ON THE IMPRIMITIVITY THEOREM FOR ALGEBRAIC GROUPS

ANDY R. MAGID

Let G be an affine algebraic group, defined over the algebraically closed field k, and let A be a commutative k-algebra which is a rational G-module such that G acts on A as k-algebra automorphisms. An $A . G$ module M is an A module and a rational G-module such that $g(a m)=$ $g(a) g(m)$ for $g \in G, a \in A$ and $m \in M$, and a morphism of $A . G$-modules is a G-linear A-homomorphism. The $A . G$-modules, and their morphisms, form an abelian category which we denote $\operatorname{Mod}(A . G)$.

In [7, Theorem 3.1, p. 42] Parshall and Scott prove that if H is an affine algebraic subgroup of G such that the homogeneous space G / H is affine, then $\operatorname{Mod}(k[G / H] . G)$ is equivalent to $\operatorname{Mod}(H)$, the category of rational H-modules. The proof uses their earlier theorem [2, Theorem 4.3, p. 9] that G / H being affine implies that the induction functor from $\operatorname{Mod}(H)$ to $\operatorname{Mod}(G)$ is exact. See also [9].

The point of the present note is to observe that a slightly more general version of the above category equivalence can be derived directly from the fundamental (and easily proven) algebraic fact that if A is a simple $A . G$ module, then $A . G$-modules are all A-flat, due to I. Dorai swamy [3, Cor. 2.3, p. 792]. In the version presented here, it is the inverse of the induction functor that is easier to consider. The theorem is preceded by some standard observations on Hopf algebras and followed by some applications. The notation already introduced is retained throughout.

To define the functor, we assume there is a k-algebra homomorphism $\alpha: A \rightarrow k$. Let Y be the affine scheme represented by A, on which the group scheme G represented by $k[G]$ acts. Then the functor which assigns to each commutative k-algebra C the stabilizer in $G(C)$ of the α of $Y(C)$ is also an affine group scheme: the fibre product $G x_{Y}\{e\}$ where the right $\operatorname{map}\{e\} \rightarrow Y$ is $e \rightarrow \alpha$ and the left map $G \rightarrow Y$ is $g \rightarrow g \alpha$. It follows that the algebra $B=k[G] \otimes{ }_{\gamma} k$ representing $G x_{y}\{e\}$ is a Hopf algebra and that $k[G] \rightarrow B$ is a Hopf algebra morphism whose kernel J is a Hopf ideal. The range of the functor will be the category of B comodules.

We need to recall how G-modules can be regarded as $k[G]$-comodules. If M is a rational G-module, the map $\gamma_{M}: M \rightarrow M \otimes k[G]$, defined by

[^0]Copyright © 1984 Rocky Mountain Mathematics Consortium
$r^{(m)}=\sum m_{i} \otimes t_{i}$ if $g m=\sum f_{i}(g) m_{i}$ for all g in G, makes M a $k[G]$-comodule in the sense of $[8$, p. 30]. It is easy to check that if M is an $A . G$-module, then $\gamma(a m)=\gamma_{A}(a) \gamma(m)$ for all $a \in A$. Also, we will need the map $\beta: A \rightarrow k[G]$ defined by $\beta=(\alpha \otimes 1) \gamma_{A}$. Finally, for an A. G-module M we have the tensor identity

$$
\begin{align*}
& \left(M \otimes_{k} k[G] \otimes_{A} k=\left(M \otimes_{A} k\right) \otimes_{k}\left(k[G] \otimes_{A} k\right)\right. \\
& (m \otimes f \otimes y) \rightarrow(m \otimes 1) \otimes(f \otimes y) \tag{*}
\end{align*}
$$

(Here $M \otimes k[G]$ is an A-module via γ_{A} and $k[G]$ an A-module via β.) To verify the identity, we observe that if $\gamma_{A}(a)=\sum a_{i} \otimes h_{i}$, then for $m \in M$ and $f \in k[G], \sum\left(a_{i} m \otimes_{A} 1\right) \otimes_{k}\left(h_{i} f \otimes_{A} 1\right)=(m \otimes 1) \otimes\left(\sum \alpha\left(a_{i}\right) h_{i}\right) f \otimes 1$ $=(m \otimes 1) \otimes(\beta(a) f \otimes 1)=(m \otimes 1) \otimes(f \otimes \alpha)(a)$, which justifies the definition of the map in (*).

Now, if M is an $A . G$-module, the $\operatorname{map} \bar{\gamma}_{M}: M \otimes_{A} k \rightarrow\left(M \otimes_{A} k\right) \otimes_{k} B$ given by following $\gamma_{M} \otimes_{A} k$ with the identity (*) is easily seen to give $M \otimes_{A} k$ the structure of a B-comodule, using the commutative diagram

The same diagram also is used to see that if $f: M \rightarrow N$ is a morphism of $A . G$-modules, then $f \otimes_{A} k$ is a morphism of B-comodules. Thus $\otimes_{A} k$ provides a functor from the category of $A \cdot G$-modules to the category of B-comodules.

In the proof of the theorem we will need to use some facts about Hopf algebras and comodules. We will state these for the Hopf algebra B with comultiplication Δ and counit ε, and a B-comodule M with coaction γ, but they are completely general and apply, for example, to $k[G]$ and its comodules:

First, the k-space $\operatorname{Comod}_{B}(M, B)$ of B-comodule morphisms from M to $B\left(\gamma_{B}=\Delta\right)$ is A-isomorphic to the k-linear dual M^{*} of M via the maps $T \rightarrow \varepsilon T$ and $f \rightarrow(f \otimes 1) r$. This is actually a natural equivalence of functors $\operatorname{Comod}_{B}(\ldots, B) \rightarrow\left(_\right)^{*}$. Second, if M_{t} denotes the underlying k-space of M with the trivial B coaction ${ }_{t} M \rightarrow{ }_{t} M \otimes B$ by $m \rightarrow m \otimes 1$, then $r: M \rightarrow M_{t} \otimes B$ is a morphism of B-comodules. $\left({ }_{t} M \otimes B\right.$ is a comodule with coaction $1 \otimes \Delta$.) Since r is a monomorphism, this shows that M is a subcomodule of a direct sum of copies of B, as B-comodule.

We can now state and prove the main result.
Theorem. Let G be an affine algebraic group over k, A an affine k-algebra and rational G-module with G acting as algebra automorphisms, and suppose A has no non-trivial G-stable ideals. Let $\alpha: A \rightarrow k$ be a k-algebra homomorphism and let B denote the Hopf algebra $K[G] \otimes_{A} k$. Then the functor
$-\otimes_{A} k$ is an equivalence between the category of $A . G$-modules and the category of B-comdules.

Proof. We establish first that $-\otimes_{A} k$ is exact by showing that every $A . G$-module is A-flat. When G is connected this follows from [3, Cor. 2.3, p. 792]. In general, we let P_{1}, \ldots, P_{k} denote the distinct minimal primes of A, observe that $P_{1} \cap \cdots \cap P_{k}$ is a G-stable ideal, hence zero, so that A is reduced. The set X of primes Q in $\operatorname{Spec}(A)$ where A_{Q} is regular is open [6, Theorem 74, p. 248] and non-empty, since for example A_{Q} is a field for $Q=P_{1}$. Then $Y=\operatorname{Spec}(A)-X$ is closed and G-stable and hence corresponds to a G-stable radical ideal, which must be zero. Thus Y is empty, and it follows from [5, Theorem 168, p. 119] that $A=A_{1} \times \cdots \times A_{k}$ where each A_{i} is a (regular) domain. Let e_{i} be the minimal idempotent of A corresponding to A_{i}, and let $H_{i} \subseteq G$ be the stabilizer of e_{i}. Then H_{i} acts rationally on A_{i}, and if I were a non-trivial H_{i}-stable ideal of A_{i} then $\Sigma g_{i j} I$ (where $\left\{g_{i j}\right\}$ is a set of left coset representatives of H_{i} in G_{i}) would be a non-trivial G-stable ideal of A. So each A_{i} has no non-trivial $H_{i}{ }^{-}$ stable ideals. An $A . G$-module M then is a product $M=M_{1} \times \cdots \times M_{k}$ ($M_{i}=e_{i} M$) where each M_{i} is an $H_{i} A_{i}$-module. So by [2, Prop. 2.2, p. 790] finitely generated $A . G$-modules are A-projective and all $A . G$-modules are A-flat.
Next, we show that every B-comodule is of the form $M \otimes_{A} k$ for a suitable A. G-module M. Applying the first of the two remarks immediately preceding the theorem to the $k[G]$-comodule $k[G]$ and the B-comodule B, we have the following chain of identities: $\operatorname{Hom}_{A . G}(k[G], k[G])=$ $\operatorname{Hom}_{A}(k[G], k)=\operatorname{Hom}_{k}(B, k)=\operatorname{Comod}_{B}(B, B)$, the map from the firxt to the last sending T to $T \otimes_{A} k$. Now let V be a B-comodule. From the second of the two remarks, we know there is an exact sequence of B-comodules $0 \rightarrow V \rightarrow B^{(\lambda)} \rightarrow B^{(\mu)}$ where $B^{(\lambda)}={ }_{t} V \otimes B$ and $B^{(\mu)}=$ $t\left(\left(t_{t} V \otimes B\right) / \gamma(V)\right) \otimes B$ are direct sums of copies of B as B-comodules. We can find an $A \cdot G$-morphism $T: k[G]^{(\lambda)} \rightarrow k[G]^{(\mu)}$ such that $T \otimes_{A} k$: $B^{(\lambda)} \rightarrow B^{(\mu)}$ is the map of this exact sequence. If $M=\operatorname{Ker}(T)$, then by exactness we have $M \otimes_{A} k=V$.

The preceding argument also shows that the functor is full, i.e., if W is another B-comodule and $f: V \rightarrow W$ is a comodule morphism, then if we construct the exact sequence $0 \rightarrow W \rightarrow B^{(\alpha)} \rightarrow B^{(\beta)}$ analogous to that for V we have maps $f_{1}: B^{(\lambda)} \rightarrow B^{(\alpha)}$ and $f_{2}: B^{(\mu)} \rightarrow B^{(\alpha)}$ extending f. (For example, $f_{1}:{ }_{t} V \otimes B \rightarrow{ }_{t} W \otimes B$ is given by $f_{1}=f \otimes 1$.) Let $S: k[G]^{(\alpha)} \rightarrow$ $k[G]^{(\beta)}$ be the $A . G$-morphism with $N=\operatorname{Ker}(S)$ such that $N \otimes_{A} k=W$, and choose $A . G$-morphisms $F_{1}: k[G]^{(\lambda)} \rightarrow k[G]^{(\alpha)}$ and $F_{2}: k[G]^{(\mu)} \rightarrow$ $k[G]^{(\beta)}$ such that $F_{i} \otimes_{A} k=f_{i}$. Then $\left(F_{2} T \otimes_{A} k=\left(S F_{1}\right) \otimes_{A} k\right.$, and since $\operatorname{End}_{A . G}(k[G])=\operatorname{Comod}_{B}(B, B)$, we conclude that $F_{2} T=S F_{1}$. Hence there is an $A . G$-module morphism $F: M \rightarrow N$ such that $F \otimes_{A} k=$
f (namely, $F=F_{1} \mid M$). This proves that the functor $\bigotimes_{A} k$ is full.
To complete the proof of the theorem, we must show that the functor is faithful; that is, if $f, g: M \rightarrow N$ are $A . G$-morphisms with $f \otimes_{A} k=$ $g \otimes_{A} k$, then $f=g$. We can replace f by $f-g$ and assume $f \otimes_{A} k=0$, which means, by exactness, that $(M / \operatorname{Ker}(f)), \otimes_{A} k=0$. If V is a finitely generated $A . G$-submodule of $M / \operatorname{Ker}(f)$ then V is A-projective (see above) and $V \otimes_{A} k=0$ also. The set of primes P in $\operatorname{Spec}(A)$ where $V_{P}=0$ is open and G-stable, so either all of $\operatorname{Spec}(A)$ or empty. If $Q=\operatorname{Ker}(\alpha)$, then $V_{Q}=0$ since $V \otimes_{A} k=0$ (using that V is A-projective) so $V_{P}=0$ for all P and hence $V=0$. Thus $M / \operatorname{Ker}(f)$, being a union of its finitely generated $A . G$-submodules, is zero, so $f=0$.

We have now shown that $\mathcal{Q}_{A} k$ is exact, full, and faithful, and that every B comodule is isomorphic to one of the form $V \otimes_{A} k$. It follows that $\mathcal{Q}_{A} k$ is an equivalence of categories by [1, (1.2), p. 49], completing the proof.

A major application of the theorem is to the case where $A=k[G]^{H}$ where H is an affine algebraic subgroup of G such that the quotient G / H is an affine variety. In this case A has no non-trivial G-stable ideals, since the radical of such an ideal, which is necessarily G-stable also, corresponds to a G-stable subvariety of G / H, of which there are no proper such. In this case the inverse equivalence to $-\otimes_{A} k$ is the induction functor of [2, p. 1-14]. This functor has several descriptions; the one adopted here [2, p. 3] is chosen for its convenience in the proof of the preceding assertion. Let X be a rational H-module, and define a right H-module structure on $k[G] \otimes X$ by $(f \otimes v)^{h}=f \cdot h \otimes h^{-1} v$. Then $(k[G] \otimes X)^{H}$ is a rational G-module, denoted $\left.X\right|_{H} ^{G}$, and called the G module induced from H. It has the property that, for all G-modules, Y, $\operatorname{Hom}_{G}\left(Y,\left.X\right|_{H} ^{G}\right)=\operatorname{Hom}_{H}(Y, X)$ [2, Prop. 1.4, p. 9]. It is, moreover, clear that, as a functor, () $\left.\right|_{H} ^{G}$ is left exact, preserves arbitrary direct sums, and carries H-modules to $A . G$-modules. From these facts we will deduce, via the theorem, that () $\left.\right|_{H} ^{G}$ is exact, a result first obtained in [2, Thm. 4.3, p. 9].

Corollary 1. Let G be an affine algebraic group over k, H an affine algebraic subgroup and assume the quotient G / H is an affine variety. Then the induction functor from rational H-modules to rational G-modules is exact.

Proof. We let $A=k[G]^{H}=k[G / H]$ as above. Since $G x_{(G / H)}\{e\}=H$, we have, in the notation on theorem, that $B=k[G] \otimes_{A} k=k[H]$. Also, we have $\left.k[H]\right|_{H} ^{G}=k[G]$; for $k[G] \otimes k[H]=k[G \times H]$, and the above right H-action becomes $f^{h}(g, x)=f\left(h g, x h^{-1}\right)$, so $k[G \times H]^{H}=k[G]$. If V is an H-module, it was shown in the proof of the theorem that there exists an exact sequence $0 \rightarrow V \rightarrow k[H]^{(\lambda)} \rightarrow k[H]^{(\mu)}$ of H-modules. Applying the
induction functor, which is left exact and preserves direct sums, we obtain an exact sequence $\left.0 \rightarrow V\right|_{H} ^{G} \rightarrow k[G]^{(\lambda)} \rightarrow k[G]^{(\mu)}$. Now applying $\otimes_{A} k$ as in the proof of the theorem we obtain $\left(\left.V\right|_{H} ^{G}\right) \otimes_{A} k=V$. It is now easy to see that induction preserves epimorphisms, so is exact; if $V \rightarrow W$ is an H-module surjection and C the cokernel of $\left.\left.V\right|_{H} ^{G} \rightarrow W\right|_{H} ^{G}$, then $C \otimes_{A} k$ $=0$. By faithfulness $C=0$ and the induced map is a surjection.

As a second application of the theorem, we consider infinitesimal subgroups in positive characteristic [4, (1.4), p. 271]. Assume that k has characteristic $p>0$ and let $\sigma: k[G] \rightarrow k[G]$ be $\sigma(f)=f^{p}$. For $n=1,2,3, \ldots$ let $A_{n}=\sigma^{n}(k[G])$. Then A_{n} is a G-stable subalgebra of $k[G]$ and has no non-trivial G-stable ideals. Let $\alpha: A_{n} \rightarrow k$ be given by evaluation at e, and consider $B_{n}=k[G] \otimes_{A_{n}} k$; if $I=\{f \in k[G] \mid f(e)=0\}$, then $\operatorname{Ker}(\alpha)=$ $\sigma^{n}(I)$ so that $B_{n}=k[G] / \sigma^{n}(I) k[G]$. This is the Hopf algebra of the infinitesimal group scheme G_{n} which is the kernel of the n-th-power of the Frobenius on G [4, (1.4), p. 271]. Rational G_{n}-modules are, by definition, B_{n}-comodules. Hence we conclude with the following corollary.

Corollary 2. Let G be an affine algebraic group over k, and assume k has positive characteristic p. Let A_{n} be the subalgebra of $k[G]$ consisting of all p^{n}-powers and let G_{n} be the finite group scheme which is the kernel of the n-th-power of the Frobenius on G. Then $-\otimes_{A_{n}} k$ is an equivalence between the category of $A_{n} \cdot G$-modules and the category of rational G_{n}-modules.

If $n \geqq m$, we have a surjection $B_{n} \rightarrow B_{m}$, and if V is a B_{n}-comodule with coaction $V \rightarrow V \otimes B_{n}$, composition with this surjection gives a coaction $V \rightarrow V \otimes B_{m}$ making V a B_{m}-comodule. This operation is a functor from G_{n}-modules to G_{m}-modules, called restriction. It is interesting to interpret this functor in the light of corollary 2 ; here we map $A_{n} \cdot G$-modules to $A_{m} \cdot G$-modules, the operation sending the $A_{n} \cdot G$-module M to $A_{m} \otimes_{A_{n}}$ M, which is an $A_{m} . G$-module. (To see that this does coincide with the above restriction functor, we observe that $\left(A_{m} \otimes_{A_{n}} M\right) \otimes_{A_{m}} k=M \otimes_{A_{m}}$ k.) Similarly, we can restrict from G-modules to G_{n}-modules. Here the operation sends M to $A_{n} \otimes_{k} M$.

Finally, we note that the converse of the theorem is also valid. That is, if for every choice of α the functor $\otimes_{A} k$ is an equivalence, then A has no non-trival G-stable ideals. For if I were a non-zero G-stable ideal, then choose α so that $\operatorname{Ker}(\alpha)$ contains I. The sequence $0 \rightarrow I \rightarrow A \rightarrow$ $A / I \rightarrow 0$ of G-modules must remain exact after tensoring with k via α, so $I \otimes_{A} k=0$, and hence $I=0$ since $\otimes_{A} k$ is an equivalence.

References

[^1]2. Cline, E., Parshall, B. and Scott, L., Induced modules and affine quotients, Math. Ann. 230 (1977), 1-14.
3. Doraiswamy, I., Projectivity of modules over rings with suitable group action, Com. in Alg. 10 (1982), 787-795.
4. Demazure, M. and Gabriel, P., Groupes Algebriques, Tom I, North-Holland, Amsterdam, 1970.
5. Kaplansky, I., Commutative Rings, Allyn and Bacon, Boston, 1970.
6. Matsumura, H., Commutative Algebra, W.A. Benjamin, Inc., New York, 1970.
7. Parshall, B., and Scott, L., An imprimitivity theorem for algebraic groups, Ind. Math. 42 (1980), 39-47.
8. Sweedler, M., Hopf Algebras, W.A. Benjamin, Inc., New York, 1969.
9. Cline, E., Parshall, B. and Scott, L. A Mackey imprimitivity theorem for algebraic groups, Math. Zeit. (to appear).
Department of Mathematics, University of Oklahoma, Norman, OK 73019

[^0]: Received by the editors on January 31, 1983.

[^1]: 1. Bass, H., Lectures on Topics in Algebraic K-Theory, Tata Institute of Fundamental Research, Bombay, 1967.
