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COEXISTENCE OF STABLE AND RANDOM MOTION 
R. C. CHURCHILL, G. PECELLI, S. SACOLICK, AND D. L. ROD* 

0. Introduction. Stable and pathological phenomena, the latter as 
in the Smale horseshoe map, have been extensively studied in the 
theory of dynamical systems. However, the present authors are un
aware of any explicit example where both of these phenomena occur 
simultaneously. This paper presents such an example where the inter
linked stability and pathology occur on a fixed energy surface of a 
Hamiltonian system of two degrees of freedom. In particular, we show 
that on "many" energy surfaces in our example one has both a pair of 
linked periodic orbits that are elliptic stable (and hence encased in 
invariant tori), and interlinking pathological solutions "generated" 
from the (topological) transversal intersection of the stable and un
stable manifolds of four distinct hyperbolic periodic orbits. The 
example has been extensively studied in [8, 3, 4, 5, and 12] and should 
be contrasted with an example of Easton [6] which exhibits linked 
hyperbolic periodic orbits giving rise to a pathological structure. 

To demonstrate the elliptic stability of our periodic orbits we use 
results from the theory of Mathieu equations [ 1, 9,10] to show that the 
eigenvalues of the linearized Poincaré maps about these orbits move 
along the unit circle as the total energy h of the Hamiltonian system 
changes. This allows us to choose h so that certain eigenvalue condi
tions needed to assert stability for the full (non-linear) Poincaré map 
are satisfied. Thus, either the Birkhoff normal form of the Poincaré map 
is linear and we can apply a result of Rüssmann [ 13], or it is not, in 
which case the results of Arnold-Moser [11, p. 56] apply to assert 
stability. As a corollary we have the existence of quasi-periodic motion 
in a system which we show is in no sense near an integrable one. Such 
solutions are usually obtained by perturbing from an integrable Ham
iltonian. 

For the pathology we use numerical work to verify the conditions 
necessary to apply the results in [4, 5] , the hyperbolicity of the 
relevant periodic orbits having been shown in [ 12]. These tech
niques for constructing invariant tori and establishing pathology are 
relevant to other problems (in particular the breakdown of invariant 
tori) as we shall indicate in a discussion of the Hénon-Heiles Hamil
tonian in § 5. 
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We remark that E. Zehnder has shown that the coexistence of stable 
and random motion is generic for elliptic symplectic planar mappings 
fixing the origin (see [15] or [11, pp. 105-106]). However, the 
pathology in his case is a consequence of the ellipticity, and occurs 
in any neighborhood of the origin. In our example the pathology is 
bounded away from the stable periodic orbits. 

1. The Example. We study the Hamiltonian system 

(1.1) ±i = dHldtji, y{ = -dHldXi, i = 1, 2, 

where H(x, y) = (l/2)(y i
2 + y2

2) +(l/2)(x1
2 + x 2

2 ) - ( l ß ) * ^ 2 , * = 
(xi> X2Ì> y = (î/i> îte)- The Hill's region for H(x, y) = h> 1/2 is given 
in Figure 1 (the shading will be explained below), where the appro
priate portions wly w2, of the xY and x2-axes are projections of two 
periodic orbits wi9 w2, that are linked in phase space (these are the 
elliptic stable orbits). Let W(x) = (l/2)(x!2 + x2

2) - ( l ß ) * ^ 2 be 
the potential function. We will denote the x-plane projection of sets 
and orbits in phase space by underlining. 

Figure 1 



COEXISTENCE OF STABLE AND RANDOM MOTION 447 

A topological model of the phase space is given in Figure 2, where 
the vertices and lateral surfaces of the double solid cone are identified 
as indicated by identifying points p and q if p is vertically above q. 
(This can be shown by using the fact that above every point x in the 
plane there is a "circle of velocities" {(x, y) : \y\2 = 2[h — W(x)] } in 
phase space with radius that goes to zero on the boundary W(x) = 
h of the Hill's region.) The four open 3-balls A, B, C, D, that have been 
removed project to the shaded portions of Figure 1, and for energies 
(1/2 < / i ê (9/2) each contains a single hyperbolic periodic orbit Ili of 
energy h whose projection Ili joins the boundaries W(x) = h of the 
corresponding leg [12, § 4, Ex. D] (see Fig. 1). 

Figure 2 
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We will show that for almost all energies h near .99, wl and w2 are 
enclosed in invariant tori which nest down on these orbits, and that 
the following pathology exists [5, Theorems 1.3,1.4, and 7.2] : 

(a) Given any bi-infinite sequence of the letters A, B, C, D, in which 
no letter repeats itself, there are uncountably many solutions of (1.1) 
which pass through the open 3-balls in the prescribed order; 

(b) given any finite sequence of these letters, there are uncountably 
many solutions of (1.1) which come from infinity in the leg correspond
ing to the first letter, pass from region to region in the prescribed order, 
and return to infinity in the leg indicated by the last letter; 

(c) given any finite sequence with identical first and last letters, 
there is a nonempty subset of the solutions of (1.1) that can be 
analyzed using the shift operator on a space of bi-infinite sequences of 
finitely many letters, and for each integer I > 0 there is a periodic 
orbit which passes through the regions in the prescribed order I times 
and then closes; 

(d) there is no second integral G of (1.1) with G | H = c< and (h, c{) 
as a regular value of (H, G) : R4—» ft2 for the energies h near .99 which 
we use below. 

In the next two sections we concentrate on showing the existence 
of the invariant tori. 

2. The Eigenvalues of the Linearized Poincaré Map. For all 
energies h > 0 the functions 

u ^ t ) = (2h)1'2 (sin(t), 0, cos(t), 0), 

w2(t) = (2/t)1'2 (0, sin(t), 0, cos(O), 

are the solutions of (1.1) with total energy H(Wi(t)) = h drawn in 
Figures 1 and 2. We will compute the linearized Poincaré map along 
wly the one along w2 having the same character by symmetry. 

Linearizing around Wi(t) we are led to 

(2.1) i= ( _ J ^ f W u ^ W K z = 

where / = (l °)and H** = (Wxx °) is the Hessian of H. In particular, 
(2.1) becomes 
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(2.2) 

0 - ( 1 - 2hsin2(t)) 0 0 

which is equivalent to the system of second order equations 

(2.3) zx + «! = 0, 

(2.4) z2 + (1 - 2h sin2(t))z2 = 0. 

Letting nx and n2 be the normalized solutions of (2.4) satisfying 
tii(0) = 1 = ri2(0) and n^O) = 0 = n2(0), the fundamental matrix 
solution Z of (2.2) satisfying Z(0) = J4 takes the value 

/ l 0 0 0 

z ( 2 7 r ) " l o o i o 
\ 0 fi^ar) 0 n2(27r) 

and is the linearized Poincaré map along w^t) calculated at one full 
period [7, pp. 251-253]. The area-preserving character of the Hamil-
tonian flow implies det( ^ n

h
2 )2ar = 1. Letting A = n1(2w) + n2(27r), 

we see that the characteristic polynomial det[Z(27r) — kl4] = 
(X — 1)2(X2 — A\ + 1) has two eigenvalues X = 1 reflecting the fact 
that the Poincaré map is computed along the periodic orbit and on the 
surface H(x, y) = h. The remaining two eigenvalues are calculated 
from 

(2.5) (X2 - AX + 1) = 0, 

and thus depend only on the solutions of (2.4) which can be rewritten 
(letting z = z2) 

(2.6) z + [(l-h) + h cos(2t)] z = 0, 

a special case of the two real parameter Mathieu equation [10, p. 
131] 

(2.7) z + [y - 28 cos(2t)] z = 0, y = (1 - h\ Ô = (-A/2). 

Some elementary identities (see [9, pp. 6-8] or [10, §2.12]) 
show that the solutions of (2.5) are given by 

(2.8) X= [n1(w)±([nl(n)]*-l)V*l*-
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Recalling that the Hill discriminant AH = n1(7r) + n2(7r) = 2n1(7r), 
we see that |AH | > 2 implies that w^t) is a hyperbolic periodic orbit, 
and |AH| < 2 implies that it is elliptic. Plots of the AH = constant 
curves in the (8,y)-plane can be found in [1, pp. 123 and 130] and 
[ 10, p. 132]. In particular, there is a lower boundary curve a0 = 
a0(8) for the first stability region (in the interior of which |AH | < 2) 
where a0(8) ^ 0 and a0(8) = 0 only for 8 = 0 (see Fig. 3). The upper 
boundary of the first stability region is depicted in Figure 3. The 
slopes s(8) of each of these boundary curves satisfy \s(8)\ < 2 [10, p. 
133]. This gives the following result. 

THEOREM 2.1. w^t) is an elliptic periodic orbit for 0 < h < 1 — 
a0( — hl2), and is hyperbolic for h>\ — a0( — hl2). Further, there 
exists a unique h0 > 0 such that h0 = 1 — a0(—h0l2) and h0 > 1 (h0 

— 1.15). As h increases from 0 to h0, the eigenvalues X from (2.5) 
travel monotonically along the unit circle, both taking the value + 1 
at h = h0. 

PROOF. Plotting the line y = (1 - h), 8 = (-h/2) (thus y = 28 + 1) 
in the (8, y)-plane for h ^ 0 as in Fig. 3, the theorem follows from 
standard results and an examination of the stability chart (see [10, 
pp. 131-133] or [1, pp. 122-130] ). In particular, the line y = 28 + 1 
has slope 2 which is greater than the slope of the curves AH = con
stant and is thus transverse to them. This forces the eigenvalues X to 
travel monotonically along the unit circle as h increases from 0 to 
h0. 

3. The Existence of Invariant Tori. Let P = P(x2, y2) be the Poin
caré map along u)x(t), dP the linearized map (J-j ^ 2 ) ^ calculated in 
the previous section. Then P and dP map the origin of R2 to itself, 
hence P(x2, t/2)

 = dPQ2
2 ) + (higher order terms in x2, y2). For energies 

0 < h < h0 — 1.15, Theorem 2.1 states that the eigenvalues A and X 
of dP lie on the unit circle with X ^ ± 1, hence (x2, t/2) = (0, 0) is an 
elliptic fixed point of the area-preserving mapping P. We consider 
only energies h in this range for which the eigenvalue X = e2^6 has 6 
badly approximable by rationals (such X form a set of full measure 2rr 
on the unit circle). Then P can be transformed by a formal power 
series C = C(x2, y2) into Birkhoff normal form [14, Section 23], If 
the normal form is linear, then C is a convergent power series by a 
result of Rüssmann [ 13]. In this case P is conjugate to a rotation 
and thus (x2, y2) = (0, 0) is a stable elliptic fixed point. Hence 
Wi(t) is encased in invariant tori that nest to w^t). If, however, the 
Birkhoff normal form is not linear, then using the first non-vanishing 
term in [11, Theorem 2.13], we obtain the same result on stability. 
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y 

A H = (constant) curve 

+ 1 First stability region 

a0(S) / \ 
y = 28 + 1 
8 = -h /2 

Figure 3 

In either case the set of invariant tori about Wi(t) has nonzero mea
sure, and Wi(t) is elliptic stable for a set of energies of full measure in 
(0, h0), namely those energies giving rise to eigenvalues X = e2™16 with 
6 badly approximable by rationals. 

4. The Existence of Pathology. By Theorem 7.2 of [5] , the path
ology given in (a)-(d) of § 1 will exist at all energies near h = .99 pro
vided there is a "crossing orbit" at h = .99 (thereby giving such "cross
ing orbits" at energies near h = .99). That is, a solution of (1.1) is re
quired which enters the central region from infinity in one leg in 
Figure 1 and departs to infinity via an adjacent (non-opposite) leg. 
Given one such orbit, one can use symmetry to construct crossing orbits 
from a given leg to any other leg. In [5, Theorem 7.2] it is shown 
how the existence of such crossing orbits "forces" the (topological) 
transversal intersection of the stable and unstable manifolds of any 
pair of the hyperbolic periodic orbits Ili *n the legs (see Fig. 1). The 
O» were shown to be hyperbolic in [ 12, § 4, Ex. D ] . In essence one 
then has (topologically) "non-degenerate" heteroclinic orbits (see [4, 
§ 5] for definition) connecting distinct hyperbolic periodic orbits, and 
this enables one to "essentially" embed the horseshoe may into the flow. 
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In [ 5] the difficulties involved in showing the existence of crossing 
orbits are described in detail, and for the example under considera
tion such orbits were only proven to exist at energy h = 3, although 
they were also found numerically at h = 2, 1.5, and 1.25. The proof 
in [5] involves an error analysis of the computed crossing orbit to 
show that it represents an actual solution of (1.1). Unfortunately, for 
the lower energies the motion was too slow to control the exponential 
growth with time of the error estimates. Thus, modifications were re
quired in the computer program outlined in [5, § 3 and 5] to prove 
the existence of the crossing orbit found at h = .99 which is schemati
cally indicated in Fig. 4. 

W=h=V2 

W=h- .99 

Figure 4 

Before discussing these modifications we summarize: for energies 
h near .99 we see that the crossing orbit condition in [5] for path
ology is satisfied simultaneous to the eigenvalue condition required to 
assert the existence of invariant tori about w^t), i = 1, 2. We thus have 
the coexistence of stable and random motion at such energies. 

The computer program for numerical integration of the crossing 



COEXISTENCE OF STABLE AND RANDOM MOTION 4 5 3 

orbit followed in outline [5, § 3 and 5]. At energy h = .99 the initial 
conditions were x = (1,0), y = (0, (.98)1/2) thereby starting the orbit 
at p in Figure 4 with velocity perpendicular to the x^axis. The com
puted orbit moved forward, and by symmetry backwards, as indicated. 
Due to the values of the acceleration field — Wx, one needs only to 
show that the orbit goes somewhat to the left of the "minimum dis
tance" line segment L between the two branches of the level curve 
W(x) = h = .99. Thus one needs error bounds only up to this point 
(see [5, § 3 and 5] for more detail; in particular, Fig. 27). 

The fourth order Taylor series used in [5] for numerical integra
tion was insufficient to control the truncation error over the relevant 
time interval in the present example. Therefore a computerized sym
bolic (non-arithmetic) differentiation scheme was utilized to provide 
Taylor series of unrestricted order. The final analysis used an 
eleventh order series with timestep A = 10 ~2, and the total trunca
tion error was of the order of 10 ~7. 

Unfortunately, double precision was insufficient to control the round
off error when the eleventh order series was used. Further refine
ments led to using the extended precision floating-point feature of the 
PL1 optimizing compiler of the IBM 360-370, which has a mantissa 
representation of 112 significant binary digits. The final roundoff 
error was then bounded by 10~15. 

As opposed to [5], where manual error estimates were done, the 
current program was designed to calculate the truncation and roundoff 
errors in addition to computing the solution. This was done by first 
computing the orbit and then repeating the calculations to do the 
error analysis. In order to eliminate any effect of machine error in the 
error bound calculations themselves, the program rounded up after 
each arithmetical operation so as to truly bound the truncation and 
roundoff errors. For the same purpose we generously overestimated 
the bounds of a region in the phase space containing the computed 
orbit. This region corresponds to the region R* in [5, §5 ] , and is 
the region on which the error bounds were calculated. 

It should be remarked that the solution computed with a fourth 
order Taylor series and double precision did not differ significantly 
from the final computed solution, but as already mentioned the latter 
method with eleventh order series had to be used to bound the errors. 
Just as a check we calculated the total energy along the computed 
solution, and found it constant through the 25th decimal place. 

ADDENDUM: The versatility and additional precision of the current 
program led to a check on certain crossing orbits for the Hénon-Heiles 
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potential which were found numerically in [5, §6] but could not be 
proved to exist due to lack of appropriate error bounds. It has now 
been confirmed that the orbits for that potential previously found at 
energies h = 7/24 and h = 19/80 do represent actual crossing orbits, 
and thus the pathology of solutions for that potential must exist at 
these energies. 

5. Remarks on a Related Example. We study the Hénon-Heiles 
Hamiltonian 

(5.1) H(x,y)=(ll2)(yi2+y22)+W(x), 

with potential W(x) = (l/2)(Xi2 + x2
2) + (1/3)*!3 - xxx2

2, at energies 
0 < h < 1/6. The Hamiltonian studied in [2, 8] can be transformed 
to (5.1) by a trivial canonical transformation. The differential equa
tions associated with (5.1) have three gradient line solutions whose 
projections Gi(t), i = 1, 2, 3, are given in Figure 5. 

Figure 5 
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In [2] M. Braun established the existence of invariant tori in this 
Hamiltonian at energies h close to 0. His techniques also apply to our 
example above [2, p. 313], but only at energies too low to be useful 
to us. On the other hand, the techniques of the present paper applied 
to the Gi(t) would provide invariant tori in the Hénon-Heiles Hamil
tonian at those energies at which the required eigenvalue conditions 
are satisfied. Unfortunately, the integration of the linearized Poincaré 
map around G^t), and calculation of its eigenvalues, requires a de
tailed knowledge of the stability chart for a Hill's equation with 
elliptic function coefficients (a Lamé equation). Initial numerical 
studies indicate that Gx(t) is elliptic for 0 < h < .13 and .16 < h < 1/6, 
but hyperbolic for .13 < h < .16 (as sampled at energy intervals of 
Ah = 10"2). The numerical studies of Hénon and Heiles [8], 
however, indicate that pathology first appears at h — .11 before G^t) 
bifurcates to become hyperbolic. Thus it appears that this example 
also has coexistence of stable and random motion in the energy range 
.11 < h < .13. Considered as a model for invariant torus breakdown, 
the example of the present paper leads to interesting conjectures in 
the Hénon-Heiles Hamiltonian relating the onset of pathology to the 
bifurcation to transversal intersection of the stable and unstable mani
folds of distinct hyperbolic orbits which one can readily locate in the 
diagrams of [8], and easily construct in Figure 5. 
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