
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 14, Number I, Winter 1984

A STORAGE-EFFICIENT METHOD FOR CONSTRUCTION
OF A THIESSEN TRIANGULATION

A.K. CLINE AND R.L. RENKA

ABSTRACT. This paper describes a storage-efficient method and
associated algorithms for constructing and representing a tri­
angulation of arbitrarily distributed points in the plane.

1. Introduction. This paper addresses the following problem. Given a set
of nodes (Xi9 Y{), i = 1, . . . , N, arbitrarily distributed in the X — Y
plane, construct a triangulation with the nodes as vertices and which is
as nearly equiangular as possible. The primary application of such a
triangulation is as a preliminary step in a triangle-based method for
bivariate interpolation of data values associated with the nodes [7], [5],
[1], [2]. The triangulation also serves as an efficient mechanism for solving
closest-point problems such as finding the two closest nodes and finding
a largest circle containing none of the nodes. These problems arise in a
variety of applications, e.g., wire layout, clustering, facilities location,
and constructing the feasible polygon for linear programming in two
variables with Af constraints [13]. Another application of the triangulation
method is as an automatic mesh generator for a triangle-based finite
element code. Lists of element node numbers and boundary node numbers
can be generated from a set of nodal coordinates which are concentrated
in regions where the solution varies most rapidly. In addition to generating
the mesh, the method guarantees its validity. Simpson [16] provides and
discusses the importance of an algorithm which verifies the consistency of
a set of finite element input data.

This paper describes the algorithms implemented in an extensive and
well-documented software package for triangulation and interpolation
written in a subset of ANSI standard FORTRAN accepted by the PFORT
verifier [12]. The software listing is found in Renka [9], and machine-
readable code may be obtained from the second author. The primary goal
of this research was a triangulation package requiring less storage than
those previously available. This was achieved at the cost of a relatively
small loss in time efficiency over alternative packages.

This report was extracted, with minor revisions, from the second author's PhD
dissertation presented to The University of Texas at Austin in May, 1981. The first
author's research was partially supported by NASA Grant NAG1-79.

Copyright © 1984 Rocky Mountain Mathematics Consortium

119

120 A. K. CLINE AND R. J. RENKA

§2 presents definitions and theory necessary to describe the algorithms.
A more detailed analysis is found in Renka [8]. §3 describes the algorithms
for constructing a Thiessen triangulation. This presentation is independent
of a data structure for representing the triangulation. In §4 several data
structures are analyzed including one which requires only seven words of
storage for each node. Execution timings were also performed and are
discussed in §5.

2. Fundamental definitions and triangulation theory.

DEFINITION 1. For three points P0 = (X0, Y0), PX = (Xl9 Y^, and
P2 = (X2, Y2) in the plane with Px # P2, P0 LEFT Px -» P2 if and only if
(X2 - XJiYo - Yx) ^ (X0 - X1)(Y2 - Y{). Thus we say PQ is left of
P1 -• P2 if and only if P0 is to the left of or on the line through Px and P2

as seen by an observer at P1 facing P2. Also we say P0 STRICTLY LEFT
Pi -> P2 if the inequality is strict.

DEFINITION 2. A region of the plane is convex if and only if for any two
points contained in the region the line segment connecting the two points
also lies in the region. The convex hull of a finite set of points in the
plane is the smallest convex region which contains the points. Note that
such a convex hull is closed and thus contains the points which define it,
and the convex hull of a finite set of noncollinear points has at least
three of the points on its boundary.

Let S be an ordered set of distinct points in the plane (Xt-, Yt), i = 1,
2, . . . , N where TV ^ 3. It is assumed that the points are not all collinear.
Let H be the convex hull of S and let B be the boundary of H.

DEFINITION 3. A node is an element of S. Each node is identified with
its index in S (node / = (Xt-, Yt)) and will be denoted by this index or by
NQ, NI, N2, . . . indicating arbitrary indices. The distinction between a node
and its index will be clear from the context.

DEFINITION 4. A triangle is the convex hull of three noncollinear nodes,
referred to as vertices. The triangle with vertices 7Vl5 N2, and N3 is denoted
(Nh Nj9 Nk) with Nk STRICTLY LEFT N{ -» Nj for (/, j , k) s {(1, 2, 3),
(2,3, 1), (3, 1,2)}.

DEFINITION 5. A triangulation of S is a set of triangles T with the fol­
lowing properties.

a) Each triangle contains no node other than its vertices,
b) the interiors of the triangles are pairwise disjoint, and
c) T covers H, i.e., every point in H is contained in a triangle of T.

DEFINITION 6. Let T be a triangulation of S. For each triangle (Nh N2,
N3) of T, the vectors Nx -• N2, N2 -> N3, and N3 -> A^ are referred to as

STORAGE-EFFICIENT METHOD 121

edges of T. The undirected line segment corresponding to an edge Nx -> N2

is referred to as an arc and is denoted Ni — N2 or N2 — Nlt Note that
edges and arcs are associated with a triangulation, and edges are directed
while arcs are not.

A boundary edge of T is an edge A^ -> N2 such that P LEFT Ni -* N2

for all P e H. Thus each point of a boundary edge lies on B. An interior
edge is an edge which is not a boundary edge. The arc associated with a
boundary (interior) edge is a boundary (interior) arc.

A boundary node is a node which is an endpoint of a boundary edge
and thus lies on B. An interior node is a node which is not an endpoint of
a boundary edge.

The node opposite an edge Ni -» N2 is the node Nz such that (Nh N2, N3)
is a triangle of T. N3 is unique by Definition 5b.

DEFINITION 7. Two nodes are adjacent to each other if and only if they
are the endpoints of a common arc. A neighbor of a node N0 is a node
which is adjacent to N0. The degree of a node N0 is the number of neigh­
bors of A .̂

The adjacency set for a node NQ is an ordered set containing the neigh­
bors of No in counterclockwise order. The first neighbor is arbitrary if
N0 is interior. If N0 is a boundary node, the first and last neighbors of N0

are the unique boundary nodes NF and NL such that N0 -> NF and NL ->
NQ are boundary edges.

The following observations were made by Lawson [4].

THEOREM 1. Let T be any triangulation of S with N being the number of
nodes, Nb being the number of boundary nodes which equals the number of
boundary arcs, Na being the number of arcs, and Nt being the number of
triangles. Then

Nt = IN - Nb - 2,

Na = Nt + N - 1 = 3N - Nb - 3,

N - 2 ^ Nt £ IN - 5 and 2N - 3 ^ Na ^ 3N - 6.

Note that the formula Na = Nt + N — 1 is a special case of Euler's
formula which holds for Nt representing the number of finite regions in
any connected planar graph.

DEFINITION 8. Given a triangulation T of S and a point P in the plane,
a node N0 is visible from P if and only if P can be connected to N0 by a
line segment which neither intersects nor overlaps an arc of T. (Line seg­
ments which meet in a "7" ' are said to intersect while .segments which
meet in a " K" do not.) P is said to be exterior to T if and only if P is not
contained in the convex hull of S.

122 A. K. CUNE AND R. J. RENKA

DEFINITION 9. A pair of triangles of T9 (Nl9 N2, N3) and (JV2, Nl9 JV4),
which share a common arc form a quadrilateral of T denoted (Nl9 N2,
N3, JV4). The quadrilateral is said to be strictly convex if the diagonals
Ni — N2 and N3 — NA intersect at an interior point of N1 — N2 and of
N3 — NA. A swap in this case is the replacement in T of (Nl9 N29 N3) and
(N2, Nl9 N±) by (W3, NA9 N2) and (N4, N3, N{). Thus, a swap in effect swaps
diagonals.

A swap leaves the parameters N9 Nb9 Na9 and Nt unchanged, and all
possible triangulations of S can be generated by applying swaps to a given
triangulation. These results are proved in Renka [8].

DEFINITION. 10. Given an interior arc Nx — N2 with corresponding
quadrilateral (Nl9 N29 N39 N4), the swap test is a decision on whether to
perform a swap based on either of the following criteria (which can be
shown to be equivalent).

a) The max-min angle criterion is the choice of the pair of triangles
which maximizes the minimum of the six interior angles when (Nl9 N2,
N39 JV4) is strictly convex. The decision will be positive if and only if a
larger minimum angle would result from the swap in this case. The decision
is defined to be negative if (Ni9 N29 N39 N4) is not strictly convex.

b) The circle criterion is the choice of the pair of triangles whose cir-
cumcircles do not contain the remaining vertices in their interiors. Equiv-
alently, the decision will be made to swap if and only if NA is interior to
the circumcircle of NÌ9 N29 and N3.

An arc is locally optimal if and only if it is a boundary arc or, if it is
interior, application of the swap test to it would not result in a decision
to swap.

DEFINITION I L A Thiessen triangulation is one in which all arcs are
locally optimal.

Consider the following method for constructing a triangulation of S.
For each node N0 define the Thiessen region associated with N0 to be the
closure of the set of points in the plane which are closer to N0 than to
any other node. A pair of nodes Nx and N2 are said to be Thiessen neigh­
bors if and only if their corresponding Thiessen regions share one or more
points. If the regions share more than one point, Ni and N2 are strong
Thiessen neighbors. If the regions share exactly one point, Ni and N2 are
referred to as weak Thiessen neighbors. This is the neutral case corres­
ponding to four or more nodes lying on a common circle. A triangulation
may be obtained by connecting all pairs of strong Thiessen neighbors and
arbitrarily choosing k — 3 nonintersecting arcs connecting weak Thiessen
neighbors when k nodes lie on a common circle for k ^ 4. Both Lawson

STORAGE-EFFICIENT METHOD 123

[5] and Sibson [15] have proved that this triangulation satisfies Definition
11 above.

Figure 1 depicts a Thiessen region diagram with corresponding Thiessen
triangulation T. Note that Thiessen region vertices are circumcenters of
the triangles of T, and Thiessen region boundaries are composed of per­
pendicular bisectors of the arcs of T. Either diagonal may be chosen as
an arc in the neutral case depicted.

FIGURE 1. Thiessen Region Diagram and Corresponding
(Dual) Triangulation

Thiessen regions are also referred to in the literature as tiles and poly­
gons, and have been associated with the names Dirichlet and Voronoi.
The corresponding triangulation is also referred to as a Delaunay tri­
angulation. Rhynsburger [11] presents a brief history of the development
of these concepts. Other criteria for optimization have been suggested and
are currently being explored.

The triangulation algorithm which will be described in the following
section applies the swap test in an iterative fashion to produce a Thiessen
triangulation.

3. Algorithms. This section discusses algorithms for constructing and
obtaining information from a Thiessen triangulation. Some of the algo­
rithms are described in more detail than others, but none of the descrip­
tions make reference to a data structure. However, Algorithms 3 and 5
are designed specifically for a data structure in which the adjacency
information is explicit, i.e., the adjacency sets are easily obtained.

An overall description of the method will be followed by detailed
algorithms. Our basic approach to constructing the triangulation is as
follows.

124 A.K. CLINE AND R. J. RENKA

a) Optionally, presort the nodes (Algorithm 1).
b) Construct an initial Thiessen triangulation Tj of the first j nodes

where y is the smallest integer such that nodes 1, . . .,jare not all collinear
(Algorithm 2).

c) For k = j + 1, ..., N construct a Thiessen triangulation Tk of
nodes 1, ..., k as follows.

i) Find a triangle or a boundary arc or Tk_x which contains
node k, or a pair of boundary nodes which are visible from k if k is ex­
terior to Tk_i (Algorithm 3).

ii) If k lies on a boundary arc, connect it to the endpoints.
If k is contained in a triangle and does not lie on a boundary arc, con­
nect it to the three vertices. Otherwise connect k to all boundary nodes
which are visible from k (Algorithm 4).

iii) Optimize the mesh by applying a sequence of swap tests
(Algorithm 6) and the appropriate swaps to the interior arcs which are
opposite k (Algorithm 5).

One of the advantages of this method over alternatives is that it
provides for efficient updating of the data. To add a new node to the
triangulation, it is only necessary to execute Step c) an additional
time, rather than recreating the entire triangulation.

ALGORITHM 1. Presort the N nodes by applying an 0(iV*log(AO) quick
sort to either their X or Y components.

Algorithm 1 may be employed at the user's option to increase the
efficiency of the triangulation algorithms. It is not necessary but may be
computationally advantageous even for small values of N. Timing com­
parisons for randomly ordered nodes versus presorted nodes are presented
in §5.

The following algorithm initializes the triangulation. Except in the case
of collinearity, it results in a single triangle, formed by the first three
nodes as vertices.

ALGORITHM 2. Construct a Thiessen triangulation of nodes 1, ...,j
where j is the smallest integer such that the first j nodes are not all col-
linear. Such an integer exists by assumption and 3 ^ j S N. Note that
nodes 1, . . .,j — 1 define a line segment L with two of the nodes as
endpoints.

Step 1. Order the first j — 1 nodes by their distances from one of the
endpoints of L.

Step 2. Connect the first j — 1 nodes by making nodes Ni and N2
adjacent if and only if Ni immediately precedes or immediately follows
N2 in the ordering defined in Step 1.

Step 3. Connect j to each of the first y — 1 nodes.

STORAGE-EFFICIENT METHOD 125

Clearly, the triangulation constructed by Algorithm 2 contains no
strictly convex quadrilaterals and is thus a Thiessen triangulation. See
Figure 2.

FIGURE 2. Thiessen Triangulation Constructed by Algorithm 2.

The following algorithm may be used both to construct the triangula­
tion and to locate a point at which an interpolated value is to be computed.

ALGORITHM 3. Let T be a triangulation of S, let H be the convex hull
of S with boundary B, and let P be any point in the plane.

a) If P is in H and does not lie on B, find a triangle (Nh N2, N3) con­
taining P (set Ni, N2, and Af3 to the vertex indices of the triangle).

b) If P is exterior to T, set N3 to 0 and find the indices of a pair of bound­
ary nodes Ni and N2 such that Nh N2, and all boundary nodes encountered
as the boundary is traversed from Ni to N2 in counterclockwise order are
visible from P, no other nodes being visible from P.

c) If P lies on B, find the indices of the endpoints of a boundary edge
Nx -• N2 containing P, and set N3 to 0.

Let N0 be an arbitrary node (index).
Loop 1. (Initialization.)
Step 1. Set NF and NL to the (indices of the) first and last neighbors of

N0, respectively.
Step 2. If N0 is a boundary node and P NOT LEFT N0 -* NF, then set

Ni and N2 to N0 and NF, respectively, and go to Step 13. If TVQ is a bound­
ary node and P NOT LEFT NL -> A^, then set Nx and N2 to NL and N0,
respectively, and go to Step 15.

Step 3. Search the neighbors of A^ for a node N2 such that P NOT
LEFT Â 0 -• N2. If such a node exists go to Step 5.

Step 4. If P coincides with A^, then set Â 0 to NL ; otherwise set Â 0 to
the node opposite AfL -> N0 (the neighbor of A^ which immediately

126 A. K. CLINE AND R. J. RENKA

precedes NL in the adjacency set). Go to Step 1.
Loop 2. (Find a cone with vertex N0 and containing P.)
Step 5. Set Nx to the node opposite N2 -> NQ.
Step 6. If P LEFT N0 -• Nl9 then set N3 to NQ and go to step 7 ; other­

wise set N2 to Nx and go to step 5.
Loop 3. (Edge-hopping loop.)
Step 7. If P LEFT Nx -+ N2, then go to Step 11.
Step 8. If TV} -> 7V2 is a boundary edge, then go to Step 13.
Step 9. Set iV4 to the node opposite N2 -> A^.
Step 10. If P LEFT 7V0 -> 7V4, then set JV3 to Nx and A^ to A 4̂; otherwise

set N3 to N2 and N2 to N4. See Fig. 3. Go to Step 7.
Step 11. If N3 -• Ni is a boundary edge and P LEFT TV! -» 7V3, then set

Â2 to Nh N± to 7V3, and N3 to 0 and stop.
Step 12. If Nx -> N2 is a boundary edge and P LEFT 7V2 -* ^ i » t n e n s e t

7V3to 0. Stop.
Loop 4. (Counterclockwise boundary traversal).
Step 13. Set NB to the first neighbor of N2.
Step 14. If P NOT LEFT N2 -+ NB, then set N2 to ^ 5 and go to Step

13.
Loop 5. (Clockwise boundary traversal).
Step 15. Set NB to the last neighbor of A^.
Step 16. If P NOT LEFT NB -• Nl9 then set Nx to NB and go to Step

15.
Step 17. Set N3 to 0. Stop.

Several theoretical properties regarding this algorithm are proven in
Renka [8] including that it correctly terminates after a finite number of
operations. It is also shown that the number of iterations of Loop 1 is at
most two, of Loop 2 is at most the degree of 7V0, of Loop 3 is at most Na

(the number of arcs of P), and of loops 4 and 5 is at most Nb (the number
of boundary nodes). Since Na = 3N — Nb — 3, the operation count for
the entire algorithm is bounded by an expression of the form Kx + K2N +
K3Nb. The actual operation count depends on the proximity of P to the

FIGURE 3. Example of Loop 3.

STORAGE-EFFICIENT METHOD 127

starting node N0. If a sequence of interpolation points are to be located,
NQ may be taken to be one of the nodes determined by the previous call.
This gives good results when the points are ordered in some typical
fashion, such as the natural ordering on a rectangular grid.

In constructing the triangulation, N0 is chosen to be the node which
was most recently added. If the nodes are ordered by Algorithm 1, the
new node to be added, P, is always exterior to T and N0 is always a
boundary node which is visible from P (except in certain collinear situa­
tions). Thus the algorithm consists essentially of Loops 4 and 5 and has
an operation count of the form 0(Nb). Our test results, however, indicate
that the operation count does not increase with Nb.

ALGORITHM 4. Given a triangulation Tk_h a new node to be added k,
and nodes Nh N2, and N3 determined by Algorithm 3,

a) if 7V3 T* 0, then make k adjacent to Nx, N2, and JV3, and
b) if JV3 = 0, then make k adjacent to 7Vl5 N2, and all boundary nodes

encountered as the boundary is traversed from A^ to N2 in counterclock­
wise order.

The details of the algorithm depend on the data structure and are
omitted. See Figure 4.

k

FIGURE 4. Examples of Algorithms 4a and 4b.

Algorithm 4 clearly produces a triangulation of nodes 1, . . .,k when
k does not lie on an arc. The case of k lying on an arc is discussed in
Renka [8].

ALGORITHM 5. Given a triangulation Tk constructed by adding node k
(Algorithm 4) to a Thiessen triangulation Tk_l9 optimize the triangulation.

Step 1. Set Nx and NF to the first neighbor of k.
Step 2. Set N2 to the node opposite k -» Nx.
Step 3. If Nx -» N2 is a boundary edge, then go to Step 6.
Step 4. Set N3 to the node opposite N2 -> Nh

128 A. K. CLINE AND R. J. RENK A

Step 5. Test N1 — N2 for a swap. If the test is positive, then swap
Nx — N2 for k — 7V3, set N2 to 7V"3, and go to Step 3.

Step 6. Set Nx to N2.
Step 7. If Ni = NF or N1 -• k is a boundary edge, then stop; otherwise

go to Step 2. See Figure 5.

N 3 N2

k k

FIGURE 5. Swap Applied by Algorithm 5.

The proof that Algorithm 5 produces a Thiessen triangulation is
provided by Lawson [5].

ALGORITHM 6a. Given the coordinates of the vertices of a quadrilateral
of T, (Nl9 N2, N3, N4), set the logical variable SWPTST to TRUE if

SIN12 EE ((*! - X3)(X2 - X3) + {Y1 - Y3)(Y2 - Y3))((X2 - Xi)(Y1 - F4)
- (X, - X,)(Y2 - Y,)) + ((X, - X3)(Y2 - Y3)
- (X2 - X3)(YX - Y3))((X2 - X,)(Xl - XÒ
+ (Y2 - Y,){YX - F4)) < 0.

Otherwise set SWPTST to FALSE. A swap is to be applied if and only if
SWPTST is TRUE.

THEOREM 2. Algorithm 6a produces the correct decision on the swap test
{assuming computation is exact).

PROOF. Let a\ and a2 denote the interior angles at N3 and N^ respec­
tively. (Refer to Figure 6). From geometry, the measure of the circular is
subtended by a2 is smaller than twice the measure of a2 if and only if
7V4 is interior to the circle circumscribing Nh N2, and N3. Furthermore
the arc subtended by a\ has twice the measure of a±. Since the sum of
the measures of the arcs is 2TU, we may conclude that 7V4 is interior to
the circumcircle (i.e., a swap should be performed) if and only if a\ + a2

> %. Equivalent to a\ + a2 > % is sin(ai + a2) < 0 since ai + a2 <
2%. Finally sin(ai + a2) = cos(ai) sin(a2) + sin(ai) c o s ^) and the

STORAGE-EFFICIENT METHOD 129

((X1 -X3)(X2 - X3) + (Y1 - Y3)(Y2 - Y3))
"" (X?l - *3)2 + ~(Y^~ W ' ^ (* 2 - *3)2 + (Y2 - r3)2)1/2~

((jr2 - ^ 4) (n - Yd - (Jf! - jr4)(^2 - YÒ)
' ~W2 - X\f + (y2 - W ' 2 « * ! _ JQ2 + (^ - 74)2)l/2

• «* i - X^Y2 - Y3) - (X2 - X3)(YX - Y3))
+ j(x^x3y + (Y1 - Y3W\{X2 - x3y + (Y2 - r3)

2)1/2

((X2 - XA)(X1 - X,) + (Y2 - YA)(Y1 - YJ)
Wi- XA)2 + (Y2 - Y,W\{Xl - X,)2 + (Fi - ^)2)1/2 '

identical denominator of these terms is positive.

FIGURE 6. Quadrilateral Referred to in Algorithm 6a.

Note that the swap test of Algorithm 6a requires only ten multiplica­
tions and thirteen additions. This is a considerable improvement over
algorithms which compute quantities monotonically related to the angles
and do comparisons.

Algorithm 6a may produce an incorrect decision due to floating-point
arithmetic error when sin(ai + a2) is near 0. This can only occur in the
neutral case (ai + a2 = iz) and when the four vertices are nearly collinear
(cri a n d oc2 both near 0 or %). The numerical instability in the neutral
case has no ill effects except that the choice of diagonal arcs in a uniform
rectangular grid is neither predictable nor consistent, resulting in a dis­
pleasing appearance. No attempt is made to remedy this situation in our
code.

130 A. K. CLINE AND R. J. RENKA

On the other hand, it is critical that the correct decision be made when
the quadrilateral vertices are nearly collinear as the following examples
show.

EXAMPLE 1. Consider the four-node triangulation depicted in Figure
7a. A perturbation of this triangulation is depicted in Figure 7b. Node 4
was found to be exterior to T3 = {(1, 2, 3)}; but due to roundoff error,
Algorithm 6a might produce the decision to apply a swap to (1, 2, 3, 4),
destroying the triangulation. Thus the swap test should be negative
(SWPTST = FALSE) when a\ and a2 are approximately zero.

a> b)
i i

4 4

FIGURE 7. Triangulation with Nearly Collinear Nodes.

EXAMPLE 2. In the triangulation depicted in Figure 8a, Node 4 was
found to be interior to T3 = {(1, 2, 3)} while Node 5 was determined to
be exterior to T4. However, due to roundoff error, Algorithm 6a applied
to (2, 1, 5, 4) resulted in the decision not to swap, leaving the triangulation
nonoptimal. If a swap had been applied, it would have been followed by
a swap applied to (4, 1, 5, 3) resulting in the Thiessen triangulation shown
in Figure 8b. Note that the null or nearly null triangle (5, 2, 4) will be
eliminated if a new node is added to the right of 5 -• 2. Thus the test
should be positive when both a\ and a2 are approximately equal to %.

a) b)

FIGURE 8. Triangulation for Example 2.

The following alternative algorithm eliminates this numerical in­
stability and is the method implemented in our software package.

ALGORITHM 6b. Given the X and Y coordinates of Nh N2, Nz, and 7V4,

STORAGE-EFFICIENT METHOD 131

where (Nl9 N2, Nz, N4) is a quadrilateral of T, proceed by the following
steps.

Step l .Se tCOSlandCOS2to(A r
1 - j r 3) (X 2 -^3) + (^ i " ^3X^2- ^3)

and (X2 - Xi)(Xx - XA) + (Y2 - Y^{Y1 - Y4), respectively.
Step 2. If COSI ^ 0 and COS2 ;> 0, go to Step 7.
Step 3. If COSI < 0 and COS2 < 0, go to Step 6.
Step 4. Set SIN1 and SIN2 to (Xx - X3)(Y2 - F3) - (X2 - X&YX - 73)

and (X2 - JT4)(yi - y4) - (^ - Xt)(y2 - r4), respectively. Set SIN12
to sin l*COS2 + COSl*SIN2.

Step 5. If SIN12 à 0, go to Step 7.
Step 6. Set SWPTST to TRUE and stop.
Step 7. Set SWPTST to FALSE and stop.

This algorithm is algebraically equivalent to Algorithm 6a except when
ax = a2 = %. Note that if Step 5 is reached, a\ + a2 is in the range
Or/2, 3?r/2]. Thus, assuming the nodes are distinct, numerical instability
occurs only in the neutral case. A further discussion of floating-point
errors is found in Renka [9].

The operation count for Algorithm 6b is
a) 4 multiplications, 10 additions, and 2 comparisons, or
b) 4 multiplications, 10 additions, and 4 comparisons, or
c) 10 multiplications, 13 additions, and 5 comparisons,

depending upon the values of a\ and ct2. If cc\ and a2 are uniformly dis­
tributed over the range [0, %], the expected operation count is 7 multipli­
cations, 11.5 additions, and 4 comparisons. In any case there are fewer
arithmetic operations but more comparisons than in Algorithm 6a. Thus,
compares being generally more expensive, we pay a price in efficiency for
the numerical stability.

The following algorithm for determining the closest k nodes to a given
node is used in our interpolation software to select a set of nodes whose
data values are to enter into derivative estimates. It also has application
in closest-point problems.

ALGORITHM 7. Given a Thiessen triangulation T and a node N0, deter­
mine a sequence of nodes Nh N2, ..., Nk ordered by distance from N0

for some k ^ 1. Briefly stated, the algorithm is as follows. Set S^ to {N0},
For i — 1, 2, . . . , k set St and N{ according to Steps 1-3.

Step 1. Mark N,-^ (e.g., with a negative pointer to its adjacency set).
Step 2. Set 5,- to the union of 5,_x with the set of neighbors of Nf-_i.
Step 3. Set Nt- to the unmarked node in Sj which is closest to N0.
While designed for points in the plane, the above algorithms require

only minor modifications to treat alternative geometries. Essentially, by
altering only the swap test and definition of LEFT, Renka [10] has ex­
tended the triangulation procedure to the surface of the sphere. Similar

132 A. K. CLINE AND R. J. RENKA

modifications could be made for the case of nodes on the surface of a
cylinder. However, since the algorithms rely on an ordering of the ad­
jacency information, substantial alterations are required to treat data in
higher dimensional spaces.

4. Data structures. This section describes various data structures for
representing the triangular grid. The choice of data structure involves a
trade-off between computational efficiency and storage efficiency. Thus
the best method of representing the triangulation depends on the available
computing resources and the application. The first two subsections below
describe data structures which contain the adjacency information ex­
plicitly and are thus well suited for the algorithms described in the previous
section. The third subsection discusses Lawson's data structure, and the
final subsection contains a table of storage requirements.

4.1. Adjacency array. The primary goal of this research was a triangula­
tion method requiring less storage than those currently available. This led
us to the following data structure which is designed to limit the storage
requirement while remaining computationally feasible.

IADJ — Array containing the sequentially ordered set of adjacency
lists (indices of the neighbors in the adjacency sets) where the adjacency
list of each boundary node is modified by the addition of index 0 following
the index of the last neighbor and representing a "pseudo node" infinitely
distant from the boundary. The adjacency list for node k is followed by
the list for node k + 1, k = 1, . . . , N — 1.

IEND — Array of length N containing pointers to the ends of each
(modified) adjacency list in IADJ.

Thus the indices of the neighbors of Node 1 are stored in IADJ(l), . . . ,
IADJ(IEND(1)). For k > 1, the indices of the neighbors of node k are
stored in IADJ(IEND(/c - 1) + 1), . . . , IADJ(IEND(&)), and k has
IEND(&) — IEND(fc — 1) neighbors including (possibly) the pseudo
node represented by index 0. Node k is a boundary node if and only if
IADJ(IEND(&)) = 0. See Figure 9.

Let L be the length of IADJ. For each arc of T there is a pair of adjacent
nodes, say Ni and N2, and exactly two entries in IADJ — Ni as a neighbor
of N2 and N2 as a neighbor of N^ The adjacency array also contains a
zero entry for each node on the boundary. Thus, since there are no other
elements in IADJ, L = 2Na + Nb = 67V - Nb S 6N - 9. The second
equation follows from Theorem 1 and the inequality is obtained from the
lower bound on Nb. The upper bound on L determines the amount of
storage which must be reserved since the value of Nb is generally not
known before the triangulation is constructed.

Clearly there is some redundancy in the adjacency array in that for
each arc A^ — N2, both Nt as a neighbor of N2 and N2 as a neighbor of

STORAGE-EFFICIENT METHOD 133

1

2

3

4

5

IEND

5

9

12

16

21

NEIGHBORS
OF 1

NEIGHBORS
OF 2

NEIGHBORS
OF 3

NEIGHBORS
OF 4

NEIGHBORS
OF 5

FIGURE 9. Sample Triangulation and Adjacency Array.

Ni are represented explicitly. Thus we have not attempted to minimize the
storage requirement. However, the total requirement of less than IN
locations represents a substantial savings over other available triangula­
tion methods as shown in Table 1, §4.4.

This storage efficiency was gained at a cost in computational efficiency
caused by the necessity of shifting portions of the adjacency array up or
down for deletions and insertions of neighbors as the triangulation is
constructed. Timing comparisons are presented in §5. We feel this trade­
off of computational efficiency for storage efficiency is generally advantage-

134 A. K. CLINE AND R. J. RENKA

ous since it allows larger problems to be solved on small machines (even
micro-computers), and the time required to construct the triangulation
is usually insignificant relative to the time spent on interpolation which is
the primary application. Thus we have chosen to employ the adjacency
array in our software package.

An obvious modification to the above data structure is the replacement
of IEND with an array ISTART of pointers to the beginnings of each
adjacency list in IADJ. However, in order that the index of the last neigh­
bor of each node be easily accessible, ISTART must have length N + 1
with ISTART(N + 1) pointing to the first empty location in IADJ. Then
the index of the last neighbor of Node k (or 0 representing the boundary)
is stored in IADJ(ISTART(fc 4- 1) - 1) for k = 1, . . . , N.

4.2. Linked list. The following alternative data structure is not used in
our software package but was implemented for comparison with the
adjacency array. The linked list eliminates the necessity of shifting
portions of an array for insertions and deletions. Rather than storing
adjacency lists and their elements in contiguous locations, the index of
each neighbor has an arbitrary location in the list with a list pointer to
the index of the neighbor which follows it in cyclical counterclockwise
order. The method for representing the boundary has also been modified.
The linked list consists of three arrays and a pointer:

LIST — Array containing the indices of the neighbors of node k for
k = 1, . . . , N. LIST contains the negative index of the last neighbor of a
boundary node.

LPTR — Array of LIST pointers in a one-to-one correspondence with
the elements of LIST. The LIST pointer associated with node y as a neigh­
bor of k points to the index of the neighbor of A: which follows j in cyclical
counterclockwise order.

LEND — Array of length N containing a LIST pointer to the index of
the last neighbor of each node.

LNEW - Pointer to the first empty location in LIST and LPTR.
Note that k is a boundary node if and only if (LIST(LEND(fc)) < 0.

See Figure 10.
We have chosen to store pointers to last neighbors (LEND) rather

than first neighbors because it is convenient to have easy access to both
first and last neighbors of a boundary node. To determine the index of
the last neighbor of node k starting from the LIST pointer to its first
neighbor, it is necessary to follow pointers through the entire adjacency
list for k; whereas the index of the first neighbor is readily obtained from
a pointer to the last neighbor. The elimination of index 0 representing
the boundary allows more efficient access to first neighbors at the cost
of occasionally having to change signs of indices.

STORAGE-EFFICIENT METHOD 135

1

/ / 3̂ L
//% """"

2

LEND

1 11

2 4

3 7

4 10

5 18

LNEW = 19

~ ^ ^ $

i

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

LIST

2

3

4

-1

1

1

4

4

3

2

-5

5

6

5

1

3

4

-2

LPTR

3

11

2

14

7

10

12

4

6

13

1

5

9

8

16

17

18

15

FIGURE 10. Sample Triangulation and Linked List.

By Theorem 1, the length of LIST and LPTR is 2Na = 6N - 2Nb - 6
g 6N — 12, implying a total storage requirement of less than 137V loca­
tions. Thus with the adjacency array replaced by the linked list, our
triangulation method still requires significantly less storage than most
other available methods while being comparable to other methods with
regard to computational efficiency. See Table 1, §4.4 and Table 2, §5.

Unlike the adjacency array, the linked list is well suited for packing,
i.e., storing more than one integer per computer word with storage and
retrieval achieved by shifts or arithmetic operations. In an implementation

136 A. K. CLINE AND R. J. RENKA

on a machine with sufficiently large word length, an element of LIST and
its associated LIST pointer may be conveniently stored in a single word,
resulting in a savings of 6N storage locations.

4.3. Lawson's data structure. We present a description of the data
structure used by Lawson [5] for comparison with those previously dis­
cussed. It consists of a list containing six integers for each triangle. The
first three integers are the indices of adjacent triangles in counterclockwise
order with 0 representing the region exterior to the convex hull H. The last
three integers are the triangle's vertex indices in counterclockwise order,
the first vertex being the node shared by the first and third adjacent
triangles. See Figure 11.

TRIANGLE
INDEX

INDICES OF ADJACENT
TRIANGLES IN COUNTER­
CLOCKWISE ORDER - A
ZERO INDICATES THE
REGION EXTERIOR TO H

T
0

3

0

0

3

4

1

2

5

2

VERTEX INDICES IN COUNTER­
CLOCKWISE ORDER - THE FIRST
VERTEX IS SHARED BY THE
FIRST AND THIRD ADJACENT
TRIANGLES

1
4 1

1
1

4 1
1 1

3 1
1
1

4 1
1 1

4 1
1

* • ' " ' " "

1

3

5

2

5

~T~" —
2

1

1

5

3

FIGURE 11. Sample Triangulation and Lawson's Data Structure.

This data structure has an advantage over the adjacency array in that
no shifting or garbage collection is necessary, i.e., triangles need never

STORAGE-EFFICIENT METHOD 137

be deleted—only replaced. Thus updating the data structure for a swap
or the addition of a new node can be implemented very efficiently. On the
other hand, the ordered sequence of boundary nodes is not readily ob­
tained from the triangle list. In order to determine the set of nodes which
are visible from an exterior point, Lawson uses an additional array of
length 4Nb.

Lawson's algorithm also requires two arrays of length TV used to sort
the nodes by their distances from an initially determined boundary node
so that a new node to be added to the triangulation is always exterior to
the convex hull of the previously added nodes.

From Theorem 1, Nt ^ 27V — 5 and hence the total storage require­
ment for Lawson's method is 67V, + 27V + 4Nb ^ 147V + 4Nb - 30.

An advantage of the triangle list is the fact that it lends itself to con­
venient packing either two or three integers per computer word. Lawson's
method has been implemented with three integers packed into a 36-bit
word. However, the number of nodes is limited to 2050 in this case.
See Table 1.

4,4. Storage requirements. The following table compares the storage
requirements of our triangulation method (using both the adjacency array
and the linked list) with the methods of Lawson [5], Akima [1], Shamos
[14], and Green and Sibson [3]. The specified requirements are in addition
to the IN locations containing nodal coordinates. Note that the number
of boundary nodes Nb cannot generally be predicted, and thus the upper
bound of N must be used in reserving storage.

TABLE 1. Triangulation Storage Requirements

Adjacency
Array

IN

Linked
List

137V

Lawson Akima

147V + 47Vb 327V
^ 187V

Shamos

307V

Green and
Gibson

è 117V

The storage required for the linked list and Lawson's method may be
reduced to 77V and 127V, respectively, by packing two integers per com­
puter word. Lawson's method also allows three integers to be packed in
a word reducing the requirement to 107V. Note, however, that packing
is machine-dependent. Green and Sibson use a heap along with garbage
collection, thus allowing extra storage to be employed for increased
efficiency. The specified storage requirement is the minimum amount
which allows reasonable time efficiency.

5. Timing comparisons. We have determined timing requirements for

138 A. K. CUNE AND R. J. RENKA

various triangulation methods, domains, and values of N. Lawson's and
Akima's triangulation packages were the only codes available to us other
than our own. The times specified in Table 2 are central-processor seconds
obtained on the IBM 3033 using the FORTRAN-H extended compiler
at Oak Ridge National Laboratory. The timings are believed to be correct
to 1 %. In the following table p denotes the log (base 2) of R where R is
the ratio of the time associated with N = 2000 to that associated with
N = 1000, i.e., the times associated with the two values of N were fit
with the model CNP.

We conclude that Lawson's method is faster than any of the others,
but only slightly faster than the linked list with presorting of the nodes.
Also, the growth rates for Lawson's method are smaller than those of
the other methods. For both the adjacency array and the linked list,
presorting of the nodes is advantageous. Critical values of TV at which
presorting becomes advantageous have been found to be less than 100 in
all cases, as the growth rates would indicate.

TABLE 2. Timing Requirements for Triangulation (and
Presorting) of TV Randomly Generated Points

Disc of Unit Radius

Method

Lawson
Akima

Adjacency Array With Presorting

Adjacency Array (No Presorting)
Linked List With Presorting

Linked List (No Presorting)

1000

.79

4.38

1.00

3.31
.77

1.29

N

2000

1.71

15.80

2.38

8.91

1.75
2.68

P
1.11

1.85

1.25
1.43

1.18
1.05

Unit Square

Method 1000

N

2000 P

Lawson .78 1.71 1.13

Akima 4.15 15.59 1.91

Adjacency Array With Presorting 1.03 2.43 1.24

Adjacency Array (No Presorting) 3.35 9.11 1.44

Linked List With Presorting .79 1.78 1.17

Linked List (No Presorting) 1.30 2.76 1.09

STORAGE-EFFICIENT METHOD 139

REFERENCES

1. H. Akima, A method of bivariate interpolation and smooth surface fitting for irregu­
larly distributed data points, ACM TOMS 4 (1978), 148-164.

2. R. Franke, A Critical Comparison of some Methods for Interpolation of Scattered
Data, Naval Postgraduate School Technical Report NPS-53-79-003,1979.

3. P. J. Green and R. Sibson, Computing Dirichlet tessellations in the plane, Computer
Journal 21 (1978), 168-73.

4. C. L. Lawson, Generation of a Triangular Grid with Applications to Contour Plotting,
Technical Memorandum 299, California Institute of Technology Jet Propulsion
Laboratory, 1972.

5. C. L. Lawson, Software for C1 Surface Interpolation, Mathematical Software III,
J. R. Rice, ed., Academic Press, New York, 1977,161-94.

6. C. L. Lawson, Transforming triangulations, Discrete Mathematics, 3, No. 4, (1972),
365-372.

7. R. J. Renka, A Triangle-Based Cl Interpolation Method, ORNL/CSD-103, Oak
Ridge National Laboratory, 1982.

8. R. J. Renka, A Storage-Efficient Method for Construction of a Thiessen Triangula­
tion, ORNL/CSD-101, Oak Ridge National Laboratory, 1982.

9. R. J. Renka, Triangulation and Bivariate Interpolation for Irregulary Distributed
Data Points, PhD dissertation, University of Texas at Austin, 1981.

10. R. J. Renka, Interpolation of Data on the Surface of a Sphere, ORNL/CSD-108,
Oak Ridge National Laboratory, 1982.

11. D. Rhynsburger, Analytic delineation of Thiessen polygons, Geographical Analysis,
5, No. 2, (1973), 133-44.

12. B. G. Ryder, The PFORT verifier, Software Practice and Experience, 4, (1974),
359-77.

13. M. I. Shamos and D. Hoey, Closest-Point Problems, Proceedings 16th Annual
Symposium on Foundations of Computer Science, 1975, 151-162.

14. M. I. Shamos, Computational Geometry, PhD dissertation, Yale University, 1975.
15. R. Sibson, Locally equiangular triangulations, Computer Journal 21, No. 3, (1978),

243-45.
16. R. B. Simpson, A two-dimensional mesh verification algorithm, SIAM J. Sci. Stat.

Comput.2,(1981).

DEPARTMENT OF COMPUTER SCIENCES, UNIVERSITY OF TEXAS, AUSTIN, TX 78712

COMPUTER SCIENCES DIVISION, UNION CARBIDE CORPORATION, NUCLEAR DIVISION,

OAK RIDGE NATIONAL LABORATORY, OAK RIDGE TN 37830

