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RECIPROCITY ISOMORPHISMS FOR SEPARABLE
FIELD EXTENSIONS

ROBERT A. MORRIS*

0. Introduction. Throughout k is a field, k, its separable algebraic
closure, and-¢ = gal(k,/k). We make frequent use, without further com-
ment, of the equivalence between étale sheaves and discrete # modules
given by F —» F(k,). We remark particularly that étale sheaves are ad-
ditive. An exposition may be found in [5]. We also use freely the stan-
dard facts about Amitsur cohomology summarized in the introduction
to [8].

When S— T is a map of commutative R algebras we denote by inf
the induced map H"(S/R, F)— HYT/R, F) on cohomology. It is called
inflation.

Amitsur cohomology coincides with Galois cohomology for (finite)
Galois extensions and inf coincides with the usual inflation [8, § 4]. It is
thus reasonable to ask whether Galois theoretic results which have
cohomological statements can be extended to more general field exten-
sions, replacing Galois with Amitsur cohomology. For example, Hil-
bert’s Theorem 90 can be so extended, as can the classical isomorphism
of Brauer groups with the second cohomology group [4, p. 26ff]. In this
paper we extend the cohomological version [10, IX, § 8] of some of the
reciprocity isomorphisms of class field theory to arbitrary finite sepa-
rable field extensions.

Our technique is to sheafify the splitting module of Tate [11], and in-
troduce a functor (not quite a sheaf) which plays the role of Z with tri-
vial Galois action.

1. Formation Sheaves. Let F be an étale sheaf [5, 1. 5]. By analogy
with the terminology of class formations [10, XI] we will say F is a
field sheaf if H(M/L, F) = 0 whenever k C L C M C k, with [M : k] fi-
nite and M/L Galois.

Prorosition 1.1. If F is a field sheaf then H(M/L,F) = 0 for any
fields k C L C M C k, with [M : k] finite.

Proor. Let M’ be a finite Galois extension of L containing M.
Inf : H(M/L, F)— HYM’/L, F) = 0 is a monomorphism [8, Thm. 3.2]
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708 R. A. MORRIS

and the assertion is proved.

Now let F be any abelian group valued functor on the category of fi-
nite separable k-algebras, and let E C K C L C M be finite separable
field extensions of k. Since inf is induced by the inclusion maps the fol-
lowing diagram is commutative:

inf

HXK/E, F) 2% HL/E, F)

N/

H2M/E, F)

We may therefore defme H2(E, F), the Brauer group over E of the
functor F by H3(E, F) = lim 2(K /E, F), the limit taken over the finite
separable field extensions of E [10, XI]. Note that the Galois extensions
are cofinal in the set of separable field extensions of E so that HX(E, F)
can be defined by taking the limit over Galois extensions only.

Prorosition 1.2. Let F be a field sheaf. Then inf: H(K/E, F) —
H%(L/E, F) is a monomorphism and so H%(E, F) may be regarded as a
union.

Proor. In deducing the classical group cohomology exactness of the
inflation-restriction sequence from our exactness result [8, Thm. 3.2],
we observed that the vanishing of H{T/S, F) when T and S are merely
fields sufficed to apply Theorem 3.2 of [8] which implies inf is monic.

It is known that if F is the functor which assigns to an algebra its
group of units, then H%E, F) is the classical Brauer group of central
simple E-algebras. This is Theorem 5.4 of [1, p. 96] or Theorem 3 of
[9] together with the fact ([2, 8.10.4.3]) that every central simple E-
algebra has a splitting field which is finite Galois over E.

Now if M is a finite separable field extension of L, L a finite sepa-
rable field extension of k, there is a restriction map [8, §2]
res : H3(M/K, F)— H¥M/L, F) natural in M. That is, if M’ D M is an-
other finite separable field extension of L then the following diagram
commutes:

res

H*M/K, F) — H*M/L, F)
l inf ] inf

res

H*M'/K, F) — H3M'/L, F).
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This is immediate from the fact that
MOAIMIM—MO, MO, M

N

MO MOIOIM-—MS,MSO, M
commutes. Since the finite separable extensions of L are cofinal among
those of K, these restrictions induce a map res;,,: H¥K, F)— H*(L, F)
on direct limits. We will also call this map restriction.

We say a field sheaf is a formation sheaf if for each finite separable
extension K of k there is a monomorphism inv, : H%(K, F) — Q/Z satis-
fying

(@) If L/K is finite Galois of degree n then invy maps H%L/K, F)
onto the subgroup generated by (1/n)Z.

(b) For any finite separable extension L/K, inv, res;,, = n invy, i.e.,
the following diagram commutes

HXK,F) —=v%, HXL, F)

invg nvy,

n

Q/Z
The maps inv are called invariants.

If L/K is Galois the element of H%L/K, F) whose invariant is (1/n)Z
is the fundamental class. A cocycle representing it is a fundamental co-
cycle. Condition (a) says that H%(L/K, F) is cyclic of order n, generated
by the fundamental class.

The following results allow us to extend these notions to the case
where L need not be Galois.

Q/Z.

Prorosition 1.3. Let k C K C L C M C k; where M is finite over k
and Galois over K. Let F be a formation sheaf. If a is the fundamental
class in HX(M/K,F) then res; a is the fundamental class in H¥M/L, F).

Proor. Let n = [M:K)] and m = [M:L]. Then [L: K] = (n/m) and
the definition states

inv res;, & = (n/m)invga = (n/m)(1/n) = (1/m)(mod Z).

Thus since M/L is Galois with [M: L] = m, res, a is the fundamental
class in H3M/L, F).

CoroLLARY 1.4. For any finite separable field extension L of K, invy
maps H%(L/K, F) onto the subgroup generated by (1/[L : K])Z.
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Proor. Let M be a finite Galois extension of K containing L. Consid-
er the diagram
res

0—H(L/K,F) X mM/KF) 5 H(M/L F)
invy invg

id

Q/Z Q/Z

As we remarked in Prop. 1.2, the hypotheses of Theorem 3.2 of [8]
apply, since F is a field sheaf, so that the upper row is exact. By Prop.
1.3, res is a surjection of H3M/K, F) onto H(M/L, F). M/K and M/L
are Galois, so H3M/K, F) and H3M/L, F) are cyclic of order [M: K]
and [M:L] respectively and a counting argument shows that
H%L/K, F) is cyclic of order {L: K]. Hence, since the square commutes
by the definition of invg and since invy maps H%M/K, F) onto
(1/[M : K])Z/Z, it follows that inv, maps H%L/K, F) onto the subgroup
generated by (1/[L : K])Z, completing the proof.

In view of the corollary the definition of fundamental class and co-
cycle may be extended by replacing “Galois” with “separable”.

CoroLLARY 1.5. Let K, L, M and F be as in Prop. 1.3 but assume
only that M/L is separable. If a is the fundamental class in
H%M/K, F), then res; o is the fundamental class in H¥M/L, F).

Proor. Cor. 1.4 is condition (a) of the definition of inv;, but with
the restriction that M/L be Galois removed. The proof of Prop. 1.3 car-
ries over with the application of condition (a) replaced by Cor. 1.4.

2. Splitting Sheaves. In this section we extend a construction of Tate
[11, p. 294] to étale sheaves.

Let G be a finite group, H a normal subgroup and A a G-module. If
g is in G, we denote by g the left coset gH.

Let f:G/H X G/H— AH be a normalized two cocycle, ie., f(1,
g) = flg. 1) = 0 for all g in G. It is known that every two cocycle is
cohomologous to a normalized one [7, §15.7]. Then Af =
inf(f) : G X G— A given by Af(a, b) = f(a, D) is still a normalized two
cocycle (in fact, Af(h, a) = AMfia, h) = 0 for all a in G, h in H).

Let A, be the splitting module for Af [11]. That is, as abelian groups

A)\f =A® 2 ng.

1#g9eG

A,, is a G-module with G acting in the given way on A and with

ax, = %, — %, + Ma, b) = x,, — x, + fla, b).
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That this gives a module action is a consequence of the two cocycle
identity

aXfib, ¢) — Mab, ¢) + Ma, be) — Ma, b) = 0.
Similarly let A ¥ be the splitting module for f. Thus
A,H =AH® 2 Zya

1#9eG/H

with the natural G/H action on A extended by
@ Y5 = Ym — Y; + fla, b).
Now define a map ¢ : A — A, as follows: Let

with m; in Z, « in A#. Let {g;} be a set of left coset representatives for
H with g, = 1. Set m; = m; with m; = 0 for convenience. Then define
o(y) = a + 2 > mi(xyih — %)
i heH
Clearly, this definition is independent of choice of coset representatives:
any other representative of g, is of the form gh; for some h; in H.
Since 2, cy%,, = ZpeyX,na the independence is immediate.

It is straightforward to check that ¢ in fact takes values in A¥, and is
a G/H-module map.

The map ¢ is introduced for the following reason:

Suppose F is a sheaf, L/k a finite Galois field extension and f a two
cocycle from H%Gal(L/k), F(L)). If M/k is any finite Galois field exten-
sion containing L, let G = Gal(M/k), and H = Gal(M/L). We will see
(Lemma 2.3) that, because F is a sheaf, F(L) = FM)¥ and ¢ will pro-
vide a map from the splitting module for F(L) to that for F(M). Passing
to the direct limit over all such M we will construct a discrete module
for 4 = Gal (k,/k). Using the relation between such modules and
sheaves, we still have a “splitting sheaf” for F with properties analo-
gous to those in Theorem 1 of [11] from which we will deduce our re-
ciprocity results.

We must first relate splitting modules to group rings and augmenta-
tion ideals.

For any group S, denote the group ring by ZS and its augmentation
ideal by I, that is, the set {Zn.s | Zn, = 0}.

Define an abelian group map y:Z(G/H)—ZG by (2, ng) =
2, 2, epnilgh) (where again {g;} is a set of left coset representatives
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of H). This is easily seen to be independent of representative, since
3, eughh = 2,y gh for any collection {h;} of elements of H. For
this reason also ¢ has image contained in (ZH)¥, since for any h, in H
there are h;, in H such that hygh = gh;h (because H is normal). A
trivial computation shows that ¢ is a G/H-module map.

Now ¢ takes I, into L. To prove this it suffices to show (I, )
is contained in I, since the image of  is fixed by H. Note that for any
group S, Iy is generated by {s — 1|s € S}. The assertion then follows
from the observatlon that Yy(Zn,(g, — 1) = 2, 2, ey ni(g;h — h) which
lies in I;.

The following diagram of abelian groups, which has exact rows, is
then commutative:

0—I,—Zy——Z—0
0— Iy, — Z(G/H —Z—0.

[H:1]

The right square is commutative since y(g) = =, gh has augmentation
[H:1].
In fact, we have

ProposITION 2.1.
0—IH— (ZGH—[H:11Z—0

¥ |¢ l [H:1]
0— I, — Z(G/H— Z— 0

is commutative with exact rows.

Proor. The functor ( )¥ is a left exact functor from the category of
H-modules to abelian groups, so the upper row is exact at I;¥ and
(ZGY"

Now an element x = 2 ng of ZG is fixed by H if and only if
n, = n,, for each h in H. It then follows that the augmentation of ZG,
when restricted to (ZG)”, has image equal to [H:1)Z. Consequently,
the first row is also exact at [H : 1]Z.

Since the image of  is fixed by H, commutativity follows from the
commutativity of the diagram preceding the proposition.

Now if, as above, f:G/H X G/H— AH is a (normalized) cocycle,
then there is a map of abelian groups 4,, — I, given by x,—g — 1
whose kernel is clearly A. With the corresponding map for AHX,
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have a commutative diagram with exact rows of abelian groups:

0— A — A, —1I;—0

] y

0— A" — AH 1, —0.

¢

To see the commutativity of the right square note that
p(x;) = 2, x, —h has image 2,(gh—1)— Z,h-1) =
2,gh — 2Zgh — 2,h = Y(g — 1). Since g — 1 is the image in I, of
x;, the square commutes.

We have already mentioned that ¢ and ¢ have images in the sub-
modules fixed by H, and are G/H-module maps so, in fact, the above
may be replaced by a commutative exact diagram of G/H-modules:

0— AH — A [ H . HYHA)

ik
0— A" AH 1, —0.

The upper row is simply the first part of the usual long exact se-
quence of group cohomology.

In the sequel we will principally be interested in modules for which
HYH, A) = 0.

Finally, suppose G is itself a quotient, say G = G'/H’. Let
H = K'/H', so that G/H = G’/H'/K’/H'. Let A be a G’-module and \”
and A’ denote the inflation of cocycles from G/H to G’ and from G to
G/, respectively. Then A’Af = A”’f and one easily checks that

= AmE A
(1) \ /
x 'f = Ax N
commutes.
Also

Iy, = IG/H'—) Ig =1Ig/q

. R
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commutes as does the corresponding diagram for group rings. Since
[H:1] = [K’': H'] we also have a commutative diagram of (trivial)
G/H-modules:

7z [H:I]Z

3) [K’:1] \ / [H:1]

Z

Now assume that F is a formation sheaf (§1). Recall that
;¢ = Gal (k,/k). Let L/k be a finite separable field extension and sup-
pose a is a fundamental two cocycle representing the fundamental class
of H(L/k, F).

Let % be the discrete /-module corresponding to F [5, I, § 5]. Recall
A? = FM) if M is finite Galois with group -¢/B. Since the set # of fi-
nite Galois field extensions within k; of k which contain L is cofinal in
the set of all finite Galois extensions of k, we have I = 1‘_‘l‘MafF(M)
with the natural % action arising from considering.¥ = ll_fil‘l,'f/ B,,, the
limit taken over {8, = Gal(k,/M) | M € _7}.

Now let N be the smallest Galois extension of k which contains L.
Let M D N be any other finite Galois extension of k. Write G =./8,,
= Gal(M/k), H=23y/8, = Gal(M/N) so that G/H=9/98, =
Gal (N/k).

In what follows we will regard natural isomorphisms such as
G/H =~/ as identifications.

We have that F(M) = %®r is a G-module with F(N) = A% = (A%
= FM)# as a G/H-module.

If / denotes the inflation to N of the cocycle a, let f be the corre-
sponding cocycle arising from the isomorphism of complexes
C(G/y, F(N)) =~ C(N/k, F) [4, Thm. 54] and let Af be the inflation of
this to G. We may form the splitting modules A, = F(M)? = F(N), and
Ay = F(M),, as above.

The commutative diagram (1) above, since it comprises maps of
G/H-modules, gives {A, |M€E _#’} the structure of a directed system
compatible with the inverse structure on {Z/8,|M € 7"} so lim A o 1S
a discrete module over 1%, _ .9/%, = 4.

Similarly, let R}, = ZG be the group ring for G, I, = I; be the aug-
mentation ideal for G and Z,, = Z. Direct the Ry, I,, and Z,, according
to the commutative diagrams above, for M in 7. (In particular, the
map Z, — Z,, is multiplication by [M’: M].) As for A, we have, using
M are discrete /-modules.
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Let F,.# and Z be the sheaves corresponding to llmA lim I,, and
limp respectlvely F is called the splitting sheaf for F.

ProposiTion 2.2.  There is an exact sequence of functors
0—-F—>F—>J4—0.

Proor. The remarks on splitting modules show that 0 —
AYM_ A, —I,—0. M E_/ is an exact sequence of abelian groups
natural in M.

Since Lim preserves exactness we have that

09— lm 4 _, limp _,g
Mers Mer
is an exact sequence of discrete -#-modules.

Suppose N/k is a finite separable field extension with 8, =

Gal (k,/N). We then have an exact sequence of abelian groups

0 — ¥y — <1imA )i — (lim 1) — HY(8,, )

where the last term is a profinite group cohomology group [5, I, § 1].
Now 9 is also a discrete B,-module and ¥y = M 93 /¥, the limit
taken over all fields M which are finite Galms over N. Hence by Prop.

im HYM/N, F(M)) (recalling that 9 is the module corresponding to F)
[4 Thm. 5.4]. Since F is a field sheaf, each term in this direct limit is
zero. Again using the correspondence between modules and sheaves the
above exact sequence then becomes an exact sequence of abelian
groups

F(N)— EN) —.# (N)— 0,

for any finite separable field extension N of k.

Any finite separable k-algebra A is a direct sum of finite separable
field extensions. Since F, F, and.# are additive, being étale sheaves, a
sequence

0— F(A) — F(A) —.#(A) — 0

is the direct sum of sequences of the sort shown above to be exact, and
is therefore itself exact, completing the proof.

Now let Z be the additive functor defined by 7 (M) = Z and if
f:M— M is a map of fields Z(M)— ZM’) is given by multiplication
by [M’: f{M)]. Additivity defines Z on the category of finite separable
k-algebras.

REMARK. ¥ is not an étale sheaf. However, Dobbs [6] has shown that
the inclusion functor Additive Functors ~— Functors has a left adjoint
*). Zis in fact the value of this “addification” of the constant functor
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Next we need a technical lemma. We will use it only with T the
étale topology and B/A a finite galois extension of fields with group G.
The idempotent decomposition mentioned in the proof is just the well
known one arising from the isomorphism B ® , B ~ IIB, the product of
|G| copies of B.

LemMaA 2.3. Let T be any R based topology [5). Let A, B be in Cat T
with B a Galois A-algebra with group G [4]. Let F be an additive sheaf
on T. If the set containing only the structure map i: A — B is a cover
then F(i) is an isomorphism of F(A) onto F(B)C.

Proor. Since B is Galois, Theorem 3.1, of [4] gives orthogonal
idempotents ¢, g in G in B®,B with 2 _;e, =1 and
s®1= Egea(l ® g(s)e, for any s in B. Hence

) &(s) = 2 €(gs)e,

for any s in B. Let w,: B = IIB%,— B?¢, denote the natural projec-
tion of R algebras. Now (*¥) means 7€, = me,g as maps B> — BZ,, so
that if y € F(B)® we have Fr Fe(y) = FnmFeyy) for all g. Since F is
additive, this gives Fe,(y) = Fey(y). Since F is a sheaf it follows that y
lies in Im (F(A) — F(B)). The opposite set inclusion is trivial.

ProposiTioN 2.4. There is a short exact sequence of functors
0—»SF >HR—-Z —0.

Proor. As in Prop. 2.2, since #, % and < are additive it suffices to
show that if N is any finite separable field extension of k then

0—F (V)= (N)— ZN)— 0

is exact.

Let M be any finite Galois extension of k which contains N and let
j: N— M be the inclusion. Since li_",‘MIM is discrete we have ./ (M) =
(limyg, I, )*¥=1,, (here lim s taken over all finite Galois extensions M’ of
k containing N). Similarly (M) = R,,. Since 0 — I,,— R,,— Z — 0 is
exact, the top row in the following commutative diagram is exact:

0—7 (M) —ZM)— Z(M)— 0
[/(i) |9?(1') ’Z(i) = [M: N]

0—.7(N) —Z(N) — Z (N)— 0.

Let G = Gal (M/k), H = Gal (M/N). According to Lemma 2.3, .7 ()
and Z(j) are isomorphisms onto .# (M) and Z#(M)¥ respectively. As we
observed in Proposition 2.1, the map ZM¥ = R,H = (ZGH—-Z =
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Z (M) has image [H:1]Z = [M:N]Z. Accordingly, the above diagram
may be replaced by a commutative diagram

0—.7 (M — (M — [M : N Z(M) — 0
lf(i) Aj) (Y(i) =[M:N]
0— 7 (N)—A(N)

Z(N) — 0.

In this diagram the top row is exact (Proposition 2.1) and the vertical
maps are isomorphisms.
Hence the bottom row is exact as was to be proved.

3. Reciprocity Isomorphisms.

TueorReM 3.1. Let F be any étale sheaf. If H(N/L,F) = 0 for all
i > 0 whenever k C L C N C k, with N/L Galois and N/k finite, then
HM/L,F) = 0 for all i >0 and for any k CL C M C k, with M/k
finite.

Proor. For i = 1 this is Proposition 1.1. Choose a finite galois exten-
sion N of L which contains M. Now to apply [8, Thm. 3.2] in higher
dimensions, it suffices by the additivity of F to show that

H, (ELF)=0
k

Ty,
for j < i and for every field E with LC E C N. Here the cohomology
is the Grothendieck cohomology, the derived functors of “evaluation at
E”. The algebras which appear in the hypothesis of [8, Thm. 3.2] are
direct products of such fields and

Hj, (A X B,F)~Hj, (A,F)® Hj, (B P).

Tk./k Tk‘/k
Now
Hka./k(E’ F) >~ H{(Bp, )

where 9 is the module corresponding to F. But H/(8, ) =
lim H/(B /R p, AT the limit taken over all fields P C k; which are fi-
nite Galois over E. Since 3¥* = F(P) and B,/8, ~ Gal (P/E), H/(,
) is then isomorphic to lim Hi(p/E, F) [4, Thm. 5.4]. Since P/E is
Galois, H/(P/E, F) = 0 by assumption, so that

H"Tk WE, F)=0
for all j. Then [4] 0 — HM/L, F)— HN/L, F) is exact for any i > 1

[8, Thm. 3.2]. Since N/L is Galois, H(N/L, F) is assumed zero. Hence
H{(M/L, F) = 0 as was to be shown.



718 R. A. MORRIS

CoroLLARY 3.2. Let k C L C M C k, be fields with [M : k] finite. If F
is a formation sheaf and F its splitting sheaf, then H(M/L,F) # 0 for
i>0.

Proor. Let N C k, be any finite Galois extension of L with group G.
Then HYN/L,F) ~ HiG, F (N)). In the notation of §2, F(N) = Ay,
the splitting module for the G-module F(N) relative to a fundamental
cocycle (that is, a class of a cocycle from H*G, KN)) corresponding to
a fundamental cocycle class from H%N/L, F). It follows from Theorem
1 of [11, p. 294] that Hi(G, F(N)) = 0 for i > 0. Hence, Theorem 3.1
implies H(M/L, F) = 0 for i > 0.

CoROLLARY 3.3. Let # be the functor described in § 2 which assigns
to a Galois field extension N of k its group ring ZG where
G =Gal(N/k). Let kCLCMCk, with [M:k] <oo. Then
HM/L, %) = 0 for i > 0.

Proor. By Theorem 3.1 it suffices to prove that H{(M/L,%) =0
whenever M/k is Galois (for then M/L will be Galois and Theorem 3.1
applies directly). Suppose M/L has group G. Then by construction
AM) ~ ZG has the usual G-module structure so that HY(M/L, %) ~
Hi(H, ZG) where H = Gal (M/L). ZG is a free H-module and so is in-
duced [3, p. 98]. Since H is finite ZG is also then coinduced [3, p. 101]
and so H'(H, ZG) = 0 completing the proof.

THEOREM 3.4. (RECIPROCITY). Let F be a formation sheaf. Let Z be
the additive functor which assigns Z to each finite separable field exten-
sion K and for which, if KM is a monomorphism of fields with M/K
finite separable, Z(j) is multiplication by [M : j(K)]. Then for any finite
separable field extension M of K, H*2 (M/K, F) ~ H(M/K, Z) for all
i>0.

Proor. By Proposition 2.2 the sequence
-+« H*YM/K, F) — H+YM/K,.7)
— H**M/K, F)— H+*M/K,F)— - - -
is exact for i = 0. Hence by Corollary 3.2, H*YM/K, /) ~

H*2M/K, F) for i > 0. Similarly, Proposition 2.4 and Corollary 3.3 im-
ply H{M/K, Z) ~ H"*YM/K,.#) for i > 0, completing the proof.

ReMaRks. If k is a local field, the functor U which assigns to an al-
gebra its group of units is a formation sheaf. If k is a global field there
is a sheaf ¢ which assigns to each finite separable field extension its
idele class group and this is a formation sheaf. If F is U (in the local
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case) or # (in the global case), let 9 be the discrete --module corre-
sponding to F, and k CL C N C k, with N/k finite Galois. Then
HYN/L,F) ~ HY%,/By, A*Y and this isomorphism preserves inflation
and restriction (Proposition 3.1). The verification that F is a formation
sheaf is then precisely the verification that (4, {%8, |M/k is finite
Galois}, ) is a class formation in the sense of [10, XI]. This veri-
fication forms the deep part of local and global class field theory (see,
for example, the articles of Tate and Serre in [3]).

If M/K is Galois with group G then HM/K, %) is isomorphic to
HY{G,7 (M)), for.# any of the functors F, F, #, %, or Z (note that
Z = Z(M) is a trivial G-module, since [M:M] = 1). The two long
exact sequences used in the proof of the reciprocity theorem thus coin-
cide with similar sequences for group cohomology which yield the usu-
al reciprocity laws of class field theory in positive dimensions [10, IX,

§8].
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