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ON THE IMPRIMITIVITY THEOREM FOR ALGEBRAIC GROUPS 

ANDY R. MAGID 

Let G be an affine algebraic group, defined over the algebraically 
closed field k, and let A be a commutative ^-algebra which is a rational 
G-module such that G acts on A as fc-algebra automorphisms. An A.G-
module M is an A module and a rational G-module such that g(am) = 
g(a)g(m) for g e G, a e A and me M, and a morphism of ^4.G-modules 
is a G-linear v4-homomorphism. The ^f.G-modules, and their morphisms, 
form an abelian category which we denote Mod(,4.G). 

In [7, Theorem 3.1, p. 42] Parshall and Scott prove that if H is an 
affine algebraic subgroup of G such that the homogeneous space G/H is 
affine, then Mod(k[G/H]. G) is equivalent to Mod(H), the category of 
rational //-modules. The proof uses their earlier theorem [2, Theorem 4.3, 
p. 9] that G/H being affine implies that the induction functor from Mod(H) 
to Mod(G) is exact. See also [9]. 

The point of the present note is to observe that a slightly more general 
version of the above category equivalence can be derived directly from the 
fundamental (and easily proven) algebraic fact that if A is a simple A.G-
module, then y4.G-modules are all v4-flat, due to I. Dorai swamy [3, Cor. 2.3, 
p. 792]. In the version presented here, it is the inverse of the induction 
functor that is easier to consider. The theorem is preceded by some stand­
ard observations on Hopf algebras and followed by some applications. 
The notation already introduced is retained throughout. 

To define the functor, we assume there is a A>algebra homomorphism 
a: A -> k. Let Y be the affine scheme represented by A, on which the 
group scheme G represented by k[G] acts. Then the functor which assigns 
to each commutative /^-algebra C the stabilizer in G(C) of the a of Y(C) 
is also an affine group scheme : the fibre product GxY{e] where the right 
map {e] -> Y is e -> a and the left map G -• Y is g -• goc. It follows that 
the algebra B = k[G] ® rk representing Gxy{e) is a Hopf algebra and that 
k[G] -> B is a Hopf algebra morphism whose kernel / is a Hopf ideal. 
The range of the functor will be the category of B comodules. 

We need to recall how G-modules can be regarded as fc[G]-comodules. 
If M is a rational G-module, the map yM\ M -> M ® k[G], defined by 
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jim) = 2>tf- ® t{ if gm = E/Xg)™* for all g in G, makes Afa k[G]-como-
dule in the sense of [8, p. 30]. It is easy to check that if M is an ^.(/-mo­
dule, then -f(am) = TAÌ^TÌ171) f ° r a11 a 6 A- Also, w e win* neec* t h e m a P 
ß: A -* k[G] defined by ß = (a ® l ) ^ . Finally, for an A.G-module M 
we have the tensor identity 

(M ® , *[G] ® A k = (M ®^ &) ® * (&[<?] ®,i k) 

(m ®f® y)-+(m®\)® (f® y) 

(Here M ® k[G] is an ^-module via yA and k[G] an ,4-module via ß.) To 
verify the identity, we observe that if yA(a) = J^a{ ® hh then for me M 
and / e &[G], Sfowi ®A 1) ®* (hif®A 1) = (m ® 1) ® ( E a f o ) W ® 1 
= (m ® 1) ® (/3(a) / ® 1) = (m ® 1) ® ( / ® a)(a\ which justifies the 
definition of the map in (*). 

Now, if M is an ^.(/-module, the map f M: M ®A k -> (M ®A k) ®k B 
given by following yM ®A k with the identity (*) is easily seen to give 
M®Ak the structure of a 2?-comodule, using the commutative diagram 

M > M ® k[G] 
i I 

M ®Ak -> (M ®A k) ®k B. 

The same diagram also is used to see that if/: M -> N is a morphism 
of yl.G-modules, t h e n / ® ^ k is a morphism of i?-comodules. Thus ®A k 
provides a functor from the category of ^.G-modules to the category of 
2?-comodules. 

In the proof of the theorem we will need to use some facts about Hopf 
algebras and comodules. We will state these for the Hopf algebra B with 
comultiplication A and counit e, and a i?-comodule M with coaction 7-, 
but they are completely general and apply, for example, to k[G] and its 
comodules : 

First, the Ä>space Comodß(M, B) of 2?-comodule morphisms from M to 
B(fB = A) is A-isomorphic to the ^-linear dual M* of M via the maps 
T -* eTandf-^> ( / ® 1)7-. This is actually a natural equivalence of functors 
Comod5( , B) -* ( )*. Second, if Mt denotes the underlying espace 
of M with the trivial B coaction tM -• tM ® B by m -» m ® 1, then 
7-: M -> Mt ® B is a morphism of ^-comodules. (tM ® B is a comodule 
with coaction 1 ® A.) Since 7- is a monomorphism, this shows that M 
is a subcomodule of a direct sum of copies of B, as ^-comodule. 

We can now state and prove the main result. 

THEOREM. Let G be an affine algebraic group over k, A an affine k-algebra 
and rational G-module with G acting as algebra automorphisms, and suppose 
A has no non-trivial G-stable ideals. Let a: A -> k be a k-algebra homo-
morphism and let B denote the Hopf algebra K[G] ®Ak. Then the functor 
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®Ak isan equivalence between the category ofA.G-modules and the cate­
gory of B-comdules. 

PROOF. We establish first that ®A k is exact by showing that every 
,4.G-module is ,4-flat. When G is connected this follows from [3, Cor. 2.3, 
p. 792]. In general, we let Pl9 ..., Pk denote the distinct minimal primes 
of A, observe that P\{\ • • • f] Pkis a, G-stable ideal, hence zero, so that 
A is reduced. The set X of primes Q in Spec(y4) where AQ is regular is open 
[6, Theorem 74, p. 248] and non-empty, since for example AQ is a field 
for Q = Plm Then Y = Spec(v4) — X is closed and G-stable and hence cor­
responds to a G-stable radical ideal, which must be zero. Thus Y is empty, 
and it follows from [5, Theorem 168, p. 119] that A = A1 x ••• x Ak where 
each A{ is a (regular) domain. Let e{ be the minimal idempotent of A 
corresponding to Ai9 and let H{ c G be the stabilizer of e{. Then Ht 

acts rationally on Ah and if I were a non-trivial //f~stable ideal of Ai then 
TigijI (where {g^} is a set of left coset representatives of Ht in Gy) would 
be a non-trivial G-stable ideal of A. So each A{ has no non-trivial Te­
stable ideals. An y4.G-module M then is a product M = Mx x • • • x Mk 

(M{ = e{M) where each M{ is an T/^-module. So by [2, Prop. 2.2, p. 
790] finitely generated ^.G-modules are ^-projective and all ^4.G-modules 
are ^4-flat. 

Next, we show that every i?-comodule is of the form M ®A k for a suit­
able y4.G-module M. Applying the first of the two remarks immediately 
preceding the theorem to the &[G]-comodule k[G] and the 2?-comodule 
B9 we have the following chain of identities: HomA G(k[G], k[G]) = 
HomA(k[G], k) = Homk(B, k) = Comodai?, B), the map from the firxt 
to the last sending Tto T ®Ak. Now let F be a 5-comodule. From the 
second of the two remarks, we know there is an exact sequence of 
£-comodules 0 -* V -> Ba) -* BW where Ba) = tV ® B and BW = 
t((tV ® B)lj-(V)) ® B are direct sums of copies of B as 5-comodules. 
We can find an ^.G-morphism T: k[G]a) -» k[G]W such that T®Ak: 
Ba) -+ BW is the map of this exact sequence. If M = Ker(r), then by 
exactness we have M ®A k = V. 

The preceding argument also shows that the functor is full, i.e., if W is 
another i?-comodule and / : V -> W is a comodule morphism, then if we 
construct the exact sequence 0 -> W -• B{a) -> BW analogous to that for 
V we have maps / : Ba) -> Bia) and f2: BW -• B{a) extending/. (For 
example,/ : tV® B -> tW® Misgiven b y / = / ® l.)Let 5 : A:[G](a) -> 
*[Gj(0> be the ^.G-morphism with TV = Ker(S) such that N ®Ak = W, 
and choose ^f.G-morphisms Fx: k[G]a) -> fc[G](a) and F2: &[G](^ -» 
Â:[G](^ such that Fï®Ak=fi. Then ( F 2 r ® A A: = (SFO ®A k, and 
since EndAG(Ä:[G]) = C o m o d a , B), we conclude that F2T = SFX. 
Hence there is an AG-module morphism F: M -> N such that F ®A k = 
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/(namely, F = FX\M). This proves that the functor ®A k is full. 
To complete the proof of the theorem, we must show that the functor is 

faithful; that is, if/, g: M -• N are ^.G-morphisms with f®Ak = 
g ® A k, then / = g. We can replace fbyf—g and assume f®Ak = 0, 
which means, by exactness, that (M/Ker(/)), ®Ak = 0. If V is a finitely 
generated ,4.G-submodule of M/Ker(/)then V is ̂ 4-projective (see above) 
and V ®A k = 0 also. The set of primes P in Spec(^) where VP = 0 
is open and G-stable, so either all of Spec(^) or empty. If Q = Ker(a:), 
then VQ = 0 since V ®Ak = 0 (using that F is ^4-projective) so VP — 0 
for all P and hence F = 0. Thus M/Ker(/), being a union of its finitely 
generated ^.G-submodules, is zero, s o / = 0. 

We have now shown that ®^ k is exact, full, and faithful, and that 
every B comodule is isomorphic to one of the form V ®Ak. It follows 
that ®A k is an equivalence of categories by [1, (1.2), p. 49], completing 
the proof. 

A major application of the theorem is to the case where A = k[G]H 

where H is an affine algebraic subgroup of G such that the quotient 
G/H is an affine variety. In this case A has no non-trivial G-stable ideals, 
since the radical of such an ideal, which is necessarily G-stable also, 
corresponds to a G-stable subvariety of G/H, of which there are no proper 
such. In this case the inverse equivalence to ®A k is the induction 
functor of [2, p. 1-14]. This functor has several descriptions; the one 
adopted here [2, p. 3] is chosen for its convenience in the proof of the 
preceding assertion. Let X be a rational 7/-module, and define a right 
//-module structure on k[G] ® ^ b y (f®v)h=f-h® h~lv. Then 
(k[G] ® X)H is a rational G-module, denoted X\§, and called the G 
module induced from H. It has the property that, for all G-modules, Y, 
HomG(7, X\%) = Hom#(F, X) [2, Prop. 1.4, p. 9]. It is, moreover, clear 
that, as a functor, ( ) |g is left exact, preserves arbitrary direct sums, and 
carries //-modules to A.G-modules. From these facts we will deduce, via 
the theorem, that ( ) \% is exact, a result first obtained in [2, Thm. 4.3, 
p. 9]. 

COROLLARY 1. Let G be an affine algebraic group over k, H an affine 
algebraic subgroup and assume the quotient G/H is an affine variety. Then 
the induction functor from rational H-modules to rational G-modules is 
exact. 

PROOF. We let A = k[G]H = k[G/H] as above. Since Gx(G/H){e] = //, 
we have, in the notation on theorem, that B = k[G] ®A k = k[H]. Also, 
we have k[H] |§ = k[G] ; for k[G] ® k[H] = k[G x / / ] , and the above right 
//-action becomes fh(g, x) = f(hg, xh~^\ so k[G x H]H = k[G\. If V is 
an //-module, it was shown in the proof of the theorem that there exists 
an exact sequence 0 -• K-» k[H]œ -+ klH]^ of//-modules. Applying the 
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induction functor, which is left exact and preserves direct sums, we obtain 
an exact sequence 0 -> V\% -• k[G\a) -• k[G]W. Now applying ®Ak 
as in the proof of the theorem we obtain (V\%) ®A k = V. It is now easy 
to see that induction preserves epimorphisms, so is exact; if V -> W is 
an //-module surjection and Cthe cokernel of V\% -• W|#, then C ®^ Â: 
= 0. By faithfulness C = 0 and the induced map is a surjection. 

As a second application of the theorem, we consider infinitesimal sub­
groups in positive characteristic [4, (1.4), p. 271]. Assume that k has char­
acteristic p > 0 and let o: k[G] -> &[G] be a(f) =fp. For « = 1, 2, 3, . . . 
let 4̂W = tf-w(A:[G]). Then An is a G-stable subalgebra of &[G] and has no 
non-trivial G-stable ideals. Let a: An -+ Ä: be given by evaluation at e, 
and consider Bn = fc[G] ® ̂  fc; if / = {/e k[G] \f(e) = 0}, then Ker(a) = 
an{I) so that Bn = A:[G]/(7w(hA:[G]. This is the Hopf algebra of the infini­
tesimal group scheme Gn which is the kernel of the w-th-power of the 
Frobenius on G [4, (1.4), p. 271], Rational GM-modules are, by defini­
tion, 2?w-comodules. Hence we conclude with the following corollary. 

COROLLARY 2. Let G be an affine algebraic group over k, and assume k 
has positive characteristic p. Let A „be the subalgebra of k[G] consisting of 
all pn-powers and let Gn be the finite group scheme which is the kernel of the 
n-th-power of the Frobenius on G. Then ®An k is an equivalence between 
the category of An,G-modules and the category of rational G „-modules. 

If n ^ m, we have a surjection Bn -• Bm, and if V is a i?w-comodule 
with coaction V -> V ® Bn, composition with this surjection gives a 
coaction V -> V ® Bm making F a i?m-comodule. This operation is a func­
tor from Gw-modules to Gw-modules, called restriction. It is interesting to 
interpret this functor in the light of corollary 2; here we map ,4M.G-modules 
to ^w.G-modules, the operation sending the v4„.G-module M to Am ®An 

M, which is an ^w.G-module. (To see that this does coincide with the 
above restriction functor, we observe that (Am ® ^ M M ) ®Am k = M ®Am 

k.) Similarly, we can restrict from G-modules to GM-modules. Here the 
operation sends M to An ®k M. 

Finally, we note that the converse of the theorem is also valid. That 
is, if for every choice of a the functor ®A k is an equivalence, then A 
has no non-trival G-stable ideals. For if / were a non-zero G-stable ideal, 
then choose a so that Ker(a) contains /. The sequence 0 -> / -> A -> 
All -» 0 of G-modules must remain exact after tensoring with k via a, so 
I ®Ak = 0, and hence 1 = 0 since ®A k is an equivalence. 
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