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APPROXIMATE FIBRATIONS 
D. S. CORAM AND P. F. DUVALL, J R . l 

1. Introduction and basic lemmas. The several concepts of a fibra-
tion have been important tools in the study of maps. Thus, the de­
fining property, called the homotopy lifting property, is a valuable 
property for a map to have. The works of Lacher [ 11], [ 12], and also 
Armentrout and Price [ 1], and Kozlowski [ 10], suggest that an ap­
proximate homotopy lifting property might be almost as valuable while 
applying to a larger class of maps. This paper intends to show that 
this is indeed the case. In particular, we prove analogues to the follow­
ing theorems about fib rations: the existence of a path lifting function 
(Proposition 1.3), the property that point inverses are absolute neigh­
borhood retracts (Corollary 2.5), the homotopy equivalence of point 
inverses (Theorem 2.12), and the exact homotopy sequence of a fibra-
tion (Corollary 3.5). Our conclusions, of course, are weaker in that they 
give shape theoretic, rather than homotopy theoretic, information. 

We use the following terminology and notation. If A C X, a topologi­
cal space, a neighborhood of A is a set containing A in its interior; Int A 
denotes the interior of A; CI A denotes the closure of A; Fr A denotes 
the frontier, or topological boundary, of A. On the other hand, the 
boundary of a topological manifold M is denoted Bd M. A map is a 
continuous function. For any positive integer q, Iq is the q-fold product 
of intervals; I1 = I; and other intervals are denoted by [a, b]. If H : 
X X I —» Y is a homotopy, then Ht : X —» Y is the map defined by 
Ht(x) = H(x, t). For all metric spaces, d(x, y) is the distance between 
points x and y, and N(x,e) = {y | d(x, y) < €}. Let / : X —> Y and 
g : X —» Y be maps and 8 be a cover of Y. We say that / and g are 
8-close if for each x G X f(x) and g(x) are contained in some member 
of 8. Also / and g are 8-homotopic iff and g are homotopic by a ho­
motopy h such that h({x} X I) is contained in some member of 8 for 
each x G X. Such a homotopy is called a 8-homotopy. If ô is a positive 
number , /and g are 8-close (8-homotopic) if they are close (homotopic) 
relative to the cover {N(y, 8/2) \y G Y}. If Y is an ANR (that is, an 
absolute neighborhood retract for metric spaces), then for every cover 
€ of Y there is a cover 8 such that any two 8-close maps from a metric 
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space into Y are €-nomotopic by a homotopy which is fixed on the set 
where / = g [9]. The symbol = stands for isomorphism or homeomor-
phism depending on the context; — stands for homotopy. The homot­
opy class of a map is denoted [f]. The 9-th homotopy group of a 
based space or pair of spaces is denoted irq. 

DEFINITION. A surjective map p : E-+ B between metric spaces has 
the approximate homotopy lifting property with respect to a space X 
provided that, given a cover e of B and maps g : X —» E and H : X X 
I —» B such that pg = H0, there exists a map G : X X / -» E such that 
G0 = g and pG and H are €-close. The map G is said to be an e-lift of 
H. If € is a number, we define an e-lift as above. Furthermore, G is 
stationary with H if for each x 0 E X such that H(x0, i) is constant as a 
function of t, the function G(x0, t) of t is constant also. The map p : 
E —» B is said to have the regular approximate homotopy lifting 
property with respect to X if the €-lift G can always be chosen to be 
stationary with H. 

The above definition, of course, generalizes the usual homotopy 
lifting property, the definition of which is the same except that pG = 
H is required rather than that pG, H be e-close. Thus, the approximate 
homotopy lifting property holds for a larger set of maps. However, we 
should point out that, although shape theory is used in the latter parts 
of this paper, this generalization of the homotopy lifting property is 
probably not an appropriate generalization to the shape category. The 
reason for this, roughly stated, is that two maps in the shape category 
are "similar" if they are merely homotopic in some set, whereas we 
require that they be close. This paper shows that much of the theory 
of Hurewicz fibrations (maps with the homotopy lifting property with 
respect to all spaces) carries over, little changed, to this larger set of 
maps. We will also make some reference to the theory of Serre, or 
weak, fibrations (maps with the homotopy lifting property with 
respect to all n-cells, or equivalently, all polyhedra). The first proposi­
tion provides a tool for constructing examples of maps which satisfy 
the approximate homotopy lifting property with respect to metric 
spaces, but which do not have the homotopy lifting property for some 
space. 

PROPOSITION 1.1. Let E and B be ANR's. Suppose p : E —» B is a 
surjection with the property that for each cover 8 of B there is a map 
p8: E —> B such that p8 is 8-close to p and p8 has the homotopy lifting 
property with respect to a metric space X. Then p has the approximate 
homotopy lifting property with respect to X. 
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PROOF. Given €, g, H as in the definition, choose 8 such that any two 
ô-close maps into B are -^-nomotopic, where r) twice star refines e. Let 
p8 be the map given by the hypothesis, and let K : X X [ — 1,0] —» B 
be an rj-homotopy such that K(x, — 1) = psg(x) and K(x,0) = pg(x). 
Define a homotopy * by *(x, *) = K(x, t)ift^ 0, and <I>(x, i) = H(x, f) 
if £ è 0. There exists a homotopy ifß : X X [ — 1,1] —> E such that 
i/r(x, — 1) = g(x) and p 6 ^ = 4>. Now choose a map q : X —» (0,1) such 
that H({x} X [0, q(x)] ) is contained in some member of 17 for each x. 
Define 

f * ( x , 2 t y ( x ) - l ) , tfOStScWÄ 

G(x, 0 = < ^(x, 2t - q(x)), if q(x)l2 ^ * ^ </(x), 

I *(x,f), i f ç ( x ) g t S l . 

Then G(x, 0) = *(x, - I H g(*)- If 0 ^ * ^ qf(x)/2, then t/ = 2tlq(x) -
1 G [ — 1,0], so pG(x, t) = pi/f(x, y). Then pG(x, £) is 17-close to 
pôt/f(x, y) which is 17-close to <ï>(x, 0) = H(x, 0) which is in turn 17-close 
to H(x, t) by our choice ofq(x). Since 17 twice star refines €, pG(x, f) is 
e-close to H(x, £). The case q(x)l2 § f § g(x) is verified similarly. 

A slight change in the above proof also gives 

PROPOSITION 1.2. Let p : E —» B be a map between ANR's. Ifp has 
the approximate homotopy lifting property with respect to a space X, 
then for any cover e of B there is a cover 8 of B such that whenever 
g : X —• E and H : X X / -» B are maps such that g is a 8-lift of H0, 
there is a map G : X X I -+ E such that G0 = g and G is an e-lift ofH. 

EXAMPLE. Let W be the "Warsaw circle" in R2; that is, W = WY U 
B, where Wl = {(0, f ) | - l ^ ^ l } U {(x, Simrlx)} and B is an arc 
which meets Wx only in its endpoints (0,0) and (1,0). Let x0 be a base 
point in the 1-sphere S1, and let IT : S1 X S1 —> S1 be the projection 
map onto the second factor. Clearly there is a compactum A C S1 X 
S1 such that A is homeomorphic to W and such that there is a homeo-
morphism 

h : (S1 X S1) - A -» S1 X (S1 - {x0}). 

Then the map p : S ] X S ^ S 1 given by 

rnh(x)9 xŒ(SlX S 1 ) - A 

P ( X ) = ix 0 , xGA 

is continuous, and p has the property that p~l(x0) = A and p~\y) 
essential copy of S l in S l X S1 for each y ^ x0. 

is an 
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We claim that p can be uniformly approximated by fibrations. To 
see this, let e > 0 be given and let U be an open interval in S1 such 
that x0 G U C N(x0, (l/2)e). Then, since p - ^ S 1 - U) and p~l(Cl U) 
are homeomorphic to S1 X I, it is easy to see that p | p _ 1 (S 1 — U) ex­
tends to a map p€ : S

1 X S1 —> S1 which is topologically equivalent to 
77. Thus pe is a fibration, and d(p, p€) < €. By 1.1, p satisfies the ap­
proximate homotopy lifting property with respect to all metric spaces. 

On the other hand, p is not even a Serre fibration. For suppose that 
p has the homotopy lifting property with respect to S1. Let x ^ x0 be 
a point in S1, let CÜ be a parli in S1 from x to x0, let H : S1 X J —• S1 be 
the homotopy given by H(x, t) = <û(t), and let g : S1 -» p~1(x) be a 
homeomorphism. By assumption H lifts to a homotopy G : S1 X I —» 
S1 X S1 such that G(x, 0) = g(x) and G(x, 1) G A for each x G S 1 . This 
is a contradiction since g is essential and each map of S l to A is null-
homotopic. 

Many of the fundamental lemmas in the development of the theory 
of Hurewicz and Serre fibrations can be modified for maps with the 
approximate homotopy lifting property. The rest of this section is 
devoted to four such propositions which are used in this paper and 
which illustrate the kind of changes needed. The first three proposi­
tions follow Dugundji's treatment [6]. Note that the assumption that 
E and B are metric spaces is implicitly included in the hypothesis of 
all four propositions. 

Let p : E —> B be a surjection between metric spaces. Define D = 
{(e, œ) G E X Bz I p(e) = co(0)} with the topology induced by the 
given topology on E and the compact-open topology on Bl (the space 
of all paths in B). We say that p : E —> B has approximate path lifting 
functions if for every cover e of B, there is a map k: D —* E1 such that 
k(e, co)(0) = e and k(e, co) is an €-lift of co. Furthermore, we say that X 
is regular provided k(e, co) is the constant path at e whenever co is the 
constant path at p(e). 

PROPOSITION 1.3. (See [6], Ch. XX, Th. 2.2). The map p : E -> B 

has the (regular) approximate homotopy lifting property with respect 
to all spaces if and only if p has (regular) approximate path lifting 
functions. 

PROPOSITION 1.4. (See [6], Ch. XX, Cor. 2.3). If p : £ -> B has the 

approximate homotopy lifting property for metric spaces, then p has 
the approximate homotopy lifting property for all spaces. 

This proposition, together with Proposition 1.1, shows that a map­
ping which has Hurewicz fibrations arbitrarily close to it has the 
approximate homotopy lifting property with respect to all spaces. 
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Note that this comment applies to the mapping in the example. 

PROPOSITION 1.5. (See [6], Ch. XX, Cor. 2.4). Ifp.E-*Bhasthe 
approximate homotopy lifting property with respect to all spaces, 
then p has the regular approximate homotopy lifting property with 
respect to all spaces. 

The next proposition follows from Proposition 1.5 and the technique 
of proof of Theorem 2.8.10 of [16]. 

PROPOSITION 1.6. Ifp:E-+B has the approximate homotopy lifting 
property with respect to XX I for some space X, then given maps 
F0 , Fl: X X / - * E, homotopies H between pF0 and pFx and G be­
tween F0 | X X {0} and Fx | X X {0} such that H(x, 0, i) = pG(x, 0, t), 
and a cover e ofB, there is a map G ' : X X IX I —> E such that G' isa 
homotopy between F0 and Fu G' extends G, and G' is ane-lift ofH. 

2. Properties of point inverses. For the remainder of this paper we 
assume that E and B are locally compact ANR's and p : E -» B is a 
proper map. We make this assumption so that we can state our con­
clusions shape theoretically. We will also be assuming that p has the 
regular approximate homotopy lifting property for all spaces. It would 
suffice to require that p satisfy the approximate homotopy lifting 
property for metric spaces by Propositions 1.3 through 1.5. We sum­
marize these assumptions by saying that p : E —» B is an approximate 
fibration. 

Since we are interested in shape theoretic information about the 
point inverses of p, it would be useful to know that the shapes of com­
pacta in E are determined by their neighborhood systems in E. In 
particular, we would like for each compactum X in E to satisfy 

(2.1) for each neighborhood U of X there is a compact ANR M C U 
with X C int M. 

Following Moszynska [ 15A], we say that E is a convenient ANR if 
every compactum X in E satisfies 2.1. Clearly every polyhedron is 
convenient, and it follows easily from Chapman's triangulation theorem 
[4A] that every Ç)-manifold is convenient (Q the Hilbert cube). 

PROPOSITION 2.2. If E is a locally compact ANR, E X Ç is con­
venient. 

PROOF. If X is a compactum in E X Ç), X is contained in a neighbor­
hood of the form V X Ç>, where V is a separable open subset of E. By 
R. Edwards [6A], V X Q is a Ç-manifold. Thus X satisfies 2.1, and 
E X Ç is convenient. 
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PROPOSITION 2.3. Ifp : E —> Bis an approximate fibration, then 
(a) pn : E X Q -» B, given by pïï(e, q) = p(e) is an approximate 

fibration, and 
(b) p X 1 : E X Q -H> B X Ç, given by (p X 1) (e,q) = (p(e), q) is 

an approximate fibration. 

PROOF. Part (a) follows from the easily proven fact that a composition 
of approximate fibrations is an approximate fibration. To prove (b), let 
€ be a cover of B X Q, let X be a space, and let g : X —> E X Q, H : 
X X l - » B X Ç b e maps such that (p X l)g = H \ X X {0}. Define a 
cover e ' of B as follows. For each point b G B, cover {b} X Q with a 
finite number of open sets Vf X Qf, • • -, Vnnb X Ç^nb such that each 
V*b X Qih is contained in some member of €. Let Vb = P l i^V^, and let 
€ ' = {Vb}beB. The Vb have the property that (x, 9) and (t/, 9) are con­
tained in some member of € whenever x, y G Vb and q G Q. Let gE : 
X —> E, gQ : X —» Ç) be defined by g(x) = (gE(x), gç(*)) a n d define HB, 
Hç similarly. ThenpgE = HB | X X {0} a n d p g 0 = HQ \ X X {0}. Let 
GE : X X / -» E be an e '-lift of HB which extends gE. It is easy to check 
that G : X X I - > E X Q, defined by G(x, t) = (GE(x, t), HQ(x, t)) is an 
€ -list of H which extends g. 

The upshot of 2.2 and 2.3 is that if we are only concerned with the 
shape theoretic properties of the point inverses of an approximate 
fibration or the homotopy properties of an approximate fibration, 
there is no loss of generality in assuming that E and B are convenient. 

We use the ANR system approach to shape theory developed by 
S. Mardesic and J. Segal [14]. In particular, given a compact set F in 
a convenient ANR E, we associate with F an ANR sequence, F, as 
follows: choose a sequence of neighborhoods {l^} such that each C/j 
is a compact ANR, U{ C Int Ui_l, and DUi = F; and use the inclusions 
as bonding maps. In this paper we say that F = {£/*} is an ANR 
sequence associated with F by inclusion. By [14, Cor. 1] any other 
ANR sequence associated with F has the same homotopy type as F. 

This section is concerned with the shape-theoretic properties of the 
point-inverses of an approximate fibration, p. The point-inverse p~l(b) 
is denoted Fb and is referred to as the fiber over b. 

THEOREM 2.4. If p : E —> B is an approximate fibration and b G B, 
then given any neighborhood U of Fb, there is a neighborhood V of Fb 

in U such that for any neighborhood W ofFb in V, there is a neighbor-
hood W0 ofFb in W and a homotopy G: E X I -* E such that 

(1) G0 = 1, 
(2) Gt I Cl(£ - 17) U W0 = 1 for all t, 
(3) G»( V) C Ufor all t, and 
(4) d ( V ) C W. 
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PROOF. First we show 

(*) If p G B and C is any ANR neighborhood of b, there is a compact 
neighborhood D of b such that for each ANR neighborhood A of b in 
D there is a homotopy H : B X I -> B and a neighborhood Ao of fc 
such that 

(1) H0 = 1 
(2) Ht | C1(B - C) U Ao = 1 for all*, 
(3) Ht(D)CC foralU, and 
(4) ZZ^D) C A. 

Given C, let D be a compact neighborhood of b which contracts to b in 
C. There is a homotopy F : D X I -> C such that F0 = 1D, FX(D) = 
fo, and Ft(b) = fo for all t [6, Ch. XV, Th. 6.5]. Given A, choose a 
neighborhood Ao of fo which is so small that F | AQ X I is homotopic in 
A to the map t(a, £) = a by a homotopy <£ such that $(0,0,5) = 
a,<f>(a, t, 0) = F(a, t) and </>(a, f, 1) = i(ay t) for all s,t G I,a Œ AQ. 
Let f : ( D X {1} X {0}) U (Ao X {1} X Z) -> Abe defined by 

rF(x, l ) , s = 0 

l<£(a, 1,5), a G Ao 

By [3A] i/f extends to a homotopy ty : D X {1} X I —» A. Now define 
f : ( D X {0,1} X Z) U (Ao X / X Z) U (D X I X {0}) -> Cby 

$'(x,t,s) = 

i//(x, £, s), * = 1 

x, t = 0 

F(x, 0, 5 = 0 

0(x, t, s\ x G Ao. 

Extend to ^ " : D X Z X Z -» C by [3A]. 
Define H' : D X Z -» C by H'(x, t) = *"(x, t, 1). Then H 0 ' = 1D, 

H / ( D ) C A and ZZ, ' | A0 = 1 A0 for all £. Let L be an open neighborhood 
of D in C whose closure is contained in C, and let / = C — L. 

Define H" : C X {0} U ((/ U D) X Z) - • Cby 

H * / x rt=B f*> * = 0 o r x G / 
V ' Iff '(*,*), otherwise. 

Extend ZZ" to a homotopy H'" : C X Z -> C by [3A] again. Finally, 
extend over (B — C) X Z by the identity to get the desired H. 

Now, given C7, let C be an ANR neighborhood of b such that 
p - 1 (C) C U. Let D be given by (*) and let V = p~l(D). Given W, 
choose an ANR neighborhood A of b such that p - 1(A) C W. Let Ao, ZZ 
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be as in (*), and let W0 = p_1(Ao). 
Define K : E X I -> B by K(e, t) = H(p(e), t), for e G E, * G I. Let 

€ = min{d(H(D X I), C1(B - C)), d(ffi(D), C1(B - A))}. By hy­
pothesis there is a map G : E X 7 —» E such that G0 = 1, d(pG, K) < e, 
and G is stationary when K is. It is easy to check that G satisfies the 
conclusion of the theorem. 

If Fb = {Ui,ocij} is an ANR sequence associated with Fb by inclu­
sion, it follows immediately from 2.4 that Fb is strongly movable in the 
sense of Mardesic [13] ; i.e., for such i there is an i ', i ' è i such that for 
each i", i" ^ i, there is a.j,j § i ' and j è i", and a map r*'*" : C/# —> Uv, 
satisfying 

ûto/f™" Ä ata, 
and 

r <*i'j — Otif.tj-

It is proved in [4] and [13] that a metric compactum X has a 
strongly movable associated ANR system if and only if X is a funda­
mental absolute neighborhood retract; that is, X is an absolute 
neighborhood retract in the sense of shape theory (see [4] for a precise 
definition). We summarize these remarks in the following corollary to 
2.4, using Propositions 2.2, 2.3. 

COROLLARY 2.5. If p : E —» B is an approximate fibration and b G B, 
then Fb is strongly movable and thus Fb is a fundamental absolute 
neighborhood retract. 

REMARK. Other conditions on the neighborhoods of a point b G B 
such as local homotopy connectedness, LCn, can be used to get cor­
responding conditions on the fiber Fb. The same argument also shows 
that a Hurewicz fibration between manifolds has the property that 
each fiber is an absolute neighborhood retract. 

We now turn to the question of how the fibers are embedded as­
suming the spaces are manifolds. It is too much to expect a fiber to 
have 1 -ULC complements. For example, any map of Sn onto itself 
whose only nondegenerate point inverse is a wild, cellular arc is an 
approximate fibration. However, we do get the following property. A 
compact set F of a manifold satisfies the small loops condition [5], [7], 
[8] if for each neighborhood U of F, there is a neighborhood V of F in 
U and an e > 0 such that each loop in V-F of diameter less than e 
which is null-homologous in V-F is null-homotopic in V-F. 

THEOREM 2.6. If p : E —» B is an approximate fibration, and if E and 
B are manifolds, then for every b G B, Fb satisfies the small loops 
condition. 



APPROXIMATE FIBRATIONS 283 

PROOF. Given a neighborhood U of Fb, choose a cell neighborhood 
C of b such that p'l(C) C U. Choose V such that FbCVC p~\C) 
and choose € > 0 such that each loop of diameter less than e in V is 
null-homotopic in p~l(C). Now suppose that o> : Bd I2 —> V — Ffo is a 
loop of diameter less than € which is null-homologous in V — Fb. Then 
there is a map g : 72 -» p~\C) such that g | Bd 72 = o>. Since C — p 
has the homotopy type of a sphere and pco is null-homologous in C — p, 
pco is null-homotopic in C — p. Therefore, by using the fact that C is a 
cell, pg extends to a map 77 : I2 X / -» C such that b ^ H^I2) and 
He | Bd 72 = po> for all t. Let TJ = min {d(H1(/2), {&}), d(p(E - 17), 
C)}. By hypothesis there is an 17-lift G of 77 which extends g and is 
stationary with 77. Then Gi : J2 -> 17 - Ffc and Gx | Bd J2 = co. 

We complete this section by showing that if p : E —> B is an ap­
proximate fibration and B is path-connected, then any two fibers have 
the same shape. This is analogous to the homotopy equivalence of 
fibers of a Hurewicz fibration [ 16], and the proof has some similarities. 

In Propositions 2.7 through 2.11 we suppose that p : E -» B is an 
approximate fibration and that £ is a convenient ANR. Let fl,b£ß, 
let {Ui} be an ANR sequence associated with Fa by inclusion, and let 
{Vi} be an ANR sequence associated with Fb by inclusion. In case 
a = b, take Ui = V* for each i. Let {€*} be a sequence of positive 
numbers converging to zero such that p_1(N(&, 2^)) C Vi for each i. 
Let co : 7 —• B be a path with a = co(0), b = co(l). There is another 
sequence of numbers {8i} such that, for every i, 0 < 8 ^ < di < (1/2)c; 
and any two 28rclose maps into N(a>,€f) are (l/2)crhomotopic in B. 
An ({€<}, {8i})-cot;erwg of o> is an increasing function G on the positive 
integers together with a sequence of maps G{ : 77G(i) X 7 —» E such that 
Gj(x, 0) = x for all x, and for each i, d(pGi(x, t), <o(t)) < 8» for all x, t. 

PROPOSITION 2.7. Given any sequences {€*}, {8»} satisfying the condi­
tions above and any path co, there is an ( {€*}, {8j})-cot>£ring of co. 

PROOF. For each i, choose GÌ ' : Fa X 7 -» £ by the regular approxi­
mate homotopy lifting property such that d(pGi'(x, t), <o(t)) < (1/2)8* 
and Gi'(x, 0) = x for all x G Ffl, * G 7. By [3A, Theorem 8.1], Q ' ex­
tends to Q " : E X J -> E such that G/'(x, 0) = x for all x G E. By a 
compactness argument, there is an integer G(i) such that e7(pG/'(x, £), 
co(£)) < 8» for all x G UG(i), t G 7. The proof is completed by choosing 
G to be increasing and setting Gf = G/' | UG(i) X 7. 

PROPOSITION 2.8. If (G, {G*}) is an ({€j})-cot;mng of ou, and g* : UG(i) 

—» Vj is defined by gj(x) = G^x, 1), then g = (G, {g*}) is a map ofANR-
sequences [ 14]. "~ 
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PROOF. If x G UG(i), then g{(x) G V{ since d(pgi(x), to(l)) < 8J < 
2€i. Givenj è i, we will show that g{ \ UG(j) — gj in V*. Since d(pGi(x, t), 
ù)(t)) < ôi and d(pGj(x, t), <o(t)) < fy < ô* for every x G C7G(i), £ G Z, we 
have d(pGi \ UG(j) X I, pG,) < 26*. Therefore pG{ \ UG(j) X I is (l/2)c r 

homotopic to pG, by means of a homotopy H : UG{j) X I X I —» B such 
that H(x, t, 0) = pQ(x, *), H(x, t, 1) = pG^a, t), d(H(x, t, s), <o(t)) < €h 

and H(x, tys) =_pgi(x, 0) = pGj(x, 0) for all x G l7G(i), tGI,sGI. By 
Proposition 1.6, there is a homotopy K : UG(j) X I X I —» E between 
Gj and Q | C7G(i) X 7 such that d(pK(x, t, s), H(x, t, s)) < c*. The 
homotopy defined by K(x, 1, s) is the desired one since H(x, 1,5) G 
N(b,Ci)andp-l(N(b,2€i)) C V<. 

We say that the g of Proposition 2.8 is a map of ANK-sequences 
induced by to, but note that g also depends on {ej , {di}, and (G, {GÌ}). 

PROPOSITION 2.9. If to and <o ' are paths from a tob, to — <Ù' rei {a, &}, 
and g and g ' are maps 0/ ANR-sequences induced by œ and <*> ' re­
spectively, then g — g '. 

PROOF. Let g = (G, {&}) where &(*) = Q(x, 1) for some ({€,}, {8*})-
covering(G, {Q}) of to, and let g ' = (G', {g<}) whereg<'(z) = Q'(x, 1) 
for some ({e/} , {ôi'})-covering (G',{Gi'}) of to'. Given i, let j = 
max{G(i), G'(i)}. Now define a homotopy H : 17) X 7 X I - • B as fol­
lows. Since d(pGi(x, t), <o(t)) < Ô, for x G Uj, t G /, H can be defined 
on UjX IX [0,1/3] to be a (l/2)€rhomotopy between H0 = p Q and 
H1/3(x, t) = «*(*). Similarly H \ Uj X I X [2/3,1] is a (1 /2^ '-
homotopy between H2/3(x, £) = to (£) and Hl = pGi'. Finally let 
H I C/j- X I X [1/3,2/3] be defined by the hypothesized homotopy be­
tween a) and o)'. Applying Proposition 1.6 as above shows that g{ \ 
Uj~ fy'ÌUjin Vt. 

We now say that the homotopy class of maps of ANR-sequences [g] 
is induced by the homotopy class rei end points [(o]. By Proposition 
2.9, [g] depends only on [a)]. 

PROPOSITION 2.10. If 0* is the constant path at b G B, and [g] is 
induced by [co], then [g] = [ l{vf}]. 

PROOF. Choose the sequences {€*}, {8i} as required for an ({e*}, 
{ôi})-covering of a). Pick G such that for each i,p(VG{i)) C N(b,8i). 
Define Q : VG(i) X I -> E by Q(JC, t) = x for all x G VG(i), t G 7. Then 
(G, {GÌ}) is an ({e*}, {ôi})-covering of to; and if gi(x) = Gj(x, 1) = oc, 
then g = (G, {gi}) is homotopic to the identity map of the ANR-
sequence {Vi}. 
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PROPOSITION 2.11. If co is a path from a to b, co ' is a path from b to 
c, [g] is induced by [ co], and [g'] is induced by [ co ' ] , then [g ' g] is 
induced by [ co*co ' ] . ~~ 

PROOF. Let {W;} be an ANR sequence associated with Fc by inclu­
sion. If a = c, take W< = Ui9 and if & = c, take Wf = V». Let {€; '} be 
a sequence of positive numbers converging to zero such that 
p~1(N(c, 2e/)) C Wi. Choose a decreasing sequence of numbers 
{8i'} such that 0 < 0 / < (1/2)6*' and any two 28/-close maps into 
N(o) ', €i) are (1/2)6* '-nomotopic in B. Choose an ({€* ' } , {8* ' })-covering 
(G' , {G/}) of co'. Now select another sequence of positive numbers 
{e*}, converging to zero, such that p~l(N(b,2€i)) C VGf(i). Choose a 
monotone decreasing sequence of positive numbers {8*} such that 8* = 
8{f,8i = (1/2]eiy and any two 28j-close maps into N(<o,€<) are l/2e r 

homotopic in B. Finally, let (G, {G*}) be an ({€*}, {8j})-covering of co. 
Define G" by G"(i) = G(G'(i)) and Q " : UGn(i) X Z -* E by 

r , / _ i = rGbf(i,(x,20, i f O ^ ^ l / 2 
' i G ' ^ g G , ^ ) , ^ - ! ) , if 1 / 2 S ^ 1 . 

It is easy to check that (G", {G/'}) is an ({6* ' } , {8i}-covering of co*co '. 
Since Gi"(x, 1) = gi ' (gc (*)(*))> w e conclude that [g'g] is induced by 
[co*co']. 

THEOREM 2.12. If p : E —> B is an approximate fibration, a,b G B, 
and there is a path in B from a to b, then Fa and Fb have the same 
shape. Hence if B is path connected, any two fibers have the same 
shape. 

PROOF. By 2.2 and 2.3, the map pn : E X Ç> —» B is an approximate 
fibration with convenient total space, so that if there is a path in B 
from a to b, (pn)~l(a) and (pn)~l(b) have the same shapes by 2.7-2.11. 
The proof is completed by observing that for each x E ß , pTr~\x) is 
homeomorphic to Fx X Ç which is in turn shape equivalent to Fx. 

3. An exact sequence for a map. Let F be a compact set in E, e G F, 
and {Uj} be an ANR sequence associated with F by inclusion. 

Define iiq(F, e) = lim4_7ra(t/J, e) and ^ ( E , F, e) = linv7rq(E, Uy, e), 
where the bonding maps of the inverse sequences are inclusion in­
duced. It is easy to prove that the resulting groups (or pointed sets) do 
not depend on the choice of the sequence {Uj}. For a general reference 
on these groups, see [15]. An inverse sequence {Gj7 a?) of groups and 
homormorphisms is constant provided that cû;| im aj+l : im c^ + 1 -^ 
im aj is an isomorphism for each j . In this situation linvGj = im a1 

under projection. 
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THEOREM 3.1. Ifp:E —» B is an approximate fibration, E is a con­
venient ANR, b G B, and e G Fb, then there exists an ANR sequence 
{Uj} associated with Fb by inclusion such that the inverse sequences 
{irq(Uj, e), a*j} and {7Tq(E, Uj, e), y*j} are constant for all q where oè : 
Uj+i -> Uj andyi : (E, Uj+l) —» (E, Uj) are inclusion maps. 

PROOF. Let U\ be any neighborhood of Fb. In Theorem 2.4 set U = 
Ui and define U2 to be an ANR neighborhood contained in the V given 
there. Now apply Theorem 2.4 again: set U = U2 and define U3 to be 
an ANR neighborhood contained in the resulting V. To define U4, 
apply Theorem 2.4 twice more. First set U = C/3 and define U4 ' to be 
the resulting V. Then set U = Ul9 U2= V,U3= W and define U4" to 
be the resulting W0. Finally define U4 to be an ANR neighborhood 
contained in U4 H U4". Continuing in this manner, we obtain a 
sequence {Uj} with the property that for eachj ^ 1 there is a homotopy 
G.EX I -> E such that G0 = 1, Gt | C1(E - Uj) U Uj+3 = 1 for all t9 

Gt(UJ+l) C C7, for all t, and G ^ l / ^ ) C Uj+2. 
To prove a*-> | im a*i+l : i m a J + 1 - ^ im a*-7 is an epimorphism, let [f] 

G im a*->. Then^ — ajfj+i for some [/}+i] G irq(Uj+ì) (we suppress the 
base point throughout the proof). By choice of {Uj}, oêfj+i — cJct + lfj+2 

for some [fj+2] G7rq(Uj+2). Hence [f] = c%>[a^+1j§+2] • 
To prove that a*j | im oicj+1 is a monomorphism, suppose ot*j[fj+i] = 

0 for some [jÇ+J G a*j+l- (Here we are assuming q > 0; the proof 
for 9 = 0 is similar.) Then fj+l — <xj+lfj+2, and a?ai+ifj+2 — Ô for 
some [J5+2] £-7r

q(Uj+2). Again by the choice of {Uj}, there is a map of 
C/j into Uj+l whose restriction to Uj+2 is the identity. Hence cJ+1fj+2 — 
0SO[J5+1] =0. 

COROLLARY 3.2. The projections onto the first factors a* : iLq(Fb, e) 
—> i m Û * l and y* : 7rq(E, Fb, e) —» im y* l are isomorphisms. 

COROLLARY 3.3. There is an exact sequence 

i% v% 8 
-^ZLQ(Ffo, e)-*7Tq(E, e) -» nq(E, Fb, e) -> nq-i(Fb, e) -> • • -, 

where i* is a* followed by the inclusion induced homomorphism 
iTq(Ui,e)-+7rq(E,e),v% is the inclusion induced homomorphism 
7Tq(E,e) —>7rq(E, Ui,e) followed by y*_ 1 , and 8 is usual boundary 
operator irq(E, UY,e) -*irq-i(Ui,e) preceded by y* and followed by 

PROOF. Using the exactness of the homotopy sequences of the pairs 
(E, Ui), (E, U2), it is an easy diagram-chasing argument to prove that 
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is exact. Then the second corollary follows from the first. 

THEOREM 3.4. lfp\E-*Bisan approximate fibration, b G B, and 
e G Fb, then p induces an isomorphism p* : 7rQ(E, Fb, e) —» nq(B, b). 

PROOF. Without loss of generality we assume that both E and B are 
convenient ANR's. (Otherwise we prove the theorem for p X 1 : E X 
Ç —» B X Ç> using Propositions 2.2 and 2.3 and the theorem for p : E 
—» B follows since E X Q and B X Ç are homotopy equivalent to E 
and B respectively.) Choose an ANR sequence {Ui} associated with Fb 

by inclusion as in Theorem 3.1 and a similar sequence {V^} associated 
with b. By renumbering if necessary we may assume that p(Ui) C V*. 
Then we have the commutative diagram 

> vq(E, Ui+l)2£ wq(E, U{) • 

-» nq(B, Vi+l)J^nq(B, Vt) „ 

where the lower groups are based at fc, the upper groups are based at 
e G Fb, and ß* is the inclusion. Define p* : irq(E,fb, e) —> 7rQ(B, b) to 
be the induced homomorphism on the inverse limits, p* is clearly 
independent of the sequences {£/;}, {V;}. To see that p* is an isomor­
phism, it suffices to show that p* : (imy**) —> (im/V) is an isomor­
phism. To prove that p* is epic, choose [f] G im/3*J. By local con-
tractibility, we may assume that / (Bd Iq) = b. Let W be a neighbor­
hood of b such that p~\W) C Ui+l. Let e = d(b, B - W), and let S 
be a cover of B such that 8-close maps are €-nomotopic. By hypothesis 
there is a map g : (Iq, Iq~l) —> (E, e) such that pg and / are 8-close. 
Then [g]G7rq(E,Ui+l) and p*[g] = [/] in nq(B9Vi+l). Thus 

To show that p* is monic on imy**, suppose [f] G im y** and 
P*[f] = ^- Choose k > 2 so that p -1(^+fc) C (7*. By constancy, we 
may assume t h a t / : (7q, Bd Iq, *) —» (E, f/i+fc+1, e). By constancy again, 
P*[fi == 0 in 7Tq(B, Vi+fc, b). By lifting the appropriate homotopy, we 
conclude that [f] = 0 in7rq(E, (7*, e). 

COROLLARY 3.5. If p : E -* Bis an approximate fibration b G B, and 
£ G Ffo, £/i#n £/t£f £ is an exact sequence 

• ' ' -* 2Q(Fb, e) -^ 7T (̂E, e) -> TTQ(B, fe) -> 7Tq-i(Fb, e) -> • • -, 

where i* tt>as defined in Corollary 3.3 and d = 8p* _1, 8 from 
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Corollary 3.3, p* = £*y*, g* ~ lfrom Theorem 3.4. 

REMARK. If E and B are assumed to be polyhedral and p : E —> B 
is assumed to satisfy the approximate homotopy lifting property for 
each (/-cell IQ, the sequence of Corollary 3.5 can still be obtained in 
the following manner. 

Modify Spaniens treatment of Serre (or weak) fibrations given in 
[16, 7.2.5.-7.2.7.] to cover approximate liftings. Use Proposition 1.2 
to keep the induction going for Theorem 7.2.6. Then observe that 
when a lifting is needed in the proof of Theorems 2.4 and 3.4 under 
this new hypothesis, it is given by the modifications of Spaniens 
lemmas. 
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