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THE HULLS OF C(Y) 

MARLOW ANDERSON and PAUL CONRAD 

Introduction. Let C(Y) be the set of all continuous real-valued functions 
on a completely regular space Y. Then C(Y) can be considered as an 
/-group Gi or as a semiprime ring (73, and in each case it admits various 
X-hulls, which are minimal essential extensions with some property X. 
We show that <7f is essentially the same as Gf and investigate the structure 
of these Z-hulls. All of these hulls are contained in the complete ring 
of quotients Q(Y) of G3, and, in fact, Q(Y) is the lateral completion of 
Gì or of G3. 

In the first two sections we summarize the theory known for abelian 
/-group and commutative semiprime ring X-hulls. The third section 
contains a description of the hulls of C(F), and their relationships with 
one another. §4 contains characterizations of C(Y) considered as an 
abstract /-group. 

For further information about lattice-ordered groups (/-groups), see 
[9] or [14]; for semiprime rings, see [26]; for C(F), see [24]. 

We will use £ 7 ^ (II7^) to represent the restricted (unrestricted) direct 
product of the groups or rings Tx\ in the case of /-groups, these groups 
are equipped with the cardinal order. 

We wish to acknowledge the valuable advice of Jack Porter about the 
topological results that appear in this paper. In particular, Theorem 3.9 
and Example 3.12 are entirely due to him. 

1. The hulls of semiprime rings. Throughout this section let G be a 
commutative semiprime ring (that is, G is a subdirect product of integral 
domains) with identity. We summarize some of the „Y-hull theory of G 
that is developed in [18], [19], and [20]. Actually, this theory also holds 
for non-commutative semiprime rings. 

For a, b e G define a q b if a2 = ab. This is a partial order for G (intro­
duced in [1]) with smallest element 0 and for a, b, x eG, aqb implies 
that axq bx. Moreover, aqb it and only if in each representation of 
G i nr^ as a subdirect product of integral domains Th ax ^ 0 implies 
that ax = bx. 

One says that a is disjoint from b or that a is orthogonal to b if ab = 0 
(notation: a _L b). This is equivalent to the fact that a and b have disjoint 
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support in each representation of G as a subdirect product of integral 
domains. Note that a a b if and only if a ± b — a, and a _[_ b if and 
only if a a a + b. If X is a subset of G, then X' = {g e G: g _]_ x for each 
x e X} is the annihilator ideal of X. The set P(G) of all these annihilator 
ideals is a complete Boolean algebra [26, p. 43]. 

One says that {a, b} g G is boundable if AZ> g tf2, and this is the case if 
and only if a and b agree on their common support in each representation 
of G as a subdirect product of integral domains. A subset S of G is bound-
able if each pair in S is boundable. G will be called a P-ring if G = g" ® g' 
for each g e G {projectable) ; an SP-ring if G = X" © X' for each subset 
X Q G (strongly projectable); an L-ring if each pairwise disjoint set has 
a l.u.b. (laterally complete); an 0-ring if G is both an L-ring and an 
SP-ring (orthocomplete); a CC-ring if each bounded set has a l.u.b. 
(conditionally complete); a CL-ring if each bounded disjoint set has a 
l.u.b. (conditionally laterally complete); an FC-ring if each finite boundable 
set has a l.u.b. (finitely complete); and a C-ring if each boundable set 
has a l.u.b. (complete). 

A commutative overring / / is an essential extension of G if this is the 
case when His considered as a G-module. In this case His also semiprime 
and the po of G is induced by the po of H. Also, if S is a boundable 
subset of G, then it is boundable in H. 

For a commutative semiprime ring G and X = P, SP, L, 0, CC, CL, 
FC or C we have the following theorems. 

THEOREM. If H is an essential extension of G that is an X-ring, then the 
intersection of all the subrings of H that contain G and are X-rings is a 
minimal essential extension of G that is an X-ring; it is called an X-hull ofG. 

THEOREM. G admits a unique X-hull Gx. Furthermore, G g Gp g Gsp g 
(GSP)L = (GP)L = G°, GCL g GL g Gc g G°, GCL g Gcc g Gc, GFC g 
Gc, and G0 g Q(G), ^ e complete ring of quotients ofG. 

THEOREM. Suppose G is an FC-ring. 
(a) G is an L-ring if and only if G is a C-ring. 
(b) G is a CL-ring if and only if G is a CC-ring. 

Furthermore, if G is a P-ring, so is GCL and GCL = Gcc. 

2. The hulls of /-groups and f-rings. Throughout this section let G = 
(G, + , A, V, ^ ) be an abelian /-group. We summarize some of the 
X-hull theory of G that is developed in [16] and [20]. Actually, this theory 
also holds for representable /-groups. 

For a, b e G define a ß b if \a\ A \b — a\ = 0. This is a partial order 
for G with smallest element 0. Moreover, a ß b if and only if in each 
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representation of G g II TÀ as a subdirect product of o-groups Th ax + 0 
implies that ax = bx. 

One says that a is disjoint from b or that a is orthogonal to & if b ß 
a + b (notation a _[_ è). This is equivalent to the fact that \a\ A \b\ = 0 
and so disjointness is the same as /-group disjointness. If X is a subset 
of G, then X' = {g e G: g J_ x for each x e l } is the polar of X The 
set P(G) of all these polars is a complete Boolean algebra [14, p.2.4]. 

One says that {a, b) g G is boundable if a A b ßb A b and a A è 
ßa A a, and this is the case if and only if # and 6 agree on their common 
support in each representation of G as a subdirect product of o-groups. 
A subset S of G is boundable if each pair in S is boundable. We can now 
define JT-group, where X = P, SP, L, O, CC, CL, FC and C in a way 
directly analogous to the definition of J^-ring in §1. 

Note that if {a, b] g G is boundable, then h = a+ V b+ - (a~ V b~) 
is the l.u.b. of {a, b} with respect to ß. Thus all /-groups are finitely 
complete. 

If G is an /-subgroup of the abelian /-group H, then H is an essential 
extension of G (or G is large in # ) if L f] G ^ 0 for each non-zero /-ideal 
Lof H. 

For an abelian /-group G and X = P, &P, L, O, CC, CL, FC or C we 
have the following theorems. 

THEOREM. If H is an essential extension of G that is an X-group, then 
the intersection of all the /-subgroups of H that contain G and are X-group s 
is a minimal essential extension of G that is an X-group; it is called an 
X-hull of G. 

THEOREM. G admits a unique X-hull Gx. Moreover, if G is Archimedean, 
then so is Gx. Furthermore, G g Gp g Gsp g (GSP)L = (GF)L = G°, 
and G = GFC g GCL = Gcc g Gc = GL. 

Note that GL is the minimal extension of G in which each pairwise 
disjoint set has a l.u.b. with respect to ß; it is also the minimal essential 
extension of G in which each set of pairwise disjoint elements in (GL)+ 

has a l.u.b. with respect to ^ . Also, if G is Archimedean, then GL — G° 
[8], and G g G0 g Ge, the essential closure of G which is the unique 
essential extension of G that is essentially closed in the category of 
Archimedean /-groups (i.e., admits no Archimedean essential extensions). 
Now Ge is of the form D(Y), the /-group of almost finite continuous 
functions to the extended reals on the compact extremally disconnected 
(or Stonean) space Y, which corresponds to the complete Boolean algebra 
of polars of G [15, p. 155]. 

The conditional lateral completion Ggf of G with respect to ^ is not 
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the same as GCL and if G is Archimedean, then the Dedekind completion 
G" is not the same as Gcc. 

In [20] it is shown that for a boundable set U g G+, V^U exists if and 
only if v^ U exists, and if this is the case these joins are equal. Now suppose 
that G is Archimedean; then G g Gcc g (T and G g Gp g Gsp g G". 
In particular, if G is a subdirect product of reals, then so is G" [21, p. 
189] and hence so are Gp, Gsp and Gcc. 

However, if G is a laterally complete /-group with nonmeasurable 
cardinality, then G is a subdirect product of reals if and only if G = II 7j , 
with each Tx g R [3, p. 74]. Thus, if G is a subdirect product of reals, 
then so is GL if and only if 2 7^ g G g GL = UTX. Hence, in general, 
if G is a subdirect product of reals, then GL need not be. 

Recall that an /-ring G is a lattice-ordered ring such that x A y = 0 
implies that dx A y = xd A y = 0 for all s, y, de G+. We shall make 
some remarks here about the existence of/cones. 

PROPOSITION 2.1. Suppose that G is a ring with no non-zero nilpotent 
elements. 

(a) If Q is an f-cone for G and Q g P, a ring lattice order for G, then 

Q = P-
(b) If S = {g2: g G G} is an f-cone for G, then it is the unique f-cone. 

PROOF, (a) Suppose by way of contradiction that P => Q and pick 
g G P\Q. Then g = a — b, with a A b = 0 and b > 0, with respect to 
g. Thus g,beP and so #Z> = - ò 2 G P. But b2 e Q g P, a contradiction. 

(b) This follows from the fact that S must be contained in any/-cone. 

PROPOSITION 2.2. If Gis a commutative semiprime ring and P is a ring 
lattice order for G that induces g, then P is an f-cone. 

PROOF. NOW \a\ A \b\ = 0 if and only if a _L b, and so the polars are 
the annihilator ideals. In particular, each polar is a ring ideal and so P 
is an /cone . 

If G is an /-ring, then there is a unique multiplication on Gx so that it 
is an / r ing and G is a subring, for X = P, SP, L or O [16, Theorem 4.6]. 

Now, using the fact that G° is an / r ing it is easy to show that there 
exists a unique minimal extension Gx? of the / r ing G that is an X-group 
and also an /-ring. Moreover, Gx^ is isomorphic to the intersection of 
all X-subgroups of G° that contain G and are /subrings of G°, for X = 
P, SP, L, <9, CC, CU FC or C (see [16, Theorem 3.3]), and Gx with the 
above ring structure equals Gxf for X = P, SP, L or O [16, Theorem 4.6]; 
if G is Archimedean, this is also true for X = A. In §3 we show that this 
is also true for X = CL. 

3. The hulls of C(Y). Let F be a TychonofT space and let G = C(Y) 
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be the set of all continuous real-valued functions on Y. Consider G as 
an /-group Gi(G, + , g ) with induced po ß, as an/-ring C2(G, + , -, ^ ) 
with induced po ß, or as a semiprime ring G3(G, -f, •)• Since G1 is archi-
medean, Gf = G? [8] and so G<? = Gf = G{ 2 GfL = Gfc. Now |a | A 
|6| = 0 in Gi if and only if a _]_ b in G3 and so it follows that £ and a 
are the same partial order and the polars in Gx are the same as the an-
nihilator ideals in G3. 

Since the positive cone of G2 consists of squares, it follows from Prop­
osition 2.1 that ^ is the unique /-order on G3 and also the unique ring 
lattice order on G3 that induces a. 

Let e be the identity of G3. Then by Theorem 1.1 in [17] the multiplica­
tion of G3 is the unique multiplication so that G± is an /-ring with e2 = e. 
Also, this is the unique multiplication so that Gx is an /-ring with identity 
e. For in this case Gx is an/-ring by Corollary 3 of Theorem 15 in [10]. 

Note that an /-cone for G3 need not be an /-cone. For R admits a 
lattice order that is not total and hence not an/-order [34]. 

An /-cone for the additive group (G, + ) that induces ß need not 
be a ring /-cone. For (R, + ) admits a non-Archimedean total order, 
and such an order induces ß but is not a ring order. 

Now, we shall show that Gf and Gf (and also Gf-0 are essentially the 
same for X = P, SP and O, in the following sense. 

THEOREM 3.1. There exists a unique multiplication # on Gf so that 
it is an f-ring and e # e = e. Moreover, # is the unique multiplication 
so that Gf is an /-ring with identity e and (G?, + , #) is the X-hull of G3. 

QUESTION. Is Jf the unique multiplication so that G^ is an /-ring and 
e # e — el 

THEOREM 3.2. There exists a unique ring lattice order P on Gf that 
induces q. Moreover, P is the unique f-order on Gf and (Gf, + , P) is the 
X-hull of Gi. 

Preliminary to the proofs of these theorems, we make the following 
observations. Since the Boolean algebras of polars and annihilator ideals 
coincide for G = C(Y), when X = P, SP or O, the additive groups 
(Gf, + ) and (Gf, + ) can be constructed using the same direct limits of 
products of quotients of G by polars (see [16] and [19]). Thus we can and 
shall assume that (Gf, + ) = (G^, + ) , for these X. Furthermore, if A 
is a polar of Gx and a, b e G, then a2 = ab (mod A') if and only if \a\ A 
\b — a\ = 0 (mod Ä), and so from the direct limit construction we have 
that (G^, +,§) = (G$, + , a), for X = P, SP or O. 

PROOF OF THEOREM 3.1. G^ is Archimedean, and since Gx is large in 
G^, e is an order unit in G^. Then by Theorem 1.1 of [17] there exists a 
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unique minimal /-ring with identity e and containing (Gf, + , ^ ) as a 
large /-subgroup. By Theorem 4.6 in [16] there exists a unique multiplica­
tion # on Gf so that it is an /-ring with identity e and G2 as a subring. 
By Theorem 2.2 in [17], % is the unique multiplication so that (G?, + , 
#, ^0 is an/-ring with e % e = e. 

Now suppose that * is a multiplication so that (G?, + , *, <;) is an 
/-ring with identity e. Then since it is Archimedean and e is positive 
and a weak order unit, it is an/-ring by Corollary 3 of Theorem 15 in 
[10]. Thus # is the unique multiplication so that (Gf, 4-, #, ^ ) is an 
/-ring with identity e. 

Now (Gf, + , #, S) is the lyhu l l of G2 by Theorem 4.6 in [16] and 
so it can be embedded as an /-ring in the /-ring D(S), where S is the 
Stonean space for G\. In particular, (Gf, + , #) is semiprime and since 
(Gf, + , /3) = (Gf, + , g) we have, for a, b e Gf, aqb if and only if 
a ßb if and only if |«| A |6 — «| = 0 if and only if a(y) ^ 0 implies 
flO) = b(y) if a n d o n ty if a % a = a % b. Therefore # induces the po 
g on Gf and hence by Theorem 7.4 of [19], (Gf, + , #) is the JT-hull of G3. 

PROOF OF THEOREM 3.2. By Theorem 3.1, (Gf, + , -, ^ ) is an/-ring and 
from the proof of Theorem 3.1 ^ induces g. Now each positive element 
in G2 is a square and it follows from the direct limit construction that each 
positive element in (Gf, + , -, 50 is a square. Thus ^ is the unique/-order 
for G§. 

If P is a ring lattice order for Gf that induces g, then the polars with 
respect to P are the annihilator ideals in Gf and so P is an /-order. Thus 
P must be the positive cone for ^ . In particular, (Gf, + , P) is the X-hull 
ofG3. 

We shall now show that for C(Y) = G, all of the ring and group Z-hulls 
are contained in the ring of quotients Q(Y). In fact, we shall prove that 
Q{Y) = G2 = G?. 

In [23] the following construction is given for Q(Y). Let F be the set of 
all continuous real-valued functions on any dense open subset of Y. Define 
f~ g iff and g agree on some dense open subset. Then Q(Y) consists of all 
the equivalence classes/; that is, it is the direct limit of {C(V): Fis dense 
open in Y}. We may define a partial order on Q(Y) by making/ posi­
tive if f(y) ^ 0 for all y on some dense open subset of Y. Then / is 
positive if and only if it is a square. It is easily checked that this is an 
/-cone for Q(Y) and hence is the unique/-order, which extends the/-order 
on C(Y). In summary then, we have the following proposition. 

PROPOSITION 3.3. The squares form an f-cone for Q(Y) and hence a unique 
f-cone. Moreover, Q(Y) is Archimedean and an essential extension of the 



THE HULLS OF C(Y) 13 

f-ring G2, and so G3 g G°3 g Q(Y) g Gf = /)(£), wAere 5 w //re S W a « 
space of the Boolean algebra of annihilât or ideals of G3. 

If i? is a commutative semiprime ring, then there exists an embedding 

R^U{Dy:yeY}^U{Q(Dy)}, 

where the Z>y's are integral domains, the first map makes R a subdirect 
product of the Z)y's, and Q(Dy) is the quotient field of Dr Now R induces 
a Zariski topology on Y. We say that R is locally inversion closed if for 
any feR and y in the support F(f) off there exists a neighborhood 
U ü 5 ( / ) of j and ageRso that g(x) = l//(x) for all xeU. Banaschewski 
[6] has shown that if R is locally inversion closed, then its ring of fractions 
consists of the direct limit !imZ7(K), where V ranges over all dense open 
subsets of 7, and F(V) is the set of a l l / e UQ(Dy) such that for all X G F , 
there exists a neighborhood Uof x and g e R such that g\U = f\U. We can 
apply this to C(Y), because y is Tychonoffand so the topology on Fis the 
Zariski topology, and because C(Y) is locally inversion closed (see Lemma 
3.5 below). Also, note that for C(F), its ring of fractions is its complete 
ring of quotients. Thus, we have the following theorem. 

THEOREM 3.4. G° = G° = Q(Y). 

PROOF. The direct limit lim F(V) is exactly the direct limit which Bleier 
(implicitly) constructs as the orthocompletion of a representable /-group 
in [11]. The proof is completed by the following lemma. 

LEMMA 3.5. For a Tychonojf space F, C(Y) is locally inversion closed. 
PROOF. (Stephan Carlson). Let fe C(F), and f(p) # 0. Then choose 

el9 e2 so that 0 < ex < e2 < \f(p)\. Set Zx = {y e Y: \f(y)\ ^ £l} and 
Z2 = {y e Y: \f(y) | ^ e2}- Then Zx and Z2 are disjoint zero sets and so 
there exists h e C(F, [0, 1]) such that h(Zi) E {0} and h(Z2) E {1}. Let 
TV = int Z2, which is a neighborhood of p. Define g: Y -» R by 

(0 if x G Z1 

g(x) = 
{h(x)/f(x) if xe 7\intZ1 . 

By the pasting lemma [22, page 82], g e C(Y); if x e N, then g(x) = h{x)j 
f{x) = l//(x). 

This theorem enables us to characterize those C(Y) which are already 
orthocomplete. 

COROLLARY 3.6. For G = C(Y) with nonmeasurable cardinality, the fol­
lowing are equivalent : 

(1) G = (P, 
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(2) Gi = Gl and 
(3) Y is discrete. 

PROOF. (3) =>(2) is clear, because if F is discrete, then G = II {i^: j e F } , 
which is essentially closed. 

(2) => (1) follows since Gx g G? g G{ = Gv 

(1) => (3). It is shown in [23] that C(Y) = 0(F) if and only if r i s an 
extremally disconnected/7-space ; this means Fis discrete, if the cardinality 
of Fis nonmeasurable ([23], [24]). Thus this follows from Theorem 3.4. 

In [13] Burgess and Raphael introduce an orthogonal completion S of 
a commutative semiprime ring R. They require that S be laterally complete 
and that each element of S be the join of a disjoint set from R. In this case 
R is a large Ä-submodule of 5, and so R E R° = S. Such completions 
need not exist; if one does exist for C(Y), it is just the orthocompletion. 
Such a completion does exist precisely when G3 is an ^-dense ring (that is, 
each annihilator ideal contains an idempotent). Equivalently, Gx is a 
subprojectable /-group (that is, for all g e G+ and polars 0 ^ Q ü g" 
there exists polar P # 0 such that g e P © Pf). See [12] and [4]. 

We can now identify three hulls of G as convexifications. 

(1) Gsp is the smallest q-convex (or ß-convex) subgroup of G° containing 
G. 

PROOF. NOW Gfp is generated as a group by {g[P] : P is a polar and 
g e G}, where 

g = g[P] +g[P']eP\±lP' = G0. 

But h a gif and only if h = g[P] for some polar of G°. 

(2) GgL, //ze conditional lateral completion of G with respect to ^ , is the 
smallest ^ -convex subgroup of G° containing G. 

PROOF. Let H be the smallest g -convex subgroup of G° containing G. 
Then H is conditionally laterally complete, and so Ggf E i/. Let 0 < 
g eG° and g ^ he G|L. Now g = V g j i ^ l , where ga e G. But conditional 
lateral completeness implies strong projectability for Archimedean 
/-groups [31], and so g e Ggf. 

(3) G~ is the smallest ^ -convex subgroup ofGe containing G. 

PROOF. Since G is divisible, this follows from Lemma 2.3 of [21]. 

NOTE. In fact, if F is a weak ci-space, then C(Yy ^ C(eY), where 
e Y is the absolute or minimal projective extension of F [28]. 

If G equals any one of these three hulls, it equals the others and in this 
case F is extremally disconnected. This famous theorem appears as Theo-
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rems 4.3 and 43.11 of [27], excepting the assertion concerning G = G|L, 
which is obvious, since Gfp ü Gip [31]. 

A similar theorem (appearing as Theorems 43.2 and 43.8 in [27]) asserts 
that G = Gp if and only if Y is basically disconnected or equivalently, 
if G is ^-conditionally complete with respect to ^ . 

The first statement of a theorem like these was by Stone [32]. Nakano's 
proofs of these or similar results appeared in [29]. Stone's proofs are in 
[33]. 

We shall now discuss the remaining various completions and conditional 
completions of G\ and G3. 

In [5, p. 251] it is shown that G? is generated as a group by joins of 
disjoint subsets of positive elements of Gv But G% is a subgroup of (G°, + ) 
which contains the joins of disjoint subsets of G3 and hence the group 
generated by them. Thus G% = G% = G°, since we know that G% E G§ ü 

Gì-
Finally, we turn to the conditional completions Gfc, GfL, Gfc, and G%L. 

PROPOSITION 3.7. GfL is a subring ofG^ and so GfL = Gfc 2 G$c E G%L 

as groups and hence they are all subdirect products of reals. 

PROOF. If {aß} and {bv} are disjoint subsets of G1 that are bounded by a 
and b respectively in Gh then {ajbv} is a disjoint subset of Gx bounded by 
ab, a n d ( v ^ ) ( v 6 v ) = wajbv in GJ\ Hence the set T of all joins in G± of 
bounded disjoint subsets of Gx is a multiplicative semigroup. Therefore, 
the subgroup [T] of G± generated by T is a subring of GJ\ Moreover, the 
/-subgroup of GÎ generated by Tis a subring of G^ [25, p. 542]. It follows 
that GfL is a subring of G^. 

We can now extend Theorem 4.6 in [16] to include X = CL. 

PROPOSITION 3.8. Let H be anyf-ring with HCL the CL-hull of the /-group 
(H, + ) and HCLf the CL-full of the f-ring H. There exists a unique multi-
plivation on HCL so that it is anf-ring with H as anf-subring. Moreover, HCL 

with this multiplivation is the CL-hull HCLf. If e is the identity for H, then it 
is also the identity for HCLf. 

PROOF. The proof of Proposition 3.7 shows that HCL is in fact a subring 
of H°, for any/-ring H. Now suppose we have any multiplication on HCL 

so that it is an/-ring with H as a subring. Then since H° is the orthocom-
pletion of HCL, there exists by the analogous result for O a multiplication 
on H° so that it is an /-ring and HCL is a subring. But this is an /-ring 
multiplication on H° so that His a subring and so unique. Thus, the mul­
tiplication on HCL is unique. 

As a consequence of Proposition 3.8, in order to extend Theorems 3.1 
and 3.2 to all of the hulls of Gx and G3 we need to show that Gfc = G%c = 
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G§L and that each positive element in Gfc is a square. This we have been 
unable to do. 

QUESTIONS. IS [T] = GfL? If so, then GfL = [T] g G$L. Is [T] an /-
group? If so, then it follows that G$L is an /-group and hence GfL = GfL. 
Is [T] a CL-ring? If so, then [T] = G£L. Note that it is known that G° is 
generated as a group by joins of disjoint subsets of Gf [5]. 

A topological space Y is said to be locally connected at a point p e Y 
if each neighborhood of p contains a connected neighborhood of/?; it is 
extremally disconnected at/7 if for each pair of disjoint open sets £/and V, 
p£ClUf}C\V. 

THEOREM 3.9. (Jack Porter). If Y is either locally connected or extremally 
disconnected at each of its points, then C(Y) = C(Y)%C. If Y is locally 
connected, then the join of an q-bounded set is pointwise. 

PROOF. Suppose that T is a subset of C(Y) which is a-bounded by t. 
Without loss of generality, all elements of T are positive. Let coz T = 
U {coz(s):se T). Define 

(t{x), jceCl(coz T) 
h(x) = I 

[0, otherwise. 

First, we show that h is continuous by showing that h(x) = 0 for all x e 
Cl(7\Cl(coz T)). Now, if x e Cl(coz T) fl Cl(F\Cl(coz T))9 then Y is not 
extremally disconnected at x. So, Y is locally connected at x. Since x e 
Cl(7\Cl(coz D ) E r\coz T, then s(x) = 0 for all seT. Assume, by way 
of contradiction, that h(x) = t(x) > \jn for some n e N. Then there is a 
connected neighborhood W of x such that t(y) > \\n for all y e W. Since 
W fi coz T ^ 0, there is an s e Tand aye f^such that s(y) > 0. Because 
s(x) = 0 and W is connected, there exists z G ^ s u c h that 0 < s(z) < \\n. 
Because s{z) > 0, t(z) = s(z) < l/n, which is a contradiction. Thus, h is 
continuous. Now, we show that T q h. Let s eT and s(x) > 0. Then x e 
coz T, and so s(x) = t(x) = h(x). Finally, suppose that Tag. If x e coz T, 
then g(x) = t(x) = h(x). Let x e Cl(coz T)\coz T. Choose a net {xa} E 
coz T such that {xa} -> x. For each a, there is a.nsaeT such that 5a(xa) > 
0. Now5a(xa) = h(xa) = t(xa) = gOO. Because g and h are continuous, 
/z(x) = g(x). This shows that hag. 

COROLLARY. [12]. If Y is locally connected, then C(Y) = C(Y)$C. 

The converse of Theorem 3.9 is false; see example 3.12. However, we do 
have the following theorem. 

THEOREM 3.10. Y is locally connected if and only ifC(Y) = C(Y)$C, and 
each join of a pair wise disjoint set is pointwise. 
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PROOF. (=>) is just Theorem 3.10. 
(<=) Call h g g an atom of g if 0 ^ kg h implies that k = A. Notice that if 

A g g, then coz A is clopen in coz A. Conversely, if C is clopen in coz g, then 
h\C eC(Y) and A|C g g. We first show that each g in C(F) has atoms. For 
suppose that g does not. Choose z e coz g. Then we may pick a maximal 
disjoint set 3R of sets clopen in coz g, such that x <£ U 9JÎ- Now A = V 
{g|M: M e 2K} e C(Y), because C(Y) is conditionally complete. If A ̂  g, 
then g — h = a + b, where a ^ 0 ^ b and a and 6 are disjoint, because 
g — A is not an atom of g. But we may assume that x G coz a, and so the 
existence of coz b contradicts the maximality of 9ft. Thus h — g. But joins 
are pointwise and so coz g = U 2J}, a contradiction Thus, g has atoms. 
Now suppose that x G Fand let coz g be a basic neighborhood of x, where 
g G C(Y). Now g = V{ga: ga is an atom of g}, and coz g = U coz ga, 
because joins are pointwise. Therefore x G coz ga, for some a. But since 
ga is an atom, coz ga is connected, and so Y is locally connected. 

Finally, we note that C(7)3 = C(Y)FC. 

PROPOSITION 3.11. C(r) 3 and C(Y)§ are FC-ringsJor X=P,SP and O. 

PROOF. Let {a, b) be a boundable set in one of these rings. Each such 
ring is also an /-group, and so a = a+ — ar and b = b+ — b~. Then 
A = (a+ V b+) —(a~ V 6~) is the l.u.b. of {«, &} with respect to a. 

In summary, we have the following containment relations for the possi­
bly distinct ring and group hulls of G = C(Y). 

Go 
/ \ 

,Gp Gsp GCL G{ 

G \ / 

G%L G§c
 G<(L/ 

EXAMPLE 3.12 (Jack Porter). Let N c Z E /3N, and 7 be the cone over 
Z (that is Y = / x Z/{0} x Z, the quotient space of I x Z with {0} x Z 
identified to a point). The C(F) = C(Y)%C, but y is neither locally con­
nected nor extremally disconnected at any point of the form 7c(s, z) where 
%\ I x Z -> y is the quotient map, 0 < s ^ x, and z G Z\N. 

4. Lattice-ordered group characterizations of C(Y). W e first character ize 
C(Y) for y a Stonean space. 

T H E O R E M 4 . 1 . For an /-group G, the following are equivalent: 
(1) G ^ C(Y), where Y is a Stonean space; 
(2) G is a complete vector lattice with a strong order unit; 
(3) G is complete, divisible and has a strong order unit; and 



18 M. ANDERSON AND P. CONRAD 

(4) G is Archimedean with a strong order unit e, and e is not a strong order 
unit for any proper essential extension ofG. 

In particular, two such /-groups are isomorphic if and only if their 
Boolean algebras of polars are isomorphic. 

PROOF. (1) => (2). This follows from the Nakano-Stone theorem. 
(2) => (3) is clear. 
(3) => (4). Let H be an essential extension of G with e as a strong order 

unit. We first show that H is Archimedean. If not, then 0 < hx < h2 in H, 
and since G is dense in H, 0 < g ^ hx < h2 < me for some g e G and 
positive integer m. But then g < me, which contradicts the fact that G is 
Archimedean. Then 

G\ = \ H \ = \H~ 
dense dense 

and so G = G~ is an /-ideal of H [21; p. 184]; thus G § H(e) = H. 
(4) => (1). By Bernau's embedding theorem [7, p. 617], there exists an 

/-isomorphism r of G onto a large /-subgroup of C(Y), so that ez = Ï, 
where Y is the Stonean space of G and l(x) = 1 for all x e Y. Since Ï is 
a strong order unit for C(Y), it follows that Gz = C(Y). 

Note that C(Y) is the /-ideal of D(Y) generated by Ï. If G is Archi­
medean and R(G) = 0 (where R(G) is the radical of G; see [14; p. 5.3]), 
then the associated Stonean space Y has a dense discrete set S and so 
D(Y) = U{RS: s e S}. Thus C(Y) consists of all the bounded functions in 
URS. 

COROLLARY I. IfR(G) = 0, then each of (2), (3) and {A) is equivalent to 

(V) G = {fe n sR s : / i s bounded}, for some set S. 

COROLLARY II. A divisible /-group G is complete if and only if for each 
g e G, G(g) ^ C(Y),for some Stonean space Y. 

PROOF. This follows from the theorem and the fact that G is complete if 
and only if each G(g) is complete. 

COROLLARY III. For an archimedean /-group G, the following are equi­
valent: 

(a) (GdY = C(Y),for a Stonean space Y; and 
(b) G has a strong order unit. 

PROOF. G has a strong order unit if and only if (GdY does. Thus (a) 
=> (b) follows. For (b) => (a), use (3) of Theorem 4.1. 

COROLLARY IV. For an /-group G, the following are equivalent: 
(a) G is complete, divisible and has weak order unit e ; and 
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(b) G is (/-isomorphic to) /-ideal of D(Y) that contains C(Y),for some 
Stonean space Y. 

PROOF, (a) => (b). Now G(e) ^ C(Y), where Y is the Stonean space 
for G. Thus we may assume that e = Ï and G(e) = C(Y) g G g D(Y). 
But since G is complete, it must be an /-ideal of D(Y). 

(b) => (a). Each /-ideal of D(Y) is complete and divisible. 

THEOREM 4.2. For an /-group G, the following are equivalent: 
(1) G s D(Y), for some Stonean space Y; 
(2) G is Archimedean and admits no Archimedean essential extensions; 
(3) G is a complete, laterally complete vector lattice ; 
(4) G is divisible, complete and laterally complete ; 
(5) G is divisible, complete and each disjoint set is bounded; 
(6) G is divisible, complete and has the splitting property; 
(7) G = ((HdY)L for some Archimedean /-subgroup H; 
(8) G = ((Hd)Ly for some Archimedean /-subgroup H; and 
(9) If G is an /-subgroup of an Archimedean /-group, H and G are large in 

G", then H = G (±) G". 
In particular, such /-groups are /-isomorphic if and only if their Boolean 

algebras of polars are isomorphic. 

PROOF. A complete /-group is a vector lattice if and only if it is divisible; 
so (3) <̂> (4). 

Bernau [7, page 617] remarks that ( l ) o ( 4 ) . Bernau [8] shows that 
(H")L = (HLY for each Archimedean /-group and so (7) <=> (8). 

Pinsker [30] shows that (2) <̂> (3). 
Clearly (4) o (5). 
See Conrad [15] for a proof that (1), (2), (4), (6) and (7) are equivalent. 
(6) => (9). G is divisible and complete and large in G" implies that G is 

an /-ideal of G", and hence of H. Thus, by the splitting property, H = 

Gffl G'-
(9) => (1). We may assume that G is large in D(Y), and since G" = 

D(Y), we have that D(Y) = G\±\G' = G. 
We will now obtain an /-group characterization of C(Y) for any 

Tychonoff space. We need two lemmas. 

LEMMA 1. Let G be an archimedean /-group with weak order unit e. Let 
3JÎ be the collection of all maximal primes of G such that e $ M, for all Me 
3D?. Suppose that P|9Ji = 0. Then G may be embedded as a large /-subgroup 
ofC(ffll), where Wl has been equipped with the Zariski topology induced by 
G ; in this case 9K is real compact and Tychonoff. 

PROOF. We may embed G -+ U{G/M: M e 2 J i } g I l R so that e-+ 
(1,1, 1, . . . ) . It is straightforward to check that G g C(W), that G is large, 
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and that 93? is Tychonoff. It remains to show that 90? is realcompact. If P 
is a real ideal of C(W) which is not fixed, then e $ P, and so P Ç] G e $R. 
Thus we may define a map % : u 9JÎ -* 9JÎ, where v 9JÎ is the real compacti-
fication of üD?. This map is continuous, because 7C~l(cozm(g)) = cozm(gü)9 

where g -> gv is the natural isomorphism between C(W) and C(L>9JZ). But 
then yjl is a retract of uWl and hence closed in vffl. and so 9ft = u9K. 

LEMMA 2. Le/ M be a maximal prime of the /-group C(Y), where Y is 
real-compact and Tychonoff. Then M is a real ring ideal. 

PROOF. We first show that Ï <£ M. For if Î e M, choose/^ M such that 
/ ^ ï. Then / 2 £ M. For n e N, 0 ^ ( / - «)2 = f2 - Inf + «2, and so 
Inf ^ f2 + n2. Thus 2n(M + / ) ^ M + / 2 . But this cannot be, since 
C(Y)/M is Archimedean. 

If Mis fixed at a point of y, we are done. If not, we may embed C(Y) 
-> C(^), where X = Y [j {M} is equipped with the Zariski topology, 
I -+ ï. But Y is dense in X and has the subspace topology, and so this 
embedding is an isomorphism. Since M corresponds to a (fixed) real 
ring ideal of C(X), it is a ring ideal of C(Y). 

The following definition will enable us to state our characterization of 
C(Y). Let G be an Archimedean /-group w7ith weak order unit e. Then 
H ^ G is an ^-extension if 

(i) H is Archimedean, 
(ii) G is large in H, 

(iii) M - ^ M f i G is a one-to-one correspondence between the maximal 
primes of H and of G, and 

(iv) if P is a polar of H and P $ M, a maximal prime of //, then there 
exists g e P fi G+ such that g$ M. 

THEOREM 4.3. The following are equivalent for an /-group G: 
(a) G ^ C(Y), Y a Tychonoff space; and 
(b) G /s a« Archimedean /-group with a weak order unit e such that 

e $ P, for all P e Y, the set of maximal primes ofG. Furthermore, Ç\ Y = 0, 
and G admits no proper e-extensions. 

PROOF, (a) => (b). If we assume that Y is real compact and e = ï, we 
need only show that G admits no proper e-extensions. Suppose that LT is an 
e-extension. Then by (1) we have G = C{Ya) g H -* C(YT), where a 
is the topology on Y induced by G, and z is the topology on Y induced by 
H. Note that a E z. We may assume that e = ï -> Î. Let U e z be regu­
larly open. Then U = coz P, where P is a polar of H. If x e U, x cor­
responds to M, a maximal prime of H. But x e U if and only if P $ M. 
Since # is an e-extension, there exists geP f| C ( ^ ) such that g $ M. 
Thus x GCOZ g E coz P = U9 and so (7G Ö\ Thus a = z and so C^F,) 
= / / = C ( F r ) . 
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(b) => (a). By (1) we may assume that G £ C(Y)9 with e -* Ï, and F 
real compact Tychonoff. Since each maximal prime of C(Y) is a real ideal 
and so fixed, we have (i), (ii) and (iii) satisfied, and we need only check 
(iv) in order to show that C(Y) is an e-extension of G. Let P be a polar of 
C(Y) and suppose P gj Af, a maximal prime of C(7) which is fixed at y. 
Then >> e coz P = U coz gr, with each gr e G+, since the topology on Y 
is induced by G. Then x e coz gv some 7-, and so gr e P f| G+ and gr£ M 
fi G. But since G admits no ^-extensions, this means that G = C(Y). 

COROLLARY. The following are equivalent for an /-group G: 
(a) G = C( F), y compact Hausdorff; and 
(b) G w afl Archimedean /-group with strong order unit e, which admits 

no e-extensions. 

REMARK. This theorem is similar in flavor to the characterization of 
C(Y) in [2] as a real algebra. 
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