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ON ESTIMATING PARTIAL DERIVATIVES FOR BIVARIATE 
INTERPOLATION OF SCATTERED DATA 

HIROSHI AKIMA 

ABSTRACT. The method for estimating partial derivatives in 
bivariate interpolation and smooth surface fitting for scattered 
data previously developed by the author (ACM Trans. Math. 
Software, June 1978) and its slightly modified version (IMSL, 
Edition 8) are reviewed from both theoretical and practical view­
points. Theoretical aspects considered include (a) correspondingly 
smooth changes of the estimated results with changes in data-
point configurations and (b) invariance of the results under cer­
tain types of linear coordinate transformation. The IMSL-8 
version runs faster, but the ACM version generally performs 
better. Some modifications of the method are considered and 
tested with examples. 

1. Introduction. Bivariate interpolation of a Ç1 continuous function of 
scattered data (or fitting a smooth surface to scattered data) is an active 
problem of interest. (The terms "bivariate interpolation" and "surface 
fitting" are used synonymously in this paper.) Some time ago, the author 
proposed a method of bivariate interpolation and smooth surface fitting 
[1], and its associated algorithm was designated as ACM Algorithm 526 
[2]. A slightly modified version of the algorithm has been included in 
Edition 8 of the IMSL (International Mathematical and Statistical Li­
braries, Inc.) library [3] as the IQHSCV routine. 

The method of bivariate interpolation consists of the following three 
major steps: Step 1, Triangulation of the x-y plane (i.e., dividing the plane 
into a number of triangles) using the max-min angle criterion (that dictates 
maximizing the minimum angle of triangles) described by Lawson [4] ; 
Step 2, Estimation of first and second partial derivatives at each data 
point; and Step 3, Fitting of a fifth-degree polynomial in x and y in each 
triangle. Step 2, estimation of partial derivatives, further consists of the 
following two substeps: Substep 2.1, Estimation of first partial derivatives, 
zx and zy\ and Substep 2.2, Estimation of second partial derivatives, zxxy 

zxy, and zyy, as the first derivatives of zx and zy with the same procedure 
as used in Substep 2.1, i.e., zxx = (zx)x, zxy = [(zx)y + (zy)x]/2, zyy = (zy)y. 
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The ACM-526 and IMSL-8 versions are different only in the method of 
estimating first derivatives used in Substeps 2.1 and 2.2. 

This paper reviews the two versions of the method of estimating first 
partial derivatives from both the theoretical and practical viewpoints. It 
considers and tests some modifications of the procedure with examples. 

2. Outline of the method of estimating first partial derivatives. The method 
for estimating first partial derivatives at data point P0 , used in ACM 
Algorithm 526, consists of several procedures. It selects nc data points, 
Pt-, i = 1, 2, . . . , nc, that are closest to P0 in the x — y plane among all 
given data points. It next calculates, for every combination of / and j , 
a vector product V(j = PQP{ x P0PJ9 /, j = 1, 2, . . . , nc, where P0, Ph 

and Pj are arranged to be counterclockwise in the x — y plane so that the 
z component of V{j is positive. It next calculates the vector sum, V, of all 
K,-/s. Finally, it estimates first derivatives, zx and zy, as the slopes of a 
plane that is normal to the vector sum, or as 

zx = — (x component of V)/(z component of K), 

zy = — (y component of V)j(z component of V). 

The method used in the IMSL-8 version calculates the vector product 
on each triangle determined by the triangulation of the x — y plane. Thus, 
it spares the selection of nc data points closest to the data point in question. 

3. Disadvantages. The method for estimating first derivatives used in 
ACM Algorithm 526 has some disadvantages. First, there is no basis for 
the user to select nc, the number of points to be used for calculating the 
vector products. It is painful for the user to have to select a number 
without a basis. Second, since the method uses closest data points, it is 
inconsistent with the max-min angle criterion used in the triangulation 
of the x — y plane. Third, the method requires additional computation 
time for selecting nc closest data points. 

The method used in the IMSL-8 version is designed to eliminate all 
these disadvantages of the ACM-526 version. Unfortunately, however, 
the use of the IMSL-8 version sometimes produces excessive undulations 
(wiggles) in the resulting surfaces. 

In addition to the above disadvantages, there is another disadvantage 
that is common to the above two versions of the method. Both the ACM-
526 and IMSL-8 versions of the method sometimes lack continuity in the 
change of the resulting surface with the change of the data, as exemplified 
by the following example. Consider a configuration of three data points, 
A, B9 and C, where the projections in the x — y plane of two data points, 
A and B, are on the convex hull of the data range, and the projection of 
another data point, C, is inside the convex hull and near the midpoint 
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of the projection of line segment AB. The projections of these three points 
form a triangle when the x — y plane is triangulated. Consider further 
that the projection of C moves toward the projection of AB. The contribu­
tion of the triangle (i.e., the vector product of AB and AC) remains non­
zero, unless the three points are collinear in the three-dimensional space, 
as long as the projection of C is not on the projection of AB. When the 
projection of C is on the projection of AB, however, the contribution is 
zero since triangle ABC does not exist any more. Thus, the fitted surface 
changes discontinuously against the changes in the data point configura­
tion. 

4. Theoretical aspects. The discontinuous behavior of the interpolated 
result (or the fitted surface) against the change in the data point con­
figuration, just described above, is undesirable theoretically as well as in 
practice. This disadvantage must be corrected. 

For some applications of a method of bivariate interpolation, invariance 
of the method under certain types of coordinate transformation is desired. 
(Invariance of the method under coordinate transformation here means 
the property that the first interpolated and then transformed result coin­
cides with the first transformed and then interpolated result.) Both the 
ACM-526 and IMSL-8 versions of the method of bivariate interpolation 
including the method for estimating partial derivatives are invariant 
under the following types of linear coordinate transformation: 

o rotation of the x — y coordinate system ; 
o linear scale transformation of the z coordinate ; 
o tilting of the x — y plane, i.e., 

x™ = *<*>, 
y<2) = ya>9 

z(2) — Z(D -j. ax(D _j_ bya\ where a and b are arbitrary constants. 

In modifying the method, we intend to retain the desirable property of 
invariance under these types of linear coordinate transformation. This 
theoreical aspect imposes constraints on the modification of the method 
rather than providing guidelines for the modification. Retaining the prop­
erty of invariance under these types of linear coordinate transformation 
dictates that geometric quantities such as the length or angle in the x — y 
plane be used instead of the geometric quantities in the three-dimensional 
space. 

5. Improvement. Examination of the method outlined in §2 reveals that 
far away points are given greater weights in estimating the partial deriva­
tives. Examination of partial derivative values estimated by the IMSL-8 
version has also indicated that poor estimation of partial derivatives 
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usually occurs when a thin (or slim) triangle is involved. These observa­
tions suggest that a small weight be given to the contribution of a large 
triangle or a thin triangle (or the vector product of two vectors separated 
by a narrow angle) when the vector sum is calculated. In the rest of this 
paper, we examine whether or not the IMSL-8 version of the method for 
estimating partial derivatives can be improved by weighing the contribu­
tion of each triangle. 

To get a small weight for a large triangle, we may wish to take the 
reciprocal of the product of the lengths (measured in the x — y plane) of 
the two sides meeting at the projection of the data point in question as a 
possible weight for the triangle. We denote the reciprocal by wv To get a 
small weight for a triangle when the angle of the triangle at the data 
point in question is either small or close to K (or 180°), we may wish to 
take the sine value of the angle (measured in the x — y plane) at the data 
point in question as a possible weight for the triangle. We denote the 
sine value by w2. (We may wish to take the minimum of the three sine 
values at the three vertices as another possible weight, but the test results 
have indicated that the use of this weight has no advantage over the use 
of w2. We will not consider this weight in the rest of this paper.) Combin­
ing the above two weights, wx and w2, we may wish to take the product 
of the powers of w1 and w2 as the weight for the triangle ; we consider the 
weight, w, expressed by w = (vt^**^) * (w2**«2), where the symbol of 
single asterisk implies multiplication and the symbol of double asterisks 
implies exponentiation as in the Fortran language . (Obviously, modifica­
tions with these weights will reduce to the IMSL-8 version when one sets 
«! = 0 and n2 = 0.) 

When the triangle is getting thinner and reduces to a line segment as in 
the example discussed in §3 above, the second weight described here 
converges to zero and, therefore, the contribution of the triangle also 
tends to zero if the second weight is used. The discontinuous behaviors of 
both the ACM-526 and IMSL-8 versions discussed there will be eliminated 
by the use of the second weight. 

We have done some sample calculations to test the effectiveness of the 
use of these weights. As the first example, we have generated 30 data points 
randomly in the x — y plane and generated also randomly a set of coef­
ficients of a second-degree polynomial in x and y. We have estimated the 
five partial derivatives at each data point and calculated the rms (root-
mean-square) deviation for each of the partial derivatives over all the 30 
data points. The result is shown in Table 1. The rms deviations resulting 
from the ACM-526 version generally decrease as the number of closest 
points increases in this example. The IMSL-8 version results in a large 
rms deviation for zxx. Even a modified version that uses w2 only (i.e., nx = 
0) outperforms not only the IMSL-8 verision but also the ACM-526 
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Table 1. The rms deviations of the estimated partial derivatives, 
obtained from an example of 30 data points and a second-degree 
polynomial. 

Method and Parameter rms deviations for 

3 
4 
5 
6 
7 
8 

z* 
0.278 
0.264 
0.226 
0.175 
0.139 
0.148 

zy 

0.289 
0.144 
0.149 
0.110 
0.124 
0.132 

%xx 

1.048 
0.722 
0.841 
0.500 
0.418 
0.413 

Zxy 

0.732 
0.669 
0.487 
0.136 
0.118 
0.097 

Zyy 

2.154 
0.570 
0.521 
0.270 
0.279 
0.263 

IMSL-8 («! 

« j = 0 

» ! = 1 

«x = 2 

«i = 3 

= o,«2 

«2 = 

«2 = 

«2 = 

«2 = 

= 0) 

1 
2 
3 
4 

0 
1 
2 

0 
1 
2 

0 
1 
2 

0.180 

0.128 
0.112 
0.119 
0.125 

0.072 
0.092 
0.106 

0.053 
0.092 
0.112 

0.068 
0.086 
0.109 

0.118 

0.089 
0.090 
0.092 
0.093 

0.049 
0.059 
0.064 

0.035 
0.049 
0.056 

0.046 
0.053 
0.059 

2.854 

2.706 
1.270 
0.681 
0.579 

1.148 
0.504 
0.393 

0.239 
0.209 
0.220 

1.356 
0.858 
0.346 

0.425 

0.208 
0.105 
0.105 
0.113 

0.431 
0.165 
0.099 

0.081 
0.059 
0.065 

0.399 
0.384 
0.213 

0.494 

0.219 
0.227 
0.236 
0.249 

0.492 
0.433 
0.418 

0.171 
0.147 
0.174 

0.463 
0.397 
0.383 

version. A modified version that uses both wx and w2 performs even better. 
Table 2 shows the result of a similar calculation with a randomly 

generated third-degree polynomial. The same set of 30 data points is used. 
In this example, the rms deviations resulting from the ACM-526 version 
do not decrease as the number of closest points increases. The IMSL-8 
version results in a large rms deviation particularly for zxx. A modified 
version that uses w2 only outperforms the IMSL-8 version and performs 
at least as good as the ACM-526 version. As in the previous example, a 
modified version that uses both wx and w2 outperforms the ACM-526 
version. 

As the third example, we compare, with each other, six versions of the 
method; (A) ACM-526 version (nc = 5), (B) IMSL-8 version, (C) modified 
version with nx = 0 and n2 = 2, (D) modified version with nx = 1 and 
« 2 = 1 , (E) modified version with nx = 2 and n2 = 1, and (F) modified 
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Table 2. The rms deviations of the estimated partial derivatives, 
obtained from an example of 30 data points and a third-
degree polynomial. 

Method and Parameter rms deviations for 

3 
4 
5 
6 
7 
8 

** 
0.420 
0.307 
0.466 
0.486 
0.398 
0.439 

zy 

0.461 
0.375 
0.438 
0.450 
0.414 
0.463 

zxx 

5.637 
1.649 
1.553 
1.600 
1.127 
1.085 

Zxy 

2.963 
1.141 
0.979 
0.826 
0.703 
0.619 

zyy 

8.264 
1.559 
1.461 
1.315 
1.171 
1.290 

IMSL-8 («i 

«1 = 0 

« ! = 1 

«j = 2 

«! = 3 

= 0, M2 

n2 = 

«2 = 

«2 = 

«2 = 

= 0) 

1 
2 
3 
4 

1 
1 
2 

0 
1 
2 

0 
1 
2 

1.305 

0.766 
0.441 
0.418 
0.420 

0.412 
0.386 
0.396 

0.321 
0.376 
0.404 

0.274 
0.355 
0.402 

0.540 

0.357 
0.351 
0.351 
0.352 

0.322 
0.275 
0.281 

0.306 
0.255 
0.267 

0.347 
0.267 
0.277 

21.106 

17.822 
4.738 
0.994 
1.671 

5.642 
0.806 
1.127 

0.615 
0.685 
0.754 

2.165 
1.424 
0.812 

2.640 

1.063 
1.174 
1.342 
1.360 

1.325 
0.993 
1.081 

0.609 
0.511 
0.485 

0.946 
0.730 
0.493 

2.612 

1.496 
1.481 
1.528 
1.590 

1.880 
1.882 
1.887 

1.081 
1.208 
1.304 

1.418 
1.257 
1.277 

version with nx = 3 and «2 = 1. A set of randomly generated 20 data 
points is used in this example. The data values at these data points are 
taken from the original surface that is a randomly generated second-
degree polynomial. We have tried to reproduce the original surface by 
fitting surfaces to the data points and values with the above six versions of 
the method. The results are shown in Figures 1 and 2. Figure 1 depicts 
the contour maps of six surfaces. In each contour map in Figure 1, heavy 
contours are for the fitted surface, while light contours superimposed are 
for the original surface. (The difference between a heavy line and its 
corresponding light line represents the error.) As another way of looking 
at the performances of various versions of the method, Figure 2 depicts 
the contour maps of the differences between the interpolated (fitted) and 
expected (original) values. Figure 2 indicates that the modified version, 
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A) ACM-526 VERSION (NCP=5). NDP=20 (B) IMSL-8 VERSION NDP=20 

(C) MODIFIED N1=0 N2=2 NDP=20 CD) MODIFIED Nl=1 N2= i NDP=20 

(E) MODIFIED Nl=2 N2=l NDP=20 CF) MODIFIED Nl=3 N2=1 NDP=20 

FIGURE 1. Contour maps of the surfaces fitted by six versions of the method to a set 
of 20 data points and a second-degree polynomial. (Heavy contours are for the fitted 
surfaces, and light contours are for the original surface.) 
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(A) ACM-526 VERSION (NCP=5), NDP=20 (B) IMSL-8 VERSION 
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(C) MODIFIED N1=0 N2=2 NDP=20 CD) MODIFIED NI=1 N2=l NDP=20 

(E) MODIFIED NI=2 N2=l NDP=20 ïFï MODIFIED NI=3 N2=l NDP=20 

FIGURE 2. Contour maps of the differences between the fitted and original surfaces 
depicted in Figure 1. 
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(E) MODIFIED NI=2 N5=l NDP=50 IF) MODIFIED NI-3 N2=1 NDP=50 

FIGURE 3. Contour maps of the surfaces fitted by six versions of the method to the data 
taken from the previous paper [1] consisting of 50 data points. (Heavy contours are for 
the fitted surfaces, and light contours are for the original surface.) 
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(A) ACM-526 VERSION (NCP=5) NDP=50 (B) IMSL-8 VERSION 

(C) MODIFIED N1=0 N2=2 NDP=50 (D) MODIFIED N! = l N2= 1 NDP=50 

(E) MODIFIED Nl=2 N2=l NDP=50 (F) MODIFIED Nl=3 N2=l NDP=50 

FIGURE 4. Controur maps of the differences between the fitted and original surfaces 
depicted in Figure 3. 
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(E) outperforms both the ACM-526 version, (A), and the IMSL-8 version, 
(B). 

As the fourth (and the last) example, we compare with each other the 
same six versions of the method as in the third example but with a dif­
ferent data set. Used in this example is the same set of 50 data points and 
data values as used in Figure 2 of a previous paper by the author [1], 
The results are shown in Figures 3 and 4 of this paper in the same format 
as in Figures 1 and 2 of this paper, respectively. (The set of light contours 
in each map of Figure 3 of this paper is the same as Figure 2 (a) of the 
previous paper. The set of heavy contours in Figure 3 (A) of this paper is 
the same as Figure 2 (f) of the previous paper.) It is observed from Figures 
3 and 4 of this paper that any modified version outperforms the IMSL-8 
version, (B), and that the modified version, either (E) or (F), outperforms 
the ACM-526 version, (A). 

Summarizing the results of these tests, we may suggest that the combined 
use of the two weights, wx and w2, with nx = 2 and n2 = 1 is a good 
choice. 

6. Conclusion. We have reviewed the method for estimating first partial 
derivatives used in the ACM-526 and IMSL-8 versions of the method of 
bivariate interpolation and smooth surface fitting for scattered data. 
In an attempt to improve the performance of the IMSL-8 version of the 
method, we have considered an idea of using weights in calculating the 
vector sum and tested the idea with examples. The test results have in­
dicated that replacement of the weighted vector sum for the simple vector 
sum in the IMSL-8 version can improve its performance to the perfor­
mance level of the ACM-526 version or better, retaining all the advantages 
of its own. Use of the weight that is based on the angle of the triangle in 
calculating the vector sum also eliminates the discontinuous behaviors 
that are observed sometimes in the applications of both the ACM-526 
and IMSL-8 versions of the method. (It must be noted, however, that 
the discontinuous behavior cannot be eliminated completely since the 
overall interpolation scheme is based on a triangulation; the triangulation 
can change abruptly as the data points are moved.) 
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