check that 9( is closed under addition. But for a{ e 8(, we have 

al9 a2 G F => ax + a2 e T\ 

-fli, -a2eT=>ai + a2e -T) 

The group % = F f| — F is clearly the largest additive subgroup of A 
contained in F In the following, we shall call it the support of F (ab­
breviated as supp(F)). 

REMARK 3.0. (a) If 1/2 e A, then the support 2( of any preordering Fis 
an ideal of A. For this, we have to show that a e ä and x e A imply that 
xa e 8(. Write x in the form y2 — z2; this is always possible if 1/2 e A, 
for we can take y = (1 4- x)/2 and z = (1 — x)/2. We have 
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aeT=> y2aeT] , 0 x , o x 

Similarly we can get xae —T. Therefore, xa e A. 
(b) If a preordering T a A satisfies the condition T U — T = A, then 

the support 9( of T will be an ideal of A even if 2 is not invertible. This 
follows by an easy argument. 

We are now ready to define the notion of an ordering in an arbitrary 
commutative ring. 

DEFINITION 3.1. 4̂ preordering T a A is called an ordering if it satisfies 
the two further conditions below: 

(1) T U - T = A, and 
(2) The support p ••= T fi — Tis & prime ideal of A. 
In the literature, such a T is sometimes called a prime ordering. To 

simplify the terminology, we propose to call it just an ordering. 
Note that, given an ordering T a A with support p as above, we can go 

to the domain Ä = A/p, on which T induces a preordering T satisfying 
T {} - T = Àtmà T [) - T= {Ö}. Thus, T is an ordering on Ä with 
support zero, and therefore extends uniquely to an ordering on qf(y4/p). 
Conversely, if we start with a real prime ideal p, and fix an ordering on 
qf(y4/p), then, by restriction to A/p, we get an ordering on A/p with 
support zero. Taking its preimage in A, we clearly get an ordering on A 
with support p. Therefore, the prescription of an ordering on A with 
support p is equivalent to the prescription of an ordering on the quotient 
field of Ajp. The possible supports of orderings on A are precisely all the 
real prime ideals of A. 

The following result offers another characterization of the notion of an 
ordering. 

THEOREM 3.2. A preordering T on a ring A is an ordering if and only if it 
satisfies the following property. 

(*) abe -T=> aeT orbeT. 

PROOF. Suppose T satisfies (*). Taking b = — a in (*), we see that 
T U - T = A. Now let p be the support of T. By Remark 3.0 (b), this 
is an ideal of A. To show that p is prime, we shall check that x y e p = 
T fi — T and x $ p imply y e p. Without loss of generality, we may 
assume that x $ T. Then, by (*), we have (for both signs) 

x • ( ± j ) e -T=> ±ye T 

=> y e p, as desired. 

Conversely, let Tbe an ordering with support p. Suppose a be —T, but 
a $ T and b $ T. Then we have a, b e - T and so a b e ( - T ) ( - T) = T. 
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a > 0 
T 

a > 0 
T 

a = 0 
T 

:oaeT, a < 0:oae — T, 
T 

:oa$ -T, a <0 :oa$T, 
T 

:o (a < O a n d f l ^ 0 ) o f l e r n - T = 
T T 

supp(T) 

Therefore a è G T p| — T = p. Since p is prime, we have either a e p or 
è G p. This is a contradiction since p <= T. 

For an element ae A and an ordering l e A as in 3.1, we shall use the 
following notations. 

(3.3) 

Thus, for any a e A, we have exactly one of the following possibilities: 
a > T 0, or a < T 0 or a = T0. Since a ^ T 0 means simply that ä ^ T 0 in 
the quotient field of A/T f] — T, etc., it is easy to see that the usual laws 
of inequalities remain valid for ^ T and > T. In terms of this inequality 
notation, the characterizing property (*) for an ordering T in Theorem 
3.2 may be written in the more suggestive form: ab ^T0 => a ^T0 or 
b ^ T 0 . 

Next, we shall try to prove some existence results for orderings. We 
begin with the following observation of A. Prestel. 

LEMMA 3.4. Let Tbe apreordering on a ring A, and let x,ye A. 
(1) If xye — r , then one of T + x* T, T + y*Tis a preordering. 
(2) T + x-T is not a preordering if and only if there exists an equation 

- 1 = a + (1 4- b)x where a,beT. 

PROOF. For (1), let Tx = T + x- T and T2 = T + y- T. Both of these 
are closed under addition, multiplication, and contain A2. If neither one 
is a preordering, we would have the equations 

— 1 == fx + xt2, - 1 = h + yh where t{ G T. 

Multiplying — xt2 = 1 -f *iwith — jtf4 = 1 + f3, we get x y ^ = 1 -f f 5 

for some /5 e T. But then - 1 = t5 - jcyf2*4 6 T9 a contradiction. 
For (2), the "if" part is trivial. For the "only if" part, assume that 

Ti = T + X'T is not a preordering; then — 1 e 7V Multiplying this by 
1 + x G Tl9 we get - (1 + x) G T r 2\ = 7i = T 4- *• T. Adding x, we get 
- 1 G T + (1 + T) . x, as desired. 

Since - x 2 G - Tfor all x, 3.4 (1) implies the following. 

COROLLARY 3.5. For any x G A, one of T ±x • T W O preordering. 

With the preparation above, it is now an easy matter to deduce the 
following result of A. Prestel [24]. 

THEOREM 3.6. Let A be a ring, and T be a maximal preordering on A. 
Then T is an ordering. 
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PROOF. In view of 3.2, we need only check that T has the following 
property. 

(*) xy e - T => x e T or y e T. 

Assume that xy e — T. By 3.4, the maximality of T implies that either 
T + x - T = T or T + y • T = T. Therefore, we have either xeT or 
yeT, as desired. 

COROLLARY 3.7. Any preor dering Tona ring A is contained in an ordering. 

PROOF. By Zorn's Lemma, we can enlarge T to a maximal preordering 
7\. By 3.6, Ti must be an ordering. 

Clearly, (3.7) implies 

COROLLARY 3.8. Let T be an ordering on a ring A. Then T is maximal 
as an ordering if and only if it is maximal as a preordering. 

In view of this result, there will be no ambiguity in talking about 
"maximal orderings". Moreover, by 3.6, maximal orderings and maximal 
preorderings are the same objects, and by Zorn's Lemma, any preordering 
is contained in a maximal ordering. 

We are now ready to state the desired generalization of the Artin-
Schreier Theorem for commutative rings. 

THEOREM 3.9. A ring A is semireal if and only if A has an ordering. 

PROOF. Let Tbe an ordering on A. If A has finite level, we would have 
— 1 e £ A2 cz r , a contradiction. Conversely, assume that A is semireal. 
Then 2 ^ 2 d ° e s n o t contain — 1, so it is a preordering on A. By what we 
have said above, this can be enlarged to a (maximal) ordering on A, so A 
has at least one ordering. Alternatively, we can also argue as follows. 
Since A is semireal, there exists a real prime ideal p by 2.3. The quotient 
field of A/p is formally real, so we can fix an ordering on it, by the Artin-
Schreier Theorem in the field case. But then, as we have observed before, 
this ordering on qf(A/p) corresponds to an ordering on A (with support 
p). Therefore, A has at least one ordering. 

By Theorem 3.6, any maximal preordering on a ring A is an ordering. 
If A happens to be a field, we know that the coverse is also true, but if 
A is just a commutative ring, the converse is in general false. In other 
words, there may exist orderings on rings which are not maximal orderings. 
In the following paragraph, we shall offer such an example on the ring 
RM. 

Let A = R[x], and let p0 be the real prime (x). Pulling back the standard 
ordering on A/p0 ^ R, we get an ordering T0 on A with center p0. Clearly, 
r 0 = {a0 + aix + • • • + anx

n: n ^ 0, a0 ^ 0}. Another ordering S on A 
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is given by restricting to R[x] the unique ordering on R(x) with respect to 
which x is positive and "infinitesimal". More explicitly, we can define S 
to be S := {0} U {amxm + tfw+i*w+1 + • • • + anx

n: 0 ^ m ^ n,am > 0}. 
It is straightforward to check that S is an ordering on A, with support 
{0}. Clearly we have S Ç T0, but the inclusion is strict, i.e., ± x b o t h 
belong to T0 but, while x belongs to 5, —x doesn't. This shows that S is 
not a maximal ordering. 

What are some examples of maximal orderings on Al It is easy to see 
that T0 is one. More generally, if we take any a e R, then the ordering Ta 

on A obtained by pulling back the standard ordering on A/(x — a) ^ R 
is a maximal ordering on A. However, these Ta's are not all the maximal 
orderings on A. To construct two more, let T^ (resp. r_TO) be the ordering 
on A obtained by restricting to A the ordering on R(x) in which x is larger 
(resp. smaller) than any element of R. We claim that T±00 are both maximal 
orderings on ,4. By symmetry, it suffices to show this for T^. Assume Tœ 

is not maximal, and let T be an ordering properly containing it. The 
support of T is clearly ^ 0. (For any ring A and orderings T, T', we have 
T g r => supp(r') g supp(T). In fact, suppose T g T but supp(r') = 
supp(T). Take aeT\T. Then a e -T c -T and so aesupp(T) = 
supp(r') c T', a contradiction.) Hence the support of T must be of the 
form (x — a) for some Ö G R . But then Tmust be Ta. Now consider/ = 
x — {a 4- 1). Using definitions it is easy to see t h a t / e T^ a n d / £ Ta = T, 
a contradiction. We leave it as an exercise for the reader to show that the 
maximal orderings on A are precisely the Ta's together with T±00. 

From the last paragraph we learn that if an ordering T o n a ring A has 
a support which is maximal as a real ideal, then Tis maximal as an order­
ing; however, the coverse is in general not the case. 

At this point, let us also make the following observation about the 
definition of an ordering given in 3.1. For a preordering Tto be an order­
ing on A, we required in 3.1 that T (J - T = A, and that T f) - T be a 
prime ideal. In general, the last condition about the support of T will not 
follow automatically from the other conditions. While we were discussing 
the ring A = R[x], this is a good place to give an example to substantiate 
this point. Keeping the notations in the last paragraph for A, let us define 
T(r) = S + (xr), where r is any integer ^ 1. It is easy to verify that T(r) 

is a preordering on A, with the property that T{r) U — T{r) =A. Hwoever, 
T(r) has support T{r) f| -T{r) =(xr) which is a prime ideal if and only 
if r = 1. Thus Ta) ( = T0\) is an ordering, but T^r) (r ^ 2) are not 
orderings. 

4. The real spectrum of a ring. For a formally real field F, it is well-
known that the set XF of orderings on F can be given a natural topology 
which is known as the Harrison topology. With this topology, XF is a 
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Boolean space, i.e., it is compact, HausdorfT and totally disconnected. 
In the literature, the space XF has played an important role in the study 
of ordered fields. For a report on the recent progress in this area, see my 
survey article [21]; cf. also [22]. 

Since, in 3.1, we have extended the notion of an ordering from the case 
of fields to the case of rings, we can form the set XA of orderings on any 
semireal commutative ring A. We can introduce the Harrison topology 
in the same way as we did for fields ; the resulting space of orderings XA 

is called the real spectrum of A. (In the literature, the notation r-spec A 
is often used for XA.) It turns out that XA is always compact for (semi-
real) rings A; however, in general, XA may fail to be HausdorfT, so it 
won't be a Boolean space. Roughly speaking, the real spectrum of a ring 
is some kind of "cross-breed" between the space of orderings of a field 
and the Zariski prime ideal spectrum of a ring. 

In this section, we shall give an introduction to the topological structure 
of the real spectrum. Because of the limited scope of these notes, we shall 
not go deeply into this subject. Instead, we shall content ourselves with an 
exposition of the most basic properties of the real spectrum. For a deeper 
investigation, we refer our readers to the article [11] and the references 
contained therein. From these works, it will be clear that the study of the 
real spectrum is an indispensable tool in a systematic development of real 
algebraic geometry or semialgebraic geometry. 

We shall begin by introducing the Harrison topology 8T on the real 
spectrum XA. (Throughout this section, A shall denote a semireal com­
mutative ring.) By definition, a subbasis of open sets for <F is given by 
the Harrison sets 

H(a)(= HA(a)) ••= {TeXA:a$ -T) = {TeXA:a>T0} (aeA). 

(From here on, we shall use freely the inequality notations introduced 
in (3.3).) 

Among these sets, we have, for example, 7/(1) = XA, and / / ( — 1) = 
7/(0) = 0 . For tfj, . . . , an e A, we form the finite intersections 

H(al9 . . . , *„ ) := J ï ( f l l )n ••• fi H(an) 
= {TeXA :at. > r 0 f o r a l i / } . 

These sets form a basis of open sets for the topology &~. Recall that 
any Te A^induces an ordering Ton qf(^4/p), where p is the support of 
T. Thus, we have Te H(aÌ9 . . . , an) if and only if the elements äx, . . . , än in 
qf(^4/p) are positive with respect to the ordering T. 

It is easy to see that the real spectrum formation A i-+ XA gives a con-
travariant functor from the category of semireal commutative rings to the 
category of topological spaces. In fact, if/: A -> B is a homomorphism of 
semireal rings, we can define a natural map / * : XB -» XA by taking 
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f*(j) = f-\T). It is easy to see that, if T is an ordering on B, then f-^T) 
is an ordering on A, and that if T has support p in B, then f~l{T) has 
support / - 1 (p) in A. The fact that / * is a continuous map follows from the 
easy formula f*~l(HA{a)) = HB(f(a)), for any a e A. 

Note that, in the study of XA, there is a fundamental difference between 
the case of a field and the case of a ring. If A is a field and a ^ 0, then 
H( — a) is the complement of //(a); in particular, the sets H(a) are not 
only open sets, but they are also closed sets. Because of this, the real 
spectrum of a field is a totally disconnected space. If A is a ring, we will 
still have H{d) fl H(-a) = 0 , but #(a) U # ( - « ) won't be the whole 
space in general. In fact, for any ordering T, we have 

Te H(a) U H(-a) o a > 0 or a < 0 
(4.0) T T 

T 

Thus, XA\(H(a) U H( — a)) consists precisely of orderings whose supports 
contain a. Of course, this is in general a non-empty set. 

Our first main result about (XA9 $~) is the following 

THEOREM 4.1. For any semireal ring A, the real spectrum XA is compact. 

(Throughout this paper, "compact" means quasi-compact, and does 
not mean quasi-compact and Hausdorff.) 

The proof of this is modeled upon the usual argument used to show 
the compactness of the space of orderings of a field. The key point is to 
imbed XA into Y: = {0, 1}^, the space of functions from A to {0, 1}. 
For any ordering I c ^ w e define fT: A -> {0, 1} to be the characteristic 
function on T\(-T), i.e., 

(I if a > 0, 

Ma) = T 

0 if a ^ 0. 
I T 

For any ordering T a A, we shall identify T with the function fT e Y. 
Thus, XA is identified with a certain set of functions X c Y. 

We shall give {0, 1} the discrete topology and Y = {0, \}A the product 
topology. For ah .. .,aneA and ei, . . . , ene {0, 1}, we define 

# £ 1 - , Ê > i , • • -, an)
 := {/e Y:f(at) = e{ for all /} . 

These sets form a basis of open sets for the product topology of Y. By 
Tychonoff's Theorem, the product space Y is compact. 

Since we identify XA with the set of functions X = {fT: Te XA), we 
have 
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# 1 , . . . .i(*i, ...,an)(iX= {T:fT{at) = 1 for all /} 

= {T:al9 ...,an >T0} 

= H(al9 ...,an). 

Therefore, the topology ST on XA is coarser than the topology &~0 on X 
induced by the product topology on Y. The latter topology on XA = X 
will be called the Tychonoff topology on XA. (In the literature, this 
topology has also been known as the "constructible topology". The term 
"Tychonoff topology" used here stems from G. Brumfiel's notes at the 
University of Hawaii. In the sequel, when we refer to the real spectrum 
XA without explicitly mentioning which topology is being used, it will 
be understood that we are using the Harrison topology, not the TychonofF 
topology.) We claim 

PROPOSITION 4.2. X is a closed subset of Y. 

If we assume this result, then since Y is compact, the closed subspace 
(X9 &~Q) is compact and hence XA will also be compact relative to the 
coarser topology 3T. This would therefore prove Theorem 4.1. 

Our job is now to prove 4.2. Consider a function/e Y\X. We associate 
to / t h e subset S ••= -f~K0) = {a :f(-d) = 0} of A. This subset is not 
an ordering, so it must violate at least one of the following properties: 

(1) S + S a S9 (2) S • S e 5, (3) A2 a S 

(4) - 1 £ S (5) a • b G -S => a e S or b e S. 

Suppose/does not satisfy (1). Then there exist a, be S such that a + b$ 
S. This leads to f(-a) = 0, / ( - 6 ) = 0, f(-(a + b)) = 1. So / lies in 
H •= H0>0fl( — a, —b, —(a + b)). Since the functions in X "arise" from 
orderings, the open set H is disjoint from X. If/violates the other prop­
erties instead of (1), we can construct a neighborhood o f / disjoint from 
X'm a similar way. Therefore, A^s closed and we have proved Proposition 
4.2 (and Theorem 4.1). 

(For a proof of the compactness of (XA, &~0) without using Tychonoff's 
Theorem, see C. Saliba's thesis [27].) 

In the case of fields, since T fi — T = {0} for any ordering T, we have 

" o ( a ) n x = \x if« = o. 

Therefore, in this case, the Harrison topology and the Tychonoff topology 
on XA are the same, and the basic sets displayed above are clopen 
(closed and open). This implies 

COROLLARY 4.3. If A is a field,~the-real spectrum XA is a Boolean space. 
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Next we prove a result which characterizes the inclusion of one ordering 
in another in terms of the topology of the real spectrum: 

PROPOSITION 4.4. Let T, T be orderings on A. Then T c TifT'e{T}. 
(By {T}9 we mean the closure of the singleton set {T} in (XA, &~).) 

PROOF. First suppose T a T'. We claim that any neighborhood H of 
T' contains T It suffices to consider a neighborhood of the type H := 
H(al9 . . . , an). Since T e H, we have al9 ..., a„<£ —T'\ but then al9 . . . , 
an $ -T, and hence TeH. 

Conversely, assume that T <£ T. Fix an element a e T\T'. Clearly, 
H( — a)is a neighborhood of T' which does not contain T Hence T' £ {T}. 

From the viewpoint of algebraic geometry, if T' e {T}9 it is reasonable 
to say that T' is a "specialization" of T(and that Tis a "generalization" 
of T'). According to 4.4, the specializations of a given ordering T are 
simply the various orderings containing T. In particular, we have 

COROLLARY 4.5. The maximal orderings on A are precisely the closed 
points in the real spectrum XA. (In the following, the subspace of closed 
points in XA will be denoted by X%) 

To better understand the topological structure of X% we need the 
following lemma. 

LEMMA 4.6. For 7\, T2 e XA, the following three statements are equivalent: 
(1) 7\ £ T2andT2 <£ Tx\ 
(2) There exists an a e A such that 7\ e H(a) and T2£ H( — a); 
(3) There exist two disjoint open sets Vl9 V2 such that 7\ e V1 and T2 e V2. 

PROOF. (2) => (3) is trivial since H(a) f] H(-a) = 0 . (3) => (1) follows 
from (4.4). (1) => (2) Let x G 7\\r2 and y e T2\TV Consider the element 
a := x — y. If —aeTl9 adding xeTi yields y e Tl9 a contradiction. 
Therefore, a$ -Tl9 i.e., Txe H(a). Similarly, if a e T2, adding y e T2 

yields x e T2, a contradiction. Therefore, a $ T2, i.e., T2 e H( — a). 
From the Lemma above, we can deduce several important Propositions. 

PROPOSITION 4.7. (L. Bröcker [6]) For any semireal ring A, X^ is a 
compact Hausdorff space. 

PROOF. Applying the Lemma to two distinct points in X% we see that 
X% is Hausdorff. To show that, jßf is compact, consider a covering <F of 
XA by open sets of XA. Consider any Te XA; let T be a maximal ordering 
containing T Then T is contained in an open set Ve^. Since T e {f} 
by 4.4, V must also contain T Therefore the family & actually covers 
the whole space. The compactness of X% now follows from the compact­
ness of XA. 
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PROPOSITION 4.8. Let TeXA, Then the set of orderings containing T 
forms a chain under inclusion. In particular, there is a unique maximal 
ordering T' containing T. 

PROOF. Suppose T c Tt (i = 1, 2). If 7\ <£ T2 and T2 <£ Tl9 then by 
4.6 there exist disjoint open sets V{ such that T{ e V{ (i = 1,2). But since 
T{ e {T}, we must have T e Vi fi 2̂» a contradiction. 

In view of the second conclusion in the Proposition above, there is a 
retraction map X from XA to X'ß defined by X(T) = T' (in the notation of 
4.8). It turns out that this map X is continuous. To prove its continuity, 
we shall need the following "regularity" lemma [6]. 

LEMMA 4.9. Let Te XA
l and let Che a closed set of XA not containing T. 

Then there exist disjoint open sets Vi, V2 <= XA such that T e Vx and 
C cz V2. In fact, Vi and V2 can be chosen such that Vi = H(ai, . . . , an) 
and V2 = H( — ai) [J • • • U H( — an)for suitable a{e A. 

PROOF. We essentially repeat here the usual proof that 'compact Haus-
dorff => 'regular'. For any Se C, we have clearly S <£ T and T <t S. 
Therefore, by 4.6, there exists an as e A such that TeH(as) and Se 
H( — as). The H( — asys cover C, and the closed set C c XA is compact. 
Passing to a finite subcover, we have C c H( — ai) (J • • • (J H( — an) and 
T e H(ai) fi • • • H H(an) for suitable at e A. 

We now state the following result which was pointed out by N. Sch­
wartz. 

PROPOSITION 4.10. [28] The map X: XA •+* X% is continuous. The topology 
on X"% is just the quotient topology of (XA, <?~) with respect to À. 

PROOF. Let X(S) = T To prove the continuity of I at S, let U be an 
open set of XA containing T, and let C = XA\U. By the Lemma above, 
there exist disjoint open sets Vx, V2 such that Te Vi and C c V2. Since 
Te {S}, we have Se Vv We claim that 1(V^) a U (this clearly implies 
the continuity of ^ ) J n fact, let S' e Vx. If T := ACS') £ U, then f e C c 
V2. But since T e {S'} we have S' e V2, contradicting the fact that Vl9 V2 

are disjoint. 
To prove the second conclusion of the Proposition, it suffices to show 

that a set B is closed in X^ if and only if À'^B) is closed in XA. The 'only 
if part is just the continuity of X. For the 'if part, assume Xr^B) is_ 
closed in XA. Then it is compact, and so l(}rl{B)) = B is also compact, 
by continuity. But X% is Hausdorff, so B must be closed. 

I want to thank J. Merzel and A. Prestel for their valuable help on the 
writing of the above results on X% 

For any Te XA, we know that the support of Tis a prime ideal. There-
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fore, we can define a map a : XA-* Spec A ( = Zariski spectrum of A) 
by taking a(T) = supp(r). The image of G is precisely the set of all real 
primes in Spec A. Not surprisingly, we have 

PROPOSITION 4.11. The map a: XA -* Spec A is continuous (with respect 
to the Harrison topology on XA and the Zariski topology on Spec A). For 
any real prime ideal p c A, the fiber over p with respect to a is homeo-
morphic to the real spectrum of qf(A/p). 

PROOF. Consider a basic open set D(a) •= {p e Spec A: a$p). We 
need to show that a~l(D(a)) = {Te XA: a<£ supp(r)} is open in XA. But 
by 4.0, this set is H(a) (J H( — a), which is of course open. This proves 
the first statement in the Proposition; the second statement is (essentially) 
obvious. 

Because of 4.11 we would expect that the nature of the Zariski topology 
on Spec A should have a certain influence on the nature of the topology 3T 
on the real spectrum XA. One of the main features of Spec A is that any 
(nonempty) irreducible closed set in Spec A has a generic point. In the 
following result, we shall prove that the same property holds for the real 
spectrum. 

PROPOSITION 4.12. Let C be a closed set in XA. Then C is irreducible 
(i.e., not a union of two proper closed sets of C) if and only if C — {T} 
for some Te XA. (In view of4.4, such a Tis unique if it exists', it is called 
the generic point of the irreducible closed set C.) 

PROOF. First assume that C has the form {T}, for some ordering T. 
If C = Q U C2 where Q , C2 are closed sets, then we must have T eC± 
or Te C2. But then {T} is contained in either Q or C2, so C = C\ or C2. 
This shows that C is irreducible. 

For the proof of the converse, we proceed along the same lines as in 
the case of the Zariski prime spectrum. In that case, if C0 is an irreducible 
closed set in Spec A, one intersects the prime ideals in C0 to obtain an 
ideal p; the irreducibility of C0 implies that p is prime, from which it 
follows that p is a generic point of C0. Now let C be an irreducible closed 
set in XA\ let T be the intersection of all the orderings in C. We make 
the following three claims: 

(1) Tis an ordering on A. 
(2) T lies in C. 
(3) C = {T}. 

Here, (1) is the crucial claim, so let us first assume it. To prove (2), it 
suffices to show that any neighborhood H(a^ . . . ,«„) of T contains a 
point of C. Since -a{ $ Tfor each /, there exist orderings Tl9 . . . , TneC 
such that - a , .£ T{ for 1 ^ / ^ n. By 4.6, the orderings Tl9 ..., Tn 
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containing T must form a chain under inclusion. Say 7\ is the smallest 
one among them. Then -a{ <£ Tx for all /, and we have 7\ e Hfa, . . . , an), 
as desired. This shows that Te C, and hence {T} a C. But by (4.4), each 
ordering in C belongs to {T}9 so {T} = C. 

It now only remains to prove the claim (1). Since Tis clearly a preorder-
ing, we need only check that T has the property that a-be —T implies 
ae Torbe T(cL Theorem 3.2). Assume that a- b e — T. It is easy to check 
that C = (C\H(-a)) U (C\H(-b)). For, if P e C belongs to both H(-a) 
and H(-b), then a <£ P, b <£ P, but ab e - T a -P, contradictory to the 
fact that P is an ordering. By the irreducibility of C, we must have, say 
C = C\H( — a)9 i.e., a e P for every PeC. But then a e T, as desired. 

If we think of XA as the real analogue of Spec A, then we should think 
of X1^ as the real analogue of the maximal ideal spectrum max A. However, 
X% is always Hausdorff but max A is not; the fact that any point in XA 

has a unique specialization in X*% is also peculiar to the real spectrum. 
To get the latter property in the setting of Spec A and max A, one would 
need to impose a very strong condition on the ring A: by definition, A 
is called a p — m ring (cf. [13]) if every prime ideal p in A is contained 
in a unique maximal ideal 9JÎ of A. For such a ring A, de Marco and 
Orsalli have shown that the retraction Spec A •+* max A sending p to 9JÎ 
is continuous (see also [29]). In some sense, this result is a precursor of 
Proposition 4.10 on the continuity of the retraction X\ XA •++ X% 

We shall now close this section with a brief discussion of the "con­
structible subsets" of the real spectrum. For any semireal ring A, let <g(A) 
be the family of subsets of XA which can be obtained from the subbasic 
Harrison sets {H(a)} by using (a finite number of) boolean operations. 
(By boolean operations we mean the procedures of forming finite unions 
and intersections, and taking complements in XA.) 

DEFINITION 4.13. Sets in the family ^(A) are called the constructible 
subsets of XA. 

Recall that, earlier in the section, we have identified XA with a certain 
subset Z i n the function space {0, \}A. The product topology on {0, \}A 

induces the Tychonoff topology &~0 on X = XA which is in general finer 
than the Harrison topology <F on the real spectrum. Since XA is closed 
in {0, 1}^, (XA, &~0) is a Boolean space, i.e., it is compact, Hausdorff and 
totally disconnected. We have the following fact which was observed by 
van den Dries and Coste and Coste-Roy. 

PROPOSITION 4.14. The constructible sets in XA are precisely the clopen 
{closed and open) sets in the Tychonoff topology 3T§. 

(Note the following two immediate consequences of the Proposition : 
(1) the constructible sets are compact with respect to both <F and ^0; 
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(2) any cover of a constructible set by other constructible sets has a finite 
subcover.) 

PROOF. Recall that a basis for the topology on {0, \}A is given by the 
clopen sets H£hf£r(al9 . . . , ar) defined earlier in this section. Since 
H(ax, . . . , ar) = Hi,... ,i(ai, . . . , ar) f] XA, the Harrison sets H(ai, . . . , ar) 
are clopen in 3T^ and hence the same holds for any set in <g(A). Conversely, 
consider any clopen set C in (XA, &~0). Let U be an open set of {0, \}A 

such that U fl XA = C.Then U is a union of sets of the form//£]>_)£r(ßi, 
. . . , ar). Since C is closed and hence compact in {0, \}A, it is a finite union 
of sets of the form 

H£h...,£r(ai> • • •> *r) H XA = H (#„(*,-) n XA\ 

so it suffices to show that each H£(a) fl XA is constructible. This is clear 
since Hi(a) f] XA = / / (A) and i/0(fl) fl ^ = XA\H(a). 

The argument used in the proof above showed a little bit more : 

COROLLARY 4.15. Every constructible set in XA is a finite union of sets of 
the form Hi f| • • • {] Hr where each Ht is of the form H{d) or H'(a) ••= 
XA\H(a). 

(This can also be proved directly by noting that finite unions of sets of 
the form Hi f] • • • fi Hr are closed with respect to boolean operations.) 

In the study of affine varieties V over a real closed field, the constructible 
sets of the real spectrum of the coordinate ring of V are intimately related 
to the semialgebraic subsets of the variety V. This relationship will be 
explained in §8 below. For a deeper study of the real spectrum and its 
applications to real algebraic geometry, we refer the reader to [11] and the 
literature cited therein. (See also Knebusch's article "An invitation to real 
spectra" in the Proceedings of the Hamilton Conference on Quadratic 
Forms.) 

5. Artin-Lang theory for affine algebras. (This and the next section can 
be read essentially without assuming the material in §3 and §4. In fact 
(except in 5.5 (C)), we shall use only the notion of orderings for fields, and 
not for rings. We have arranged the exposition in this way so as to preserve 
the classical flavor of the material to be covered here and in §6.) 

By an affine algebra, we mean a finitely generated commutative algebra 
over a field k. Such an algebra is a homomorphic image of a polynomial 
ring k[xi, . . . , xn]9 and conversely. Affine algebras are important in al­
gebraic geometry because they arise as coordinate rings of affine varieties. 
For a /zaffine domain A, the field of quotients F is a function field (i.e., a 
finitely generated extension) over k9 so the transcendence degree of K over 
k is finite. This transcendence degree is denoted by \x.dk K, or bytr. dk A. 
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Affine algebras are, in many ways, special objects in the category of 
commutative rings. For these algebras we can usually get much more 
information than we can hope to get for arbitrary commutative rings. 
In the development of real algebra, this is especially the case. In this sec­
tion, we shall develop the Artin-Lang Theory [1], [23] for affine algebras 
and their associated function fields which will provide the basis for the 
applications to real algebraic geometry in the later sections. To simplify 
the exposition, we shall always work over a real closed ground field k, 
The case when k is an arbitrary ordered field can usually be treated by 
passing to the real closure of k, and therefore presents no additional 
difficulties. 

In Lang's paper [23], the principal results about affine algebras and 
function fields are derived by using Sturm's Theorem on the number of 
real roots of a real polynomial. In this section, we shall present a slightly 
different treatment: instead of using Sturm's Theorem, we shall use the 
following result about the behavior of orderings under a finite algebraic 
extension. 

THEOREM 5.1. Let KjF be a finite {algebraic) extension of formally real 
fields, and let SK/F'- %K ~* %F be defined by the restriction of orderings from 
K to F. Then the image of eK/F is open in XF. 

(Incidentally, since XK is compact and XF is Hausdorff, \m{eK/F) is a 
closed set in XF. However, the fact that it is also open is deeper and more 
interesting.) 

Actually, a much more general result is true. In [17], it is proved that, 
for any finitely generated extension KjF of formally real fields, the map 
eK/F is, in fact, an open mapping. To derive Lang's results, however, it is 
enough to assume only a very special case of this Open Mapping Theorem, 
as stated in 5.1. In the following, we shall show in detail how to derive 
Lang's Existence of Rational Place Theorem and Lang's Homomorphism 
Theorem from 5.1. Then we return at the end of the section to give a 
proof of 5.1. Our exposition here follows the suggestions of J. Merzel. 

Let (K, P) be an ordered field and k c= A^any subfield. The archimedean 
hull of k in (K, P) is defined to be 

A(k, P) = {a e K: \a\P < b for some b e k}. 
p 

Here, the absolute value of a with respect to P is defined in the usual 
way. It is easy to see that A(k, P) is a valuation ring in K, and that the 
image of P f| A(k, P)in the residue field K of A(k, P) is an ordering on K. 

Using the notion of the archimedean hull, we shall deduce the following 
consequence of 5.1. 

THEOREM 5.2. Let K be a real function field of transcendence degree 1 
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over a real closed field k, and let x e K be a given transcendental element 
over k. Then there exists an ordering P on K such that (x — <5)-1 $ A(k, P) 
for some ô e k. 

PROOF. Fix an ordering P0 on AT and let Q0 be its restriction to F •= k(x). 
By 5.1, there exists an open neighborhood H(f(x), . . -,fn(x)) of Q0 which 
lies in the image of eK/F. We may assume thatf(x) e &M\{0}» and, after 
dropping from it a factor which is a sum of two squares in k[x], we may 
assume that each f(x) is a product of distinct linear factors. For any 
ordering Q on k(x), we can define sets 

MQ) = {aek:f(a) = 09a<x} 

Bt<Q)={bek:ftf>) = 0,x<b}. 

Clearly, these sets will completely determine the "sign" of f with respect 
to the ordering Q. In particular, if an ordering Q on k(x) is such that 
MQ) = MQo) for all i, then we have/;- e QQ =>f e g , and so g e H(fx(x\ 
•. • ,fn(x))- I n particular, g can be lifted to an ordering on K. 

Let a = max^xCÔo) U • • * U An(Q0)) and b = m i n ^ ß o ) U • • • 
U ^»(8o))> formed with respect to the unique ordering on k. (If the first 
union is empty, we let a = — oo and if the second union is empty, we let b = 
+ 00.) Since a < x < b in g0, we have a < b in k. Let d^k be any element 
between a and b (for instance, ö = (a + b)/2). Let Q be an ordering on 
k(x) in which x is "infinitely close" to d (i.e., \x — d\Q < s for any positive 
e e k) (In the case ö = 0, we have constructed such an ordering in the 
examples given after 3.9. If ö ^ 0, we simply view x — ô as the new 
transcendental element and use the previous construction on k(x — <5).) 
Then clearly A{{Q) = A^QQ) for all /, and, by what we said in the last 
paragraph, Q can be lifted to an ordering P on K. Clearly, this is the 
ordering we want. 

SUPPLEMENT TO 5.2. Let P be as above. Then x e A(k, P) and K (the re­
sidue field of A(k, P) is equal to k. 

PROOF. Since x — ô lies in the maximal ideal of A(k, P), we clearly have 
x e A(k9 P). For the second conclusion, note that K is ordered by the 
image of P f] A(k, P). If we can show that K/k is algebraic, then we will 
have K = k since k is real closed. Assume that K/k is not algebraic. Let 
y e A(k, P) be such that y is transcendental over k. Then, since x = ö9 

it is easy to see that x, y must be algebraically independent over k, a 
contradiction to the fact that tr.â^ K = 1. 

Before we go on, let us make a simple observation about residually real 
valuation rings. 
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LEMMA 5.3. Let A be a residually real valuation ring in a field K, and 
let «!, ...,aneK.IfJ^a2eA, then each a{ e A. 

PROOF. Without loss of generality, we may assume that ajai e A for all 
i. Then a\{\ + (a2/ai)2 + • • • + (ajax)2) e A. Here, the expression in 
parentheses must be a unit in A, for otherwise — 1 would be a sum of 
squares in the residue field. Therefore, ax e A, and so all at e A. 

We now come to the principal result of this section. 

THEOREM 5.4. (Lang's Existence of Rational Place Theorem) Let K be 
a real function field over a real closed field k, and let ax, . . . , ane K. Then 
there exists a k-place cp:K -+ k [} {oo} such that (p(a{) is finite for all i. 

PROOF. Let d = tr.dk K. First assume d = 0. In this case K is a finite 
algebraic extension of k. Since K is real, we must have K = fc, so the 
theorem is a tautology. 

Next assume d = 1. Let x = Jja^eK. First assume that x is trans­
cendental over k. Take the ordering P on K constructed in 5.2, and let 
<p be the place associated with the valuation ring A(k, P). By the Supple­
ment to 5.2, we have <p: K-+ k \J {oo} and <p(x) ^ oo. By 5.3, we have 
(p(at) 7

e oo for all / so <p is the place we want. If x happens to be algebraic 
over k, then since k(x) is real we must have xek. In this case, find a 
fc-place (p\ K-±k (J {oo} by using any transcendental x'. Since <p(x) is 
automatically finite, we have again <p{at) ^ oo by 5.3. 

Finally, we treat the general case d ^ 1 by induction on d. Fix a real 
closure K of K with respect to some ordering on K. Choose a ^-function 
field L cz K such that \x.dLK = 1, and let L be the algebraic closure of 
L in K. Then L is real closed and K • L is a function field over L of 
transcendence degree 1. By the d = 1 case already verified above, there 
exists an L-place A: K • L -* L U {oo} which is finite on all a{. Let Â ' 
be the residue field of X\K. Clearly K' is a function field of transcendence 
degree d — 1 over k. Also, K' is real since TT c L. By the inductive 
hypothesis, K' has a A>place ^ into /: U {oo} which is finite on all I(a{). 
Therefore we are done by taking the composition of places <p ••= ^ o (X\K). 

REMARK. Of course the converse of 5.4 is also true, i.e., if K is any field 
admitting a place into k, then K is formally real. This follows from 2.7. 

COROLLARY 5.5. (Lang's Homomorphism Theorem) Let A be any real 
affine domain over a real closed field k. Then there exists a k-algebra ho­
momorphism from A to k. 

PROOF. Let A = k[ax, ..., an] and K = qf(^4). Let <p: K -> k [) {oo} be 
a A:-place such that (p(at) ^ oo for all /. Then <p\A gives the desired k-
homomorphism from A to k. 



792 T. Y. LAM 

For later applications, it is useful to note the following Supplements 
(A), (B) and (C) to 5.5 which are self-strengthened versions of Lang's 
Homomorphism Theorem. (In all three Supplements, k denotes a real 
closed field, as in 5.5.) 

COROLLARY 5.5(^4). Let A be a real affine k-domain, and f(\ ^ i ^ n) 
be given nonzero elements in A. Then there exists a k-algebra homomorphism 
<p from A to k such that <p(f) ̂  0 for all i. 

PROOF. This follows by applying 5.5 to the (real) affine domain A[l/f • • • 

/ j -
COROLLARY 5.5(B). Let A be any semireal k-affine algebra (not neces­

sarily a domain). Then there exists a k-algebra homomorphism from A to k. 

PROOF. By 2.3, A admits a real prime p. The Corollary then follows by 
applying 5.5 to the (real) affine domain A/p. (Note, however, that we 
cannot get the same conclusion as in 5.5(̂ 4) here. For instance, for the 
semireal algebra A = k[xi, . . . , xn]/(]£x% clearly any homomorphism 
from A to k must send the x/s to zero.) 

COROLLARY 5.5(C). Let A be any k-affine algebra andf, gj (1 <; i ^ m, 
1 ^ j <̂  n) be given elements in A. If there exists an ordering T on A such 
that fi>TQ and gj ^ T 0 for all /, j , then there exists a k-algebra homo­
morphism <p: A -* k such that p(f) > 0 and <p(gj) ^ 0 (in the unique order­
ing of k) for all i J. 

PROOF. Let p be the support of T. After replacing A by A/p we may 
assume that p = 0. Then T extends uniquely to an ordering P on K = 
qf(A) with/; e P\{0} and gj e P for all i,j. The Corollary now follows by 
applying 5.5 J o the (real) affine algebra A[]/f ... fm, V7ï> • • •> V7m' 
Vgv • • • ' VgJ *n trie rea* c l ° s u r e of (K, P). 

In Lang's paper [23] there is another main result concerning the imbed­
ding of real function fields K over k into a prescribed real closed field 
R => k with tr .d kR ^ tr.dkK. This is known as Lang's Imbedding 
Theorem. For technical convenience, we shall postpone the derivation of 
this result to §6. This will complete our exposition of the Artin-Lang 
Theory for real function fields. 

To conclude this section, we shall now give the proof of Theorem 5.1. 
This will be deduced from the following result, which goes back to J. J. 
Sylvester and was rediscovered by Olga Taussky [31]. 

THEOREM 5.6. Let (F, P) be an ordered field, and R be its real closure. 
Let f(t) be a nonconstant separable polynomial over F, and let K = 
F[t]l(f(t)). Then the number of (distinct) roots of f in R is given by the 
P-signature of the trace form on K. 



INTRODUCTION TO REAL ALGEBRA 793 

(The trace form on K is defined by Tf(x, y) = trK/F{xy). This is a sym­
metric bilinear form over F; as usual, we can think of it as an F-quadratic 
form. Its P-signature means the Sylvester signature with respect to the 
ordering P.) 

PROOF(of 5.6). Let us compute sgnP Tf by looking at the form(Tf)R which 
is the trace form of the P-algebra R ® F K. L e t / = g1 • • • grhi • • • hs be 
the square-free factorization of / into irreducible factors in R[t], where 
deg g{ = 1 and deg hj = 2. By the Chinese Remainder Theorem, we have 

^ F ^ n » ) x TiRimhj) 
£ R x . -• x R x R x . . . x R 

where R = JR(y^T). Here, different factors have product equal to zero 
so they are orthogonal under the trace form. On the factor R, the trace 
form is <1>, but on a factor R, the trace form has matrix (§ _§) so it is a 
hyperbolic plane. With respect to the unique ordering on R, the signature 
of the trace form on R ® F K is therefore equal to r, the number of roots 
o f / i n P. 

COROLLARY 5.7. Lef (F, P) è^ ẑ« ordered field, with real closure R. Let 
K = F[t]/(f(t)) be a finite algebraic field extension of F and let Tf be its 
trace form. Then P e im(eÄ:/F) // and only if sgnP Tf > 0. 

PROOF. We simply note that 

P G \m{eK/F) o 3 an F-imbedding of K into R 

o / h a s a root in R 

o sgnP Tf > 0. 
(5.6) 

Now the set of orderings P on F with respect to which Tf has signature 
> 0 is easily seen to be an open set in XF. Therefore, by 5.7, im(e#/F) is 
open. This proves 5.1. 

6. Hilbert's 17th Problem and the Real Nullstellensatz. (See the initial 
remark in §5.) In this section, we shall show how the Artin-Lang Theory 
developed in the last section can be used to lay part of the foundations 
for the subject of real algebraic geometry (i.e., the study of real algebraic 
varieties). We shall first apply Lang's Homomorphism Theorem to give, 
à la Artin, an affirmative answer to Hilbert's 17th Problem (in the case 
of a real closed ground field). We then go on to prove the Dubois-Risler 
Real Nullstellensatz for affine algebras defined over a real closed field. In 
the study of real affine varieties, this fundamental result plays the same 
role as that played by Hilbert's classical Nullstellensatz in studying affine 
varieties over algebraically closed fields. As applications of the Real 
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Nullstellensatz, we shall give the geometric criteria for an affine algebra 
to be semireal, and respectively, real; see 6.2, 6.10. 

Again, because of the modest nature of these notes, our exposition will 
only barely touch the surface of the fast growing subject of real algebraic 
geometry. It is hoped, nevertheless, that this exposition will give the 
reader a picture of the beginning steps in the development of the founda­
tions of this subject. For a more thorough treatment, we refer our readers 
to [15] and [8]. 

We begin by recalling the famous 17th Problem of Hilbert. To simplify 
the presentation, we shall consider this problem only over real closed 
coefficient fields. (The generalization to arbitrary ordered fields is relatively 
straightforward.) Therefore, throughout this section, k shall denote a real 
closed field. 

Let / be a polynomial over k in n variables x = (xi, . . . , xn). We say 
that / i s positive semidefinite if f(kn) ^ 0 in the unique ordering of k. 
It was known to Hilbert that, i f / i s positive semidefinite, it need not be a 
sum of squares in k[x] = k[xÌ9 . . . , xn]. (It is easy to show that the 
Motzkin po lynomia l /^ , x2) — X-^X2 ~h X1X2 — 5x-[X2 ~r 1 gives such an 
example.) In view of this, Hilbert asked, as (part of) his 17th Problem, 
the following: if fe k[x] = k[xÌ9 ..., xn] is positive semidefinite, must it 
be a sum of squares in the rational function field k(x) = fc(jcl9 . . . , xw)? 
The affirmative solution to this Problem was given by Artin in 1927, i.e., 

THEOREM 6.1. Iffz k[x] is positive semidefinite, then fis a sum of squares 
in k(x). 

The following is a modern version of Artin's proof. 

PROOF (of 6.1). Assume that/<£ £ F 2 , where F = k(x). By Artin's Criterion 
for sums of squares in a field, we know that there exists an ordering P c F 
such t h a t / <p 0. Then — / >P 0, so by Lang's Homomorphism Theorem 
5.5(C), there exists a fc-algebra homomorphism cp: k[x] -• k such that 
<p(—f) > 0. Letting a{ = (p(x{) e k, we have 

f(au . . . , « „ ) = /(p(*i), . . . , <p(xn)) = <p(f(xh . . . , xn)) < 0, 

a contradiction. 

Our next goal is to try to formulate the Real Nullstellensatz. Consider 
a polynomial ideal % c k[x] = k[xl9 . . . , xn]. We shall write V(A) for 
the algebraic set defined by 2( over the algebraic closure k(^/~^J) of k, 
and write Vk(W) = V{%) f] kn for the set of "real points" in F(9l). The 
affine algebra A = A:[x]/3( is called the ^-coordinate ring of Vk($L). The 
following result, known as the Weak Real Nullstellensatz, gives the 
geometric condition for A to be semireal. 
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THEOREM 6.2. A is semireal if and only if Vk($i) ̂  0 , i.e., if and only if 
V(yi) has at least one k-point. 

PROOF. If a = (al9 . . . , an) is a fc-point, then evaluation at a gives a 
fc-homomorphism from A to k. This implies that A is semireal, proving 
the "if" part. The "only if" part is just a reformulation of Lang's Homo-
morphism Theorem, i.e., if A is semireal, there exists a A:-algebra homo-
morphism cp: A -+ k, by 5.5(5). Setting a{ = <p{xt), a = (ax, . . . , an) is 
clearly a real point for 8(. 

Note that the set Vk($t) of real points is in one-one correspondence with 
the set of maximal ideals of A which are real. Thus, in essence, the Weak 
Real Nullstellensatz says that, in Theorem 2.3, we can add the condition 
(5') to the list of equivalent conditions for A to be semireal, in the case 
when A is a fc-affine algebra. 

For any subset S of kn, let I(S) denote the ideal of polynomials/ e k[x] 
such that f(S) = 0. With this notation, we can now state the Real Null-
stellensatz in the prime case. 

THEOREM 6.3. Let p be a prime ideal in k[x], Then I(Vk(p)) = p if 
and only if p is real. 

PROOF. If p is not real, there will exist/f + • • • + / ^ e p, with each 
/ , t p. But clearly/;- e I(Vk{p)\ so I(Vk(p)) g p. 

Conversely, assume p is real. We want to prove that f£pf£ I(Vk(p)). 
Consider the affine algebra A = k[x]/p. Since this is a real domain in 
which / 7e 0, Lang's Homomorphism Theorem 5.5(A) gives a A>algebra 
homomorphism cp: A -> k such that cp(f) ^ 0. If a{ = (p(xt), we have 
(ah ...,an)e Vk(p) and f(au . . . ,«„) # 0, so f$ I(Vk(p)\ as desired. 

In order to formulate the more general version of the Real Nullstellen-
satz, we need to develop the notion of the real radical of an ideal. For 
this, we do not have to restrict ourselves to affine algebras. Therefore, in 
the next few paragraphs, A will stand for any commutative ring. 

DEFINITION 6.4. Let 2t be any ideal in A. We define the real radical of 
2( to be 

r-rad Sf = {a e A : 3m ^ 0 and a e £ 4 2 such that a2m + a e 81}. 

Observe that, if 2f is a real ideal, then r-rad 8( = 21. In fact, if a2m + a e 9( 
as above, then am e 2(, but since A\% is reduced, we have a e 8(. 

Recall that the usual radical of an ideal in a commutative ring is equal 
to the intersection of all the prime ideals containing it. Let us now prove 
that this fact has a nice analogue for the real radical : 

THEOREM 6.5. Let % be any ideal in A. Then r-rad % is equal to the 
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intersection 3( of the real primes containing 3(, and is the smallest real ideal 
containing 3(. 

PROOF. Let 33 be any real ideal containing S(. Then r-rad 3( c r-rad 23 
= S3. In particular, r-rad 2( a 81. Next, we shall show that 

(6.6) a <£ r-rad 3( => 3 a real prime p => 3( such that a £ p. 

This will show that /--rad 3( = 31. Since Sf is clearly real, this will also 
show that r-rad S( is the smallest real ideal containing 3(. 

To prove (6.6), consider the localization A' = A[a~l] and let (S() = Af *% 
be the ideal generated by S( in A'. We claim that this ideal is semireal. In 
fact, if otherwise, we would have an equation (bijan)2 + • • • + (br/a

n)2 + 
1 = cjan e A\ where b{ e A, c e 8 , and n is a sufficiently large integer. 
Pulling back this equation to A, we have, for some integer s, a2s(b\ + 
• • • + b2 + fl2w) = a2s-anc in ^4. Since a2s+nc e SI, this implies that a e 

r-rad A, a contradiction. Therefore (S() is semireal. By 2.3 there exists a 
real prime p' in A' containing (20- The preimage p of p' under the 
localization map is a real prime in A containing SI. Since a\\ is a unit in 
A\ we have a/1 £ p'. Hence a £ p so p is what we looked for in 6.6. 

Another, slightly different, argument to prove 6.6 may be given as 
follows. Given a as in 6.6, let S be the set {a2m + a: m ^ 0, G G £ } , 
where 2 = ZM2- This is a multiplicative set of A satisfying S + £ c 5. 
Since a £ r-rad S(, S( is disjoint from S. By 1.2, (and Zorn's Lemma), we 
can enlarge S( to a real prime ^ disjoint from 5*. In particular, a $ p, as 
desired. 

We are now ready to prove the following Dubois-Risler Real Null-
stellensatz. 

THEOREM 6.7. ([14], [26], [15]) Let k be a real closed field, and S( be an 
ideal in A = k[xi, ..., xn]. Then I(Vk(W) = r-rad 8t. 

PROOF. The inclusion " ZD " is easy. For, if fe r-rad 3(, then f2m + g e S( 
for some ra ^ 0 and some g e J^A2. Then for any point a e Vk(ty),f2m(a) 4-
g(a) = 0ek implies /(«) = 0, so fe I(Vk(ît)). 

Conversely, let p be any real prime ZD S(. Then 

Vk(p) c vkw =* /(n(p)) =3 /(n(80). 
By 6.3, this implies that p =) 7(K^(3()), and therefore, by 6.5, we get 
r-rad ST => /(K*(8l)), as desired. 

If S( c &[#!, . . . , xw] is a semireal ideal, we know that Vk(%) is nonem­
pty, by the Weak Real Nullstellensatz. However, Vk(%) may be too small 
in general to reflect any of the geometric properties of V(W). The most 
extreme example is, of course, S( = (xf + • • • + x2): here, Vk(W) consists 
of the origin, which says nothing about the properties of the interesting 
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hypersurface K(20 over the algebraic closure of k. However, if 8( is not 
only semireal but real, then KÄ(St) turns out to be a "significant part" of 
F(S(). We now deduce the following consequence of the Real Nullstellen-
satz. 

COROLLARY 6.8. Let "übe a real ideal in k[x] = k[xl9 . . . , xn]. Then Vk(%) 
is Zariski dense in the algebraic set F(20. 

PROOF. Let k = k(i) (i = V^-T) b e the algebraic closure of k. Our job 
is to show that any polynomial fe k[x] vanishing on Vk($i) must also 
vanish on V(îQ. Write / = fx + if2 where fj e k[x\. Clearly, /(K*(8l)) = 0 
implies that the f/s also vanish on KÄ(80, so /ye/(K f t(80) = >*-rad ä. 
Since 2( is real, r-rad 2( = 9(. Therefore /} G 2( and s o / = fx + J/2 vanishes 
on V{%). 

REMARK 6.9. Suppose p is a real prime in k[x]. Then pk[x] is also a 
prime ideal in k[x], and hence V(p) is an irreducible affine variety over 
k. To see that pk[x] is prime, let (a + bi)(c + J/) e pk[x] where a, è, e, 
J e /c[x]. Then ac — bde p and ad + be e p. From these, we get easily 
ò(d2 + c 2 )ep and a(c2 + J2) e p. Suppose a + bi$ pic[x]. Then one 
of a, b is not in p and so c2 + d2e p. Since p is real, we have c, dep 
and so c + öf/ e pìc[x]. (In the literature, a set of the form Vk(p) discussed 
above is often called a real algebraic variety; by 6.8, this set is Zariski 
dense in the irreducible variety V(p) over tc.) 

Recall that the Weak Real Nullstellensatz 6.2 is a criterion for an 
affine algebra to be semireal. As our next goal, we shall try to establish 
a corresponding criterion for an affine algebra to be real. 

THEOREM 6.10. (The Simple Point Criterion) Let 9( be an ideal in k[x], 
and let pi, . . . , pm be the minimal primes above it. Then the affine algebra 
A = k[x]l$l is real if and only ifä is a radical ideal, and each V(pt) has a 
real simple point. 

PROOF. In view of 2.9, it is enough to treat the case when A is a prime, 
say 8( = p. First, assume V(p) has a real simple point a. Let 3JI be the 
maximal ideal of A corresponding to a. Then Am is a regular local ring. 
Also, since A^/TIA^ ^ AjW = k, A is residually real. By 2.7, we see 
that Am is real, and therefore A is real. 

Conversely, assume A is real, i.e., p is a real prime. Then, by 6.9, V(p) 
is an irreducible algebraic variety. The set S of simple points in V(p) is 
the complement of the singular locus, which is a closed set of codimen-
sion ^ 1 in V(p). Therefore, S a V(p) is a nonempty Zariski open set. 
Since Kfc(p)js Zariski dense in F(p), we have S fi ^(p) ^ 0 -

In the next result, we shall try to give an interesting criterion for a 
principal ideal in a polynomial ring to be real. To state this criterion, we 
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need a definition: a polynomial f(x) e k[x] = k[xÌ9 ..., xn] is said to be 
indefinite if there exist points a, bekn such that f(a) < 0 < f(b) in the 
unique ordering of k. (In other words, / is neither positive semidefinite 
nor negative semidefinite.) The following result of Dubois and Efroymson 
[15] gives a criterion for the coordinate ring of a hypersurface to be real. 

THEOREM 6.11. (The Changing Sign Criterion) Let fe k[x] be a nonzero 
polynomial. Then f generates a real ideal if and only if f is a square-free 
product of irreducible indefinite polynomials. 

PROOF. It is possible to deduce this theorem as a consequence of the 
Simple Point Criterion. However, in the following, we shall give a proof 
of it without appealing to this Criterion. First, we note that, by 2.9, it is 
enough to prove the theorem in the case when/is an irreducible polyno­
mial. Assume tha t / i s not indefinite. After replacing/by —/if necessary, 
we may assume that / is positive semidefinite, so by 6.1 there exists a 
polynomial equation 

(6.12) ffif = n + • • • + / * 

where h ^ 0. Choose this equation such that the total degree of h is as 
small as possible. We claim that 

(6.13) The / ' s are not all divisible b y / 

If we can prove this, then, in k[x]/(f), we have / ? + • • • + f2
m = 0 but 

/ • are not all zero, so k[x]/(f) is not real. To prove our claim 6.13, assume, 
instead, that f{ = fg{ (1 ^ / ^ m) in k[x]. Then h2f = f2 £g?and so 
h = h0f for some h0. But then h\f = £gf, contradicting the "minimal" 
choice of the equation 6.12. 

Now assume that / is indefinite (and irreducible). To show that (/) 
is real, suppose g\ + • • • + g2

me ( /) , say J^g2
{ = fh. From this we clearly 

have Vk(f) a Vk(gt) for all /. The desired conclusion that each g{ e ( /) 
can be drawn from the following lemma. 

LEMMA 6.14. Let f be an irreducible indefinite polynomial, and g another 
polynomial such that Vk(f) a Vk(g). Then f divides g. 

PROOF. After a suitable change of coordinates, we may assume that 
f(a, bx) < 0 < f(a, b2) (in the unique ordering of k), where a e kn~l, and 
èi, b2 e k. Let R = k[xi, . . . , xn_x] and F = qf(R). View/and g as poly­
nomials in t = xn in the ring R[t] c F[t]. Assume t h a t / / g in R[t] ( = k[x\). 
We know that/remains irreducible inF[>] and f \ g also in F[t]. Since F[t] 
is a PID, there exists an equation/- cp + ^-7-= 1 where <p, 7-G F[t]. Write 
<P = <Po/h a n d 7- = y0/h, where <p0, jQ e R[t], and 0 ^ h e R. T h e n / - cp0 + 
g- 7-0 = h. Choose a neighborhood Kof a in kn~l such that/(F, bx) < 0 < 
f(V, b2). (We use the topology on kn~l arising from the interval topology 
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of k.) For any veV, /(v, bx) < 0 < /(v, 62) implies that/(v, ft,) = 0 for 
some bv between bx and b2, by the Intermediate Value Theorem. By the 
hypothesis on g, we also have g(v, bv) = 0. Therefore,/-p0 + g To = A 
implies that /*(v) = 0 and so h(xl9 . . . , xw_i) vanishes on a nonempty open 
set in kn~l. This forces h = 0, a contradiction. 

I f / i s irreducible and indefinite, it is also possible to show that k[x]/(f) 
is real by constructing an ordering on its quotient field, i.e., the function 
field of the hypersurface Vk{f). For the details, we refer the reader to 
[21, p. 82]. 

As an application of the Changing Sign Criterion, we shall deduce 
the following result of Lang which will complete our exposition of the 
Artin-Lang Theory in §5. 

THEOREM 6.15. {Lang's Imbedding Theorem) Let K be a real function field 
of transcedence degree d over a real closed field k. Let R be a real closed 
field containing k such that tr.dk R^d. Then there exists a k-imbedding of 
K into R. 

We shall give a proof of this result which is due to A. Prestel (see [17]). 
The proof will be preceded by an easy lemma. 

LEMMA 6.16. Let P be an ordering on a rational function field F(t). Then 
F(t)\F is dense with respect to the interval topology of F(t). 

PROOF. Consider an open interval (fif')P with respect to P, where/< Pf. 
We want to show that {ff')P contains a nonconstant. We may assume that 
( / + f')ß G F for otherwise we are done. After a translation, we may 
assume that ( / -f / ' ) /2 = 0, so it is enough to find a nonconstant h in 
any ( — g, g)P, where g e P. If g $ F, we can take h = g/2. If g e F, we may 
assume, without loss of generality, that t e P, so g~l 4- t >Pg~l. But 
then 0 <P(g~l 4- t)~l <P g so we can take h = (g - 1 + t)~l <£ F. 

PROOF (of 6.15). We shall use the notations in the statement of 6.15. Let 
Xi, ..., xd be a /^-transcendence base of Kjk and write K = k{x^ . . . , 
xd, a). Let f(z) be the minimal polynomial of a over k(xi, . . . , xd). We 
may assume t h a t / e k[xi, ..., xd, z] so K=qï(k[xi, . . . , xd,z]/(f)). Since 
AT is real, 6.11 implies that fis indefinite over k. As before, we may assume 
that f(ax, . . . , ad, b) < 0 < f(ax, ..., ad, b') for some a{, b, b' e k. (All 
inequalities will be with respect to the unique ordering P on the real closed 
field R.) Let tx e R be a transcendental element over k and consider k(t{) 
with the ordering Px = P [) k{t^). By the continuity of /wi th respect to 
the interval topology of P^ and by 6.16, we can find a yx 6 k(t{)\k such 
that f(yl9 a2, . . . , ad, b) < 0 < f(yÌ9 a2, . . ., ad, b'). Now let Lx be the 
algebraic closure of k(y{)in R and let r 2 e i ? b e a transcendental element 
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over L\. Applying the same argument to Li(t2)9 we can find a y2 e Li(t2)\ 
Lx such that f(yl9 y2, aS9 . . . , ad9 b) < 0 < f(yl9 y29 a3, . . . , ad9 V). Pro­
ceeding like this, we can find y{ e R (1 g / ^ d) such that 

(6.17) f(yl9 ...9yd9b)<0< f(yl9 ...9y2, V) 

where yl9 . . . , yd are algebraically independent over k. (The fact that 
tx.dk R ^ dis used to guarantee that we can carry out this construction to 
the very end.) Since R is real closed, 6.17 implies that f(yl9 . . . , yd9 ß) = 
0 for some ße R. Therefore we have a ^-isomorphism K ^ k(yl9 . . . , 
yd9 ß) c R by x,- i-> J,-, and a *-* ß. 

Note that the proof above used merely the "only if" part of 6.11, which 
follows easily from 6.1. On the other hand, 6.1 is a direct consequence of 
Lang's Homomorphism Theorem. Therefore, the Imbedding Theorem 
is independent of the main body of this section (the Real Nullstellensatz, 
etc.), and could very well have been given in §5. The reason we have not 
done the Changing Sign Criterion earlier is that we want to have it in this 
section in parallel with the Simple Point Criterion 6.10. 

7. Abstract "Stellensätze" for the real spectrum. In the last section we 
have presented Artin's solution of Hubert's 17th Problem and theDubois-
Risler Real Nullstellensatz. These are results about polynomial functions 
on the real euclidean space kn and their real subvarieties, where k is a real-
closed field. In this section, we shall show that it is possible to take a more 
abstract viewpoint by passing over the real varieties and working directly 
with certain subsets of the real spectrum of a ring A. (The idea here is 
similar to the one in algebraic geometry whereby one works with affine 
schemes instead of affine varieties.) Since it is meaningful to talk about 
the sign behavior and the vanishing of elements of A on subsets Q in the 
real spectrum XA, we can try to give the criteria for a given element / e A 
to be positive, non-negative, or zero on Û. Such criteria may then be 
called, respectively, the (abstract) Positivstellensatz, Nichtnegativstel-
lensatz, and the (real) Nullstellensatz. In the next section, we shall show 
that these abstract "Stellensätze", when used in conjunction with Lang's 
Homomorphism Theorem, will give corresponding concrete theorems for 
polynomial functions which are positive, non-negative or zero on certain 
kinds of semialgebraic sets. These concrete versions, in particular, will 
subsume (and generalize) the solution of Hubert's 17th Problem and the 
Dubois-Risler Real Nullstellensatz. Our treatment in this section follows 
largely the suggestions of E. Becker and G. Brumfiel, and is closely 
modeled upon Brumfiel's lecture notes at the University of Hawaii in Fall, 
1982. For a similar treatment in the geometric case, see [10]. 

We shall begin by setting up some notations. Let A be a ring, L be a 
subset of A9 and Û be a subset of the real spectrum XA. We shall write 
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L >Q 0 (or L > 0 on Q) if, for any / e L and any P e Q, we have / >P 0 
(see (3.3)). Similarly, we can define L ^Q0 and L =o0. Given L c A, 
we also define the following three subsets of XA: 

ML) - { P e l , :L > 0} = f| H(')> 
P /(EL 

n n W(L) ~{PeXA:L^0} = {PsXA: LczP) = ^ \ (J # ( - / ) , 

\r-(L) - { P e l , : ! = 0} = { P e I , : L c supp(P)} 
p 

1 = #-(L) n ir(-L). 

Note that in case L is finite, these are all constructible subsets in XA\ 
moreover, °U(V) will be open. In any case, iT(L) and y (L) are both closed 
in XA. We also note the following: 

(1) °U(V) is unchanged if we replace L by the multiplicative set generated 
byL. 

(2) iT(L) is unchanged if we replace L by the semiring generated by L 
and A2. 

(3) i^(L) is unchanged if we replace L by the ideal in A generated by L. 
Therefore, in dealing with °U{V) (resp. ')F(L), i^(L)), there is no loss of 
generality in assuming that such replacements are made. In order to prove 
the various Stellensätze, it will be important for us to understand the 
relationship of the sets ^(L), W~(L) and i^(L) to the functorial behavior 
of the real tpectrum. We shall now describe this relationship below. 

(a) (Residue rings) Let /be an ideal in A and <p be the natural projection 
A -+ A/1. It is easy to check that the induced map <p* : XA/I -> XA is 
injective, and maps XA/I homeomorphically onto "T(I). We shall hence­
forth identify the former with the latter. 

(b) (Localization) Let S be a multiplicative set in A, and <p be the local­
ization map A -> As. Again, it is easy to check that ç* is injective, and 
maps XAs homeomorphically onto {P e XA: Vs e S, s ^ P 0 } . (Any order­
ing P in the latter set extends to an ordering Ps ••= {p/s2: p G P, S e S} 
in As.) Again, we shall identify XAs with its image in XA. This image is 
compact, and, in case S is finitely generated, it is also open. 

(c) (Square root adjunction) Let L c A and B be the ring obtained by 
adjoining formal square roots of all elements / e L to A ; in other words, 
B = A[x/: /eL]/({xj - / : /e L}). One can check that the map ^*: 
XB -> XA induced by cp: A -> B has image iT(L) = WA(L). Here, the 
inclusion im(p>*) c iTA(L) is easy since L a B2. The reverse inclusion 
requires some work; since we will not need this result, its proof will be 
left to the reader. 

To formulate the various abstract Stellensätze for the real spectrum, we 
shall fix the following notations : 
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[{/«}, {gß}, ( M : subsets of A, 

S = multiplicative set in A generated by {fa}, 

(7.2) IT = subsemiring of A generated by {fa, gß} and A2, 

I = ideal in A generated by {Ar}, 

io = *{/„} n ir{gß} n ^{*r} = v(s) n # w n m). 
Given an element / e A, we shall seek necessary and sufficient conditions 
for / to be positive (resp. non-negative, zero) on Q. We shall first write 
down certain conditions which are easily checked to be sufficient; the goal 
of the various Stellensätze will then be to prove that these conditions are 
also necessary. 

PROPOSITION 7.3. (1) / e A is positive on Q if there is a congruence 
t>/= s + t' (mod /) where t, t' e T and s e S. 

(2) / e A is non-negative on Û if there is a congruence t*/ = s*/2e 4- t' 
(mod /) where t, t' e T, s e S and e ^ 0 is an integer. 

(3) / e A is zero on Q if there is a congruence s*/2e + t = 0 (mod /) 
where t 6 T, s e S and e ^ 0 is an integer. 

PROOF. (1) For any PeO, we have s +1' > P 0 a n d / = P 0 , so f • / >P0. 
Since t ^ p 0, we must have / > P 0. 

(2) Let PeQ. I f / < F 0 , then s-/2e + t' > P 0 a n d so t-/>P0, a con­
tradiction. Therefore we must have / ^P 0. 

(3) Let PeO. Then s-/2e + / = P 0 . Since s >P0 and t ^P09 this 
clearly implies that / =P 0. 

We are now ready to state the three abstract Stellensätze. They provide 
the converse to (3) and strong converses to (1) and (2) in Proposition 7.3. 

THEOREM 7.4. (1) (Positivstellensatz) Let / > 0 on Û. Then there is a 
congruence (s + t)-/ = s + t' (mod / ) , where t, t' e T and se S. 

(2) (Nichtnegativstellensatz) Let / ^ 0 on Q. Then there is a congruence 
(s-/2e + t)-/ =s-/2e + t' (mod / ) , where t, t' e T, se S and e ^ 0 is 
an integer. 

(3) (Nullstellensatz) Let / = 0 on Q. Then there is a congruence s • /2e + t 
= 0 (mod /) , where t e T,se S and e ^ 0 is an integer. 

The proof of (1), (2) and (3) will be based on the following crucial lemma. 

LEMMA 7.5. Let / > 0 on iT(T), where Tis a subsemiring of A containing 
A2. Then there exists an equation (1 + ti)-/ = 1 -f t2 where tl9 t2 e T. 

PROOF. If — l e T, we can take ^ = t2 = — 1 ; therefore, we may as­
sume that — 1 $ T, i.e., T is a preordering. If the asserted equation does 
not exist, then by 3.4 (2), T + T-(-/) is also a preordering. Let P be an 
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ordering containing it. Then PeiV{T) but —/^PQ, a contradiction. 
Therefore, the asserted equation must exist. 

We now go back to the notation of 7.4 and give its proof in three parts. 

PROOF (of 7.4). (Positivstellensatz) Let B = AsjL As. As explained before, 
we can identify XB with the subspace i^{I) Ç] {Pe XA:Vse S, s ^ P 0 } . 
From this it is easy to see that 0 f| XB = WB(TB)9 where TB is the semiring 
{t/s2 + IAS: t e r , s e S} in B. Therefore / + LAS > 0 on 1VB(TB\ By 
the Lemma above (applied to B and TB), we have an equation (1 + 
tx). / = 1 + r 2 e 5 where fl5 r2 G Tß. Clearing denominators, we get a 
congruence of the type claimed in the Positivstellensatz. 

(Nichtnegativstellensatz) For B as above, let B' — B[/~l] and TB, = 
{tj/2n: te TB, n ^ 0}. As before, we can identify XB, with the subspace 
XB fi {P G ZA : / ^ P 0} in A^. We check easily that Ö fl A"ß, =iTB,(TB,), 
and so the hypothesis on / gives that / > 0 on iVBf(TBi). By 7.5 (applied to 
B' and TB,), we have an equation (1 + t[)-/= 1 + t'2eB\ where //, 
*2 e rß/. Clearing denominators, we get a congruence of the type claimed 
in the Nichtnegativstellensatz. 

(Nullstellensatz) By the hypothesis, we have both / ^ 0 and — / ^ 0 
on Q. Applying the Nichtnegativstellensatz, we have therefore two con­
gruences. 

tv/ = s--/2» + t2(mod I), tr(-/) = s'{-/)2™ + /4(mod / ) . 

Multiplying them together, we get a congruence 

s s'./2n+2m + j g + ^ 3 - / 2 = 0 (mod /), 

with 5̂ G T, as claimed in the Nullstellensatz. 

Let us now examine a few special cases of 7.4. Let / c A be an ideal, 
and Q = y ( / ) <=• XA. The set {/G A: / = 0 on 0} is precisely the inter­
section of all the real prime ideals containing /. By the Nullstellensatz, this 
can be characterized as {/G A: /2e + tel for some te J^A2}, i.e., the 
real radical of /. Thus, we get back the earlier result Theorem 6.5. 

For another illustration of 7.4, let T be a preordering in A. We would 
like to determine f9 the intersection of all the orderings containing T. 
In the classical case when A is a field, it is well-known that f = T, but 
if A is just a ring, this need not be the case. To determine f, let Û = H^{T). 
Then f is just {/G 4 : / ^ 0 on £?}. According to the Nichtnegativstellen­
satz, we get 

T = { / e 4 : / ' • / = /2« + r for some /, t' e T) 

- = { / G , 4 : / 2 * + I + t-/eT for some r e T}. 

This preordering is called the radical of T. In general, f may not be equal 
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to T. To give an example of this, take the preordering T{2) in the polynomi­
al ring A = R[x] constructed at the end of §3. Recall that T{2) consists of 
polynomials a0 + oc\X + • • • + arx

r where either CCQ = ai = 0, or 
a0 > 0, or aQ = 0 and cc\ > 0. Write T = T(2) and consider / = — x e A. 
We have / 3 e T, so / e f, sut /$ T. Therefore, T S f. As a matter of 
fact, there is precisely one ordering containing T, namely, 7"(1),so f = Ta\ 

COROLLARY 7.7. An element / e A lies in all the orderings of A if and 
only if / satisfies an equation /2e+l + a • / = G\ where a, a' e J^A2. 

PROOF. If A is semireal, this follows from the above by taking T = J^A2. 
If A is not semireal, we can write down an equation as in 7.7 by noting 
that / 2 '* 1 + (~\y2e • / = 0. 

8. Semialgebraic geometry: the beginning steps. The study of semialge-
braic sets in an euclidean space kn over an ordered field (k, P) is called 
Semialgebraic Geometry. Roughly speaking, a semialgebraic set is a set 
in kn which can be defined by finitely many polynomial equalities and 
inequalities. In this section, we shall give a short introduction to the study 
of these sets. In particular, we shall try to explain the relationship between 
semialgebraic sets and constructible sets in the real spectrum, from which 
we shall deduce various concrete (or geometric) forms of the Positivstellen­
satz, Nichtnegativstellensatz and Nullstellensatz for polynomial functions 
over semialgebraic sets. For convenience of exposition, we shall again 
assume, throughout, that k is a real-closed field, given its unique ordering 
(k, k2). 

Let A be a (semireal) ideal in k[x] = k[xl9 . . . , xn], and let V -.= Vk(A) 
be the algebraic set of /^-points defined by A. For any finite set of poly­
nomials/:(1 ^ / ^ r), we define the set 

U(fl9 . . . , / r ) == {a e k-:f(a) > 0 for all i} 

= u(f) n • • • n u(fr). 
Consider the sets U(f) f] V, where / ranges over all polynomials 6 k[x]. 
We let £?(V) be the class of subsets of V which can be obtained from the 
sets U(f) fi ^by using(a finite number of) boolean operations, i.e., form­
ing finite unions and intersections, and taking complements in V. Note, 
in particular, that sets of the following form are all in £f(V): 

{a e V: g(a) ^0}=V\{aeV: -g(a) > 0}, 

{a e V: g(a) = 0} = {b e V: g(b) ^ 0} fi {ce V: -g(c) ^ 0}, 

where g e k[x]. 

DEFINITION 8.1. Sets in the family S?(V) are called semialgebraic subsets 
of V. Sets of the form U(fl9 . . . , / r ) f] F are called basic open semialge-
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braic subsets of V. (Note that the latter sets are, indeed, open in the 
strong topology of V, i.e., the topology induced by the interval topology 
of/c.) 

We make the following easy observation. 

PROPOSITION 8.2. £f(V) is just the family Sf of finite unions of sets of the 
form 

(*) {a e V: gi(a) = 0 (1 ^ i g s^f^ä) > 0 (1 ^ j g r)}, 

where r, s ^ 0, and gi, fj e k[x]. 

PROOF. It suffices to show that 
(i) A e y, B e &> => A (J B e y, 

(ii) ,4 e ̂ , £ e ̂  => ,4 fl Bey, 
(iii) Aey => V\Aey. 

The first two implications are obvious. For (iii), it suffices (in view of (ii)) 
to treat the case when A is a set of the form (*). But then V \ A is just 

y ({a e V: gi(a) >0}{J{aeV: -gi(a)> 0}) 

UU({« e V-fjfi) = °} U {ae V: - / / * ) > 0}) 

which is clearly in y. 

Note that, if we want, we could have expressed a set of the form (*) 
with s = 1. In fact, the conditions gi(a) = 0 for 1 ^ / g s can be expressed 
by a single equation g\{a)2 -f • • • + gs{a)2 = 0, since fc is formally real. 
The following delightful picture of a semialgebraic set in k2 first appeared 
in Brumfiel's book [8, p. 174] and is reproduced here with his kind per­
mission. 

The planar semialgebraic set defined by / <; 0, gl ^ 0, g2 ^ 0, h ^ 0, 
and (JC, y) 9e 0. 
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It turns out that the semialgebraic subsets of V are intimately related 
to the constructible sets in the real spectrum XA of the affine algebra 
A := k[x]/A defined in 4.13. In order to explain this, we shall have the 
opportunity to see how the real spectrum can be brought to bear on the 
study of the semialgebraic geometry of V. 

Let a be any point of V, and let SDÎ0 be the maximal ideal of A corre­
sponding to a. By pulling back the unique ordering on A/Wla ^ k, we 
obtain an ordering on A with support 9fta. We denote this ordering by 
Ta G XA;clearly Ta = {feA: f(a) ^ 0 } . It is easy to see that the rule 
a^Ta defines an injective mapping of V into XA. Thus we may identify 
V with the subset {Ta: a e F} of XA. Since each Ta is a maximal ordering, 
we have in fact V cz X^(== the subspace of closed points in XA). 

Recall that the family <g(A) of constructible sets in the real spectrum 
of A is obtained from the subbasic Harrison sets {H(f) = <%(f): fe A} 
in XA by using (a finite number of) boolean operations. Since 

W f l K= {aeV:f>Ta0} 

(8.3) ={aeV:f(a)>0} 

= u(f) n v, 
we see that the semialgebraic sets in V are just the contractions of the 
constructible sets of XA to V. More precisely, we shall prove the following. 

THEOREM 8.4. (1) The contraction map a: <g(A) -> y(V) defined by 
a(C) = C H y {for any C G ̂ (A)) is a one-one correspondence. 

(2) The subset V is dense in XA with respect to the Tychonoff topology, 
and therefore also with respect to the Harrison topology. 

(3) The topology on V induced from the Harrison topology ofXA is precise­
ly the strong topology on V. 

PROOF. For (1), we need only show the injectivity of a. To this end it is 
enough to show that, for C G <g(A), 

(*) C^0^CÇ)Vï0. 

Indeed, if a(Ci) = a(C2), then the symmetric difference Cx A C2 contracts 
to the empty set in V, so by (*) we have Q A C2 = 0 , i.e., Q = C2. 
To show (*), we may assume, in view of 4.15, that 

c = Hud n • • • n H(fr) n H\gl) n • • • n n\gs) 
where //'(#/) = XA\H(&J)' If C # 0 , there is an ordering T on A such 
t h a t / > T 0 and - g ; - ^ r 0 for all i,j. By Lang's Homomorphism Theorem 
5.5(C), there exists a A>algebra homomorphism tp\ A -+ k such that 
<p(fi) > 0 ^ (p{gj) for all U j - Let a, = pfo) and a = fa, . . . , ß„) G V. 
Then we have/; >Ta 0 ^ a gy, so Ta G i / ^ ) fi • • • fi ^( / r ) fi ^ f e i ) fi 
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• • • fl H'(gs) = C, showing that C [} V is nonempty. This proves (*), 
and shows that Fis dense in XA with respect to the Tychonoff topology; 
it follows that V is also dense in XA with respect to the coarser Harrison 
topology <T. Finally, we have to prove (3). From 8.3, it follows that any 
open set of 3T contracts to an open set in the strong topology of V. 
Conversely, if we consider a basic open set in the strong topology of V, 
say U = {a e V: b{ < a{ < c( for all /} , then clearly U = U(xi — bl9 . . . , 
xn - bn, cx — xx, . . . , cn — xn) fl V. From 8.3, this set is open in the 
induced Harrison topology of V. 

Note that the same proof also shows the following. 

COROLLARY 8.5. Any semialgebraic set Se y(V)is dense in the unique 
constructible set C e ^(A) corresponding to it under a, with respect to both 
the Tychonoff and Harrison topologies. 

Recall that, by 4.7, X^ is a compact Hausdorff space. However, in 
general, the variety V with the strong topology may not be compact; 
for instance, when k = R, V may be unbounded. Therefore, V c X1^ is 
not an equality in general. In view of Theorem 8.4 (2), (3), one may think 
of XA* as some sort of natural compactification of V. If V is already 
compact to begin with, then of course V = X^\ in this case, {Ta: a e V} 
are all the maximal orderings on A. For a simple example of V g X% 
consider A = (0) c R[x] (n = 1); here V is the "line" R. We have seen 
earlier that A = R[x] has two orderings which are maximal but are dif­
ferent from the orderings {Ta: aeR}. Therefore, X^ is a "two-point 
compactification" of the real line; symbolically, X"% — { — oo} (J R (J 
{ + oo}. Note that, in many ways, this fits the real picture more nicely than 
the usual one-point compactification R (J {oo} = S1. For a more in­
teresting example, consider A = (0) = k[x] (n = 1), where k is now the 
(real-closed) field of all real algebraic numbers. What are the maximal 
orderings on A = k[x]l Besides the obvious ones Ta{aek), we must 
look for maximal orderings on k[x] with support (0). The question is, 
therefore, which orderings on k(x) will restrict to a maximal ordering on 
k[x]. As is well-known, the orderings on k(x) correspond to the different 
Dedekind cuts on k. Orderings P e Xk{x) whose corresponding cuts on k 
are "realized"by a point aek will not restrict to a maximal ordering on 
k[x] because P f] k[x] will be properly contained in Ta. On the other 
hand, if P e Xk(x) defines a cut on k realized by a transcendental number 
a e R\/c, i.e., P = {f(x) e k(x): f(a) ^ 0}, then P f| &M is a maximal 
ordering on k[x], (To see that P f| k[x] e X% assume, instead, that P f| 
k[x] Ç Ta for some a e k. First assume that a < a in R. Take bek such 
that a < b < a, and consider x — be A. Clearly, x — b e P f| k[x], but 
x — b $ Ta, a contradiction. If a < a in R, a similar contradiction will 
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result by considering a < b < a in R.) And, of course, there is a cut at 
— oo, and a cut at + oo. Therefore, in compactifying V = k to X% we are 
adding, essentially, the transcendental numbers, and ± oo. After checking 
the topology, one can conclude that the compactification X% of k is, again, 
{-00} U R U { + 00}. The remarks and examples above are pointed out 
by E. Becker and help to illustrate the nature of the compactification X^ 
of a real variety V. 

Next, we shall try to derive the various "Stellensätze" for polynomial 
functions on certain semialgebraic subsets of V. The notations associated 
with V introduced at the beginning of this section will remain in force. 
Along with the sets U(fl9 . . .,fr) c kn

9 let us also define 

W(gl9 . . . , gm) = {a e *": gi(a) à 0 for all /}, 

V(hl9 . . . , hp) = {a e kn\ ht{a) = 0 for all /} . 

Comparing these with the notations in 7.1, we have 

w(gl9...9gM)n v=iT(gl9 . . . , g j n v9 
v(hl9 . . . ,A,)n v=nhu ...,hp) n v. 

Therefore, the two semialgebraic subsets of V on the left hand side cor­
respond, respectively, to the constructible sets iT(gi, . . . , gm) and ^(Ai, 
. . . , hp) in XA. It follows that the semialgebraic set Q0 ••= U(fl9 . . . , / r) fl 
W(gi> • • • » gm) H V(fri9 . . . , hp) fl V Œ F corresponds to the constructible 

setfl := #(/x,...,/ r) n *"fei,...9gj n n * i . . • -,hp)c ^. 
THEOREM 8.6. Given the notation above, let S be the multiplicative set of 

A generated by the f/s9 T be the subsemiring of A generated by A2, the 
f/s and g/s9 and I be the ideal of A generated by the h/s. Let / = / (xl9 

...9xn)eA. 
(1) (Positivstellensatz) If / > 0 on Q09 then there is a congrucence 

(s + t) • /= s + t' (mod / ) , where t91' e Tand s e S. 
(2) (Nichtnegativstellensatz) If / ^ 0 on O0, then there is a congruence 

(s - /2e + t) • /== s - /2e + t' (mod / ) , where t9 t' e l , se S and e ^ 0 
is an integer. 

(3) (Nullstellensatz) If/=0onQ09 then there is a congruence s • /2e + t 
= 0 (mod / ) , where t e T9 s e S and e ^ 0 is an integer. 

PROOF. These will follow from the corresponding abstract Stellensätze 
7.4 if we can show that 

(/ > 0 on Q0 => / > 0 on fl, 

(8.7) J / ^ 0 on Q0 => / ^ 0 on Û, 

l / = 0 o n f l 0 = > / = 0 o n f l . 

To see these, we exploit the fact that the one-one correspondence a in 
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8.4 (1) preserves inclusion relations. Suppose / > 0 on Q0. Then we have 
O0 c U(/) fi V. Since a(Q) = Q0 and a(*( / ) ) = £/(/) fi ^ we must 
have 0 e $f(/), i.e., / > 0 on Q. The other two implications in 8.7 are 
proved similarly. 

Let us note several special cases of 8.6 and make some historical re­
marks to put the results in perspective. When there are no f{ 's and g/s, 
(3) gives back the Dubois-Risler Real Nullstellensatz (6.7). When 31 = 0 
and there are no f-s, g/s or h/s, (2) gives a strengthened solution to 
Hubert's 17th Problem, i.e., any positive semidefinite polynomial /ek[xl9 

. . . , xn] can be expressed in the form (/2e + t')/(/2e + t) where t, 
t' e 2J^W2- Also, in the same case, (1) gives an expression for positive 
polynomials / , namely / = (1 + t')j{\ + t) where f, t' e J^k[x]2. These 
refinements are due to A. Prestel and G. Stengle. When there are no g/s, 
A/s but we allow them's, (2) in coarser form gives A. Robinson's Nichtne-
gativstellensatz for basic open semialgebraic sets in a variety. When there 
are no f/s but we allow the g/s and h/s, (3) is the Semialgebraic Real 
Nullstellensatz found by G. Stengle [30]; when 9( = 0 and there are no 
f/s and A/s, (2) is the Nichtnegativstellensatz for basic closed semialge­
braic sets of Stengle. Thus, 8.6 subsumes a large number of earlier results 
of its kind obtained by different authors over the years. 

In the balance of this section, we shall describe a few further results in 
the recent literature on semialgebraic sets. We shall not give the detailed 
proofs of these results as the techniques of these proofs lie beyond the 
scope of our notes. In fact, for the several theorems to be discussed below, 
the shortest proofs found so far are all based on techniques of logic. To 
present these techniques in full will considerably lengthen this paper, so 
we shall content ourselves with a few brief remarks. This will give us an 
opportunity to at least say something about the important role played by 
logic in the recent investigations on semialgebraic geometry. 

The basic connection between logic and semialgebraic geometry is 
provided by Tarski's Theorem on quantifier elimination over real closed 
fields. Stated roughly, this theorem says that, if cp is an elementary formula 
in the first order language of ordered fields, with quantifications over a 
real closed field k, then it is possible to eliminate one quantifier at a 
time, thus leading, eventually, to a logically equivalent quantifier-free 
formula. In particular, if we can prove a certain elementary statement over 
a real closed extension K containing k, then the same statement is guaran­
teed to hold over any real closed extension K' => k (including k itself). 
This remarkable principle is, of course, very powerful when brought to 
bear upon questions concerning polynomial equalities and inequalities 
over a real closed field. In similar ways, other results in model theory can 
be applied profitably to the study of semialgebraic geometry. 
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To give an example, consider a semialgebraic set Q in the euclidean 
space kn over a real closed field k. Essentially by definition, such a set is 
defined by a quantifier-free formula <p with n free variables. Consider Q', 
the projection of Q to kn~l. This set consists of points (al9 . . . , an^) e kn~l 

satisfying the formula "1xn<p(xi, . . . , xn)". By Tarski's Theorem, we can 
eliminate the quantifier "3x„" from this formula, to get another, equi­
valent, formula which is quantifier-free. Therefore, we have the following 
pleasant conclusion. 

THEOREM 8.8. The projection of a semialgebraic set in kn to kn~x is again 
a semialgebraic set. 

Similarly, one can use the elimination of quantifiers to show 

THEOREM 8.9. If Q is a semialgebraic set in kn, then the closure, interior 
and boundary of Û (with respect to the strong topology) are also semialge­
braic subsets ofkn. 

These results are certainly not obvious if we do not assume Tarski's 
Theorem on quantifier elimination ! 

As a second example, we shall consider the following result which was 
observed by L. Bröcker. 

THEOREM 8.10. Let (k0, P) be an ordered field, and k be its real closure. 
Let Q be any semialgebraic set in kn. Then Q can be defined in kn by (a 
finite number of) polynomial equalities and inequalities with coefficients 
from k0, 

At first sight, this may appear to be a somewhat unlikely result, but it 
is actually a true theorem! To give an illustrating example, let k0 = Q 
with P its usual ordering, and let k be the field of real algebraic numbers. 
Consider the line in the £-plane given by Û = {(x9y)ek2: x + y = \ / T } . 
To begin with, the coefficients used here are only in k, and not all in k0. 
However, it is easy enough to rewrite the definition of Q using only 
coefficients from k0. 

Q = {(x, y) e k2: (x + y)2 = 2 and x + y > 0}. 

As a second illustrating example, consider the case when n = 1 and û is 
a singleton set {a} (a e k). How is it possible to "define" û over k0l Let 
f(x) 6 k0[x] be the minimal polynomial of a and write down its roots in k 
in increasing order, i.e., a^ < • • • < am. We can then specify a by saying 
that it is, say, the rth root in this sequence. Now, let us return to the 
general case. The defining polynomials for Q may have coefficients {/3j 
in k, but we can "define" the ß/s over kQ by the method explained above. 
Therefore, Q can be defined in kn by a formula with parameters from 
k0—with a finite number of quantifiers. Applying Tarski's Theorem over 
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k, we can replace this with a quantifier-free formula, still with parameters 
from k0. Therefore, Q is now defined over k0\ For instance, to define the 
line £?j := {(x, y)ek2:x + ^/~2 y = 1} over k0, we eliminate the coef­
ficient ^/~2 by introducing an existential quantifier, i.e., Qx = {{x, y) e 
k2: 3w(w2 = 2) A (w > 0) A {x + wy = 1)}. Then we can eliminate 
"3vv" by applying Tarski's Theorem over k, to get a description of Q1 

over k0. We shall leave it as an exercise for the reader to find such an 
explicit description! 

The statement of 8.10 was pointed out to me by A. Prestel, who also 
explained to me the idea of the proof sketched above. Bröcker's original 
proof, not using logic, is apparently much more complicated. For us, the 
important thing to note here is that Tarski's Theorem not only lends 
itself to an easy proof of 8.10 but also it shows in a very conceptual way 
why such a result should be true. 

As a final example, we shall mention an important result concerning 
the structure of open (resp. closed) semialgebraic sets. Take a variety 
V = Vk{$l) defined over a real-closed field k\ let A = k[xÌ9 . . . , xw]/2( 
and use the notations introduced at the beginning of this section. Recall 
from 8.1 that sets of the form U(fl9 . . . , / r) f| V are called basic open 
semialgebraic subsets of V; they form a basis for the strong topology of 
V. Similarly, sets of the form W{gi, . . . , gm) f| V are called basic closed 
semialgebraic subsets of V. We have the following remarkable 

FINITENESS THEOREM 8.11. (1) Any open semialgebraic subset U c V is a 
finite union of basic open semialgebraic subsets. 

(2) Any closed semialgebraic subset W <= V is a finite union of basic 
closed semialgebraic subsets. 

By taking complements in V and using the two distributive laws for 
unions and intersections, it is easy to see that (1) and (2) are equivalent 
results. However, the truth of either one is far from obvious. Let U be 
as in (1). We know by 8.2 that U is a finite union of sets of the form 
^ ( / I J • • -j/r) fi y if) H y\ however, these sets are not necessarily open, 
so although we are down to a finite union, the expression ignores the fact 
that U is open. On the other hand, expressing U as a finite union of basic 
open semialgebraic subsets reflects the openness of U as well as the fact 
that U is semialgebraic. Similar remarks can be made about the closed 
semialgebraic set W a F in 8.11 (2). 

It is of interest to note that there is another equivalent formulation of 
the Finiteness Theorem above in terms of the constructible subsets of the 
real spectrum. This can be stated as follows. 

THEOREM 8.12. Under the one-one correspondence a : ^(A) -> £?(V) in 
8.4 (1), open {closed) constructible sets correspond to open {closed) semi-
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algebraic sets, i.e., a set C e ^(A) is open {closed) in XA iff its contraction 
a{C) = C fi y is open {closed) in V. 

Of course, the substance of this theorem is in the "if" part. To see that 
this is equivalent to the Finiteness Theorem, we proceed as follows. 

(8.11) => (8.12) Assume C fl V is open in V. By 8.11, this is a finite 
union of sets of the form U(fl9 . . . , / r) fi ^ Since the one-one corres­
pondence a preserves inclusion, it follows that C is the (finite) union of 
the corresponding <%{fi, .. . , / r) 's. Therefore, C is open in XA. 

(8.12) => (8.11) Given U as in 8.11, let Ce<g{A) be the corresponding 
constructible set. By 8.12, C is open in XA, so it is a union of basic Har­
rison open sets H{fl9 . . . , / r) = ^ ( / i , • • , / r)- I*ut> being a constructible 
set, C is closed, and therefore compact, in the Tychonoff topology. It 
follows that C can be covered by a finite number of the %(J[9 .. . , / r) 's. 
Contracting to V, we see that Uis a finite union of the V f] U{fu ... ,/ r) 's. 

REMARK 8.13. In a recent written communication to us, M.A. Dickmann 
has pointed out that it is possible to prove a refinement of the statement 
of the Finiteness Theorem 8.11 in the spirit of 8.10. Suppose k is the 
real closure of an ordered field {k0, P), and V is defined over k as before. 
Then any open (resp. closed) semialgebraic subset of F is a finite union 
of U(fl9 . . . , fr) (resp. W(gi9 ..., gs)) where each f{ (resp. g4) is a 
polynomial over k0. 

The Finiteness Theorem has proved to be of considerable importance in 
the recent development of semialgebraic geometry. It is perhaps worth­
while to say something about its short, but interesting history. This 
theorem was stated as an "Unproved Proposition" in Brumfiel's book 
[8]; Brumfiel did not give a proof, but managed to develop an extensive 
theory of semialgebraic sets without it. At about the time when Brumfiel's 
book appeared, several others have discovered and proved the same 
result. In the recent literature, there are five different proofs of the Finite­
ness Theorem, due respectively to T. Récio, C. Delzell, M. Coste and 
M.-F. Coste-Roy, L. van den Dries, J. Bochnak and G. Efroymson. 
(Delzell has pointed out that a sixth proof can be obtained from a paper 
of McEnerney on semianalytic sets by adapting his arguments to semi­
algebraic sets.) Several of these proofs used ideas from logic, and involved, 
in one form or another, Tarski's elimination of quantifiers. The use of 
Tarski's Principle is, of course not surprising, since writing an open 
semialgebraic set as a finite union of the V(] U{fl9 . . . , / r ) ' s means 
expressing the definition of the given set without quantifiers or negations, 
in terms of strict inequalities. Tarski's Principle gets rid of the quantifiers, 
but may leave behind non-strict inequalities. The point of the Finiteness 
Theorem is, therefore, that the openness of the set assures at least one 
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way of eliminating the quantifiers which leaves no non-strict inequalities 
behind. In this sense, the Finiteness Theorem may be thought of as a 
refined version of Tarski's elimination of quantifiers. 

It is hoped that the several examples given above served to show the 
natural and fruitful ways in which ideas of logic can be used in semi-
algebraic geometry. In recent years, the subject of semialgebraic geometry 
has flourished on a successful combination of algebraic and logical tech­
niques. This is by all means a healthy trend, and is expected to continue 
into the future. It is based on this expectation that we have chosen to 
include a brief discussion of the interaction between logic and semi­
algebraic geometry in our elementary exposition. 
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