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APPROXIMATE FIBRATIONS
D. S. CORAM AND P. F. DUVALL, JR.!

1. Introduction and basic lemmas. The several concepts of a fibra-
tion have been important tools in the study of maps. Thus, the de-
fining property, called the homotopy lifting property, is a valuable
property for a map to have. The works of Lacher [11], [12], and also
Armentrout and Price [1], and Kozlowski [10], suggest that an ap-
proximate homotopy lifting property might be almost as valuable while
applying to a larger class of maps. This paper intends to show that
this is indeed the case. In particular, we prove analogues to the follow-
ing theorems about fibrations: the existence of a path lifting function
(Proposition 1.3), the property that point inverses are absolute neigh-
borhood retracts (Corollary 2.5), the homotopy equivalence of point
inverses (Theorem 2.12), and the exact homotopy sequence of a fibra-
tion (Corollary 3.5). Our conclusions, of course, are weaker in that they
give shape theoretic, rather than homotopy theoretic, information.

We use the following terminology and notation. If A C X, a topologi-
cal space, a neighborhood of A is a set containing A in its interior; Int A
denotes the interior of A; Cl A denotes the closure of A; Fr A denotes
the frontier, or topological boundary, of A. On the other hand, the
boundary of a topological manifold M is denoted Bd M. A map is a
continuous function. For any positive integer g, I is the g-fold product
of intervals; I' = I; and other intervals are denoted by [a,b]. If H:
XX I —>Y is a homotopy, then H,: X — Y is the map defined by
Hy(x) = H(x, t). For all metric spaces, d(x,y) is the distance between
points x and y, and N(x,€) = {y|d(x,y) <e€}. Let f: X —>Y and
g:X — Y be maps and 8§ be a cover of Y. We say that f and g are
8-close if for each x € X f(x) and g(x) are contained in some member
of 8. Also f and g are §-homotopic if f and g are homotopic by a ho-
motopy h such that h({x} X I) is contained in some member of § for
each x € X. Such a homotopy is called a §-homotopy. If § is a positive
number, f and g are §-close (8-homotopic) if they are close (iomotopic)
relative to the cover {N(y,8/2)|y €Y}. If Y is an ANR (that is, an
absolute neighborhood retract for metric spaces), then for every cover
€ of Y there is a cover § such that any two §-close maps from a metric
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space into Y are e-homotopic by a homotopy which is fixed on the set
where f = g [9]. The symbol = stands for isomorphism or homeomor-
phism depending on the context; = stands for homotopy. The homot-
opy class of a map is denoted [f]. The g-th homotopy group of a

based space or pair of spaces is denoted 7.

DEerFinNITION. A surjective map p : E— B between metric spaces has
the approximate homotopy lifting property with respect to a space X
provided that, given a cover € of B and maps g: X — E and H: X X
I — B such that pg = H,, there exists amap G: X X I — E such that
Go = g and pG and H are e-close. The map G is said to be an e-lift of
H. If € is a number, we define an e-lift as above. Furthermore, G is
stationary with H if for each xy € X such that H(xo, t) is constant as a
function of ¢, the function G(x,, t) of ¢ is constant also. The map p :
E — B is said to have the regular approximate homotopy lifting
property with respect to X if the e-lift G can always be chosen to be
stationary with H.

The above definition, of course, generalizes the usual homotopy
lifting property, the definition of which is the same except that pG =
H is required rather than that pG, H be e-close. Thus, the approximate
homotopy lifting property holds for a larger set of maps. However, we
should point out that, although shape theory is used in the latter parts
of this paper, this generalization of the homotopy lifting property is
probably not an appropriate generalization to the shape category. The
reason for this, roughly stated, is that two maps in the shape category
are “similar” if they are merely homotopic in some set, whereas we
require that they be close. This paper shows that much of the theory
of Hurewicz fibrations (maps with the homotopy lifting property with
respect to all spaces) carries over, little changed, to this larger set of
maps. We will also make some reference to the theory of Serre, or
weak, fibrations (maps with the homotopy lifting property with
respect to all n-cells, or equivalently, all polyhedra). The first proposi-
tion provides a tool for constructing examples of maps which satisfy
the approximate homotopy lifting property with respect to metric
spaces, but which do not have the homotopy lifting property for some
space.

Proposition 1.1. Let E and B be ANR’s. Suppose p: E — Bis a
surjection with the property that for each cover & of B there is a map
ps: E — B such that p, is 8-close to p and p; has the homotopy lifting
property with respect to a metric space X. Then p has the approximate
homotopy lifting property with respect to X.
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Proor. Givene, g, H as in the definition, choose § such that any two
8-close maps into B are n-homotopic, where 7 twice star refines €. Let
ps be the map given by the hypothesis, and let K: X X [—1,0] — B
be an 7-homotopy such that K(x, —1) = p,g(x) and K(x,0) = pg(x).
Define a homotopy ® by ®(x, t) = K(x, t) if t = 0, and ®(x, t) = H(x, ¢t)
if t= 0. There exists a homotopy ¢ : X X [—1,1] — E such that
¥(x, —1) = g(x) and pp = ®. Now choose a map q : X — (0, 1) such
that H({x} X [0, g(x)]) is contained in some member of n for each x.
Define

‘l‘(x’ 2t/q(x) _ 1)’ fOo=¢t= q(x)/2,
Gix, t) = ¥(x,2t — qx)), ifq(x)2=t=q(x),
‘l’(x’ t)’ 1fq(x) =t=1.

Then G(x,0) = ¢ (x, —1) = g(x). If0 = t = q(x)/2, then y = 2¢t/g(x) —
1€[—-1,0], so pG(x,t) = py¥(x,y). Then pG(x,t) is m-close to
ps¥(x, y) which is n-close to ®(x, 0) = H(x, 0) which is in turn n-close
to H(x, t) by our choice of g(x). Since » twice star refines €, pG(x, t) is
e-close to H(x, t). The case q(x)/2 = t = q(x) is verified similarly.

A slight change in the above proof also gives

ProposiTioN 1.2. Let p : E — B be a map between ANR’s. If p has
the approximate homotopy lifting property with respect to a space X,
then for any cover € of B there is a cover 8§ of B such that whenever
g:X > E and H: X X I — B are maps such that g is a §-lift of H,,
there isamap G: X X I — E such that G, = g and Gis ane-lift of H.

ExampLE. Let W be the “Warsaw circle” in R2; that is, W = W, U
B, where W, = {(0,t)| —=1=¢t= 1} U {(x, Sinw/x)} and B is an arc
which meets W, only in its endpoints (0,0) and (1,0). Let xy be a base
point in the 1-sphere S!, and let 7 : S! X S! — S! be the projection
map onto the second factor. Clearly there is a compactum A C S! X
S!such that A is homeomorphic to W and such that there is a homeo-
morphism

h:(S!X SI)—A — S X (S! = {x0}).
Then themap p : S! X S! — S! given by
_ (mh(x), x€(S'X S)— A
p(x) h {xo, xEA

is continuous, and p has the property that p~(xo) = A and p~X(y) is an
essential copy of S!in S! X S! for each y # x,.
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We claim that p can be uniformly approximated by fibrations. To
see this, let € > 0 be given and let U be an open interval in S! such
that xo € U C N(xo, (1/2)€). Then, since p~'(S! — U) and p~YC1 U)
are homeomorphic to S! X I, it is easy to see that p | p~1(S! — U) ex-
tends to a map p, : S! X S! — S! which is topologically equivalent to
m. Thus p, is a fibration, and d(p, p.) < e. By 1.1, p satisfies the ap-
proximate homotopy lifting property with respect to all metric spaces.

On the other hand, p is not even a Serre fibration. For suppose that
p has the homotopy lifting property with respect to S!. Let x # x, be
a point in S!, let w be a path in S! from x to xy, let H: S! X I — S!be
the homotopy given by H(x,t) = w(t), and let g:S! — p~I(x) be a
homeomorphism. By assumption H lifts to a homotopy G:S! X I —
S! X S!such that G(x, 0) = g(x) and G(x, 1) € A for each x € S.. This
is a contradiction since g is essential and each map of S! to A is null-
homotopic.

Many of the fundamental lemmas in the development of the theory
of Hurewicz and Serre fibrations can be modified for maps with the
approximate homotopy lifting property. The rest of this section is
devoted to four such propositions which are used in this paper and
which illustrate the kind of changes needed. The first three proposi-
tions follow Dugundji’s treatment [6]. Note that the assumption that
E and B are metric spaces is implicitly included in the hypothesis of
all four propositions.

Let p : E — B be a surjection between metric spaces. Define D =
{(e, ) EE X B'| p(e) = w(0)} with the topology induced by the
given topology on E and the compact-open topology on B’ (the space
of all paths in B). We say that p : E — B has approximate path lifting
functions if for every cover € of B, there is a map A : D — E' such that
A(e, ®)(0) = e and A(e, w) is an e-lift of w. Furthermore, we say that A
is regular provided A(e, ) is the constant path at e whenever o is the
constant path at p(e).

ProposiTion 1.3. (See [6], Ch. XX, Th. 2.2). The map p: E — B
has the (regular) approximate homotopy lifting property with respect
to all spaces if and only if p has (regular) approximate path lifting
functions.

Proposition 1.4. (See [6], Ch. XX, Cor. 2.3). If p: E — B has the
approximate homotopy lifting property for metric spaces, then p has
the approximate homotopy lifting property for all spaces.

This proposition, together with Proposition 1.1, shows that a map-
ping which has Hurewicz fibrations arbitrarily close to it has the
approximate homotopy lifting property with respect to all spaces.
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Note that this comment applies to the mapping in the example.

ProposiTioN 1.5. (See [6], Ch. XX, Cor. 24). If p: E — B has the
approximate homotopy lifting property with respect to all spaces,
then p has the regular approximate homotopy lifting property with
respect to all spaces.

The next proposition follows from Proposition 1.5 and the technique
of proof of Theorem 2.8.10 of [16] .

PropositioN 1.6. If p : E — B has the approximate homotopy lifting
property with respect to X X I for some space X, then given maps
Fy, F,: X X I— E, homotopies H between pF, and pF, and G be-
tween Fo| X X {0} and F,| X X {0} such that H(x,0,t) = pG(x, 0, t),
and a cover € of B, thereisamap G’ : X X I X I — E such that G' isa
homotopy between F and F,, G’ extends G, and G' is an €-lift of H.

2. Properties of point inverses. For the remainder of this paper we
assume that E and B are locally compact ANR’s and p: E — B is a
proper map. We make this assumption so that we can state our con-
clusions shape theoretically. We will also be assuming that p has the
regular approximate homotopy lifting property for all spaces. It would
suffice to require that p satisfy the approximate homotopy lifting
property for metric spaces by Propositions 1.3 through 1.5. We sum-
marize these assumptions by saying that p : E — B is an approximate
fibration.

Since we are interested in shape theoretic information about the
point inverses of p, it would be useful to know that the shapes of com-
pacta in E are determined by their neighborhood systems in E. In
particular, we would like for each compactum X in E to satisfy

(2.1) for each neighborhood U of X there is a compact ANR M C U
with X C int M.

Following Moszyniska [15A], we say that E is a convenient ANR if
every compactum X in E satisfies 2.1. Clearly every polyhedron is
convenient, and it follows easily from Chapman’s triangulation theorem
[4A] that every Q-manifold is convenient (Q the Hilbert cube).

Proposition 2.2. If E is a locally compact ANR, E X Q is con-
venient.

Proor. If X is a compactum in E X Q, X is contained in a neighbor-
hood of the form V X Q, where V is a separable open subset of E. By
R. Edwards [BA], V X Q is a Q-manifold. Thus X satisfies 2.1, and
E X Q is convenient.
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ProrosiTion 2.3. If p : E — B is an approximate fibration, then

(a) pr: EX Q — B, given by pm(e,q) = p(e) is an approximate
fibration, and

(b) pX1:EX Q — BX Q, given by (p X 1) (e,q) = (p(e), q) is
an approximate fibration.

Proor. Part (a) follows from the easily proven fact that a composition
of approximate fibrations is an approximate fibration. To prove (b), let
€ be a cover of B X Q, let X be a space, andlet g: X - EX Q, H:
X X I = B X Q be maps such that (p X 1)g = H| X X {0}. Define a
cover €' of B as follows. For each point b € B, cover {b} X Q with a_
finite number of open sets V,®> X Q,?, - - -, V%, X Q%, such that each
Vi X Q is contained in some member of €. Let V;, = M;_, Vi, and let
€' = {Vp}rep. The V, have the property that (x, ¢) and (y, q) are con-
tained in some member of € whenever x,y € V,, and ¢ € Q. Let gg :
X - E, go: X — Q be defined by g(x) = (gg(x), go(x)) and define Hp,
Hg similarly. Then pgeg = Hg| X X {0} and pgo = Ho | X X {0}. Let
Gg : X X I - Ebe ane '-lift of Hg which extends gg. Itis easy to check
that G: X X I - E X Q, defined by G(x, t) = (Gg(x, t), Ho(x, t)) is an
e-list of H which extends g.

The upshot of 2.2 and 2.3 is that if we are only concerned with the
shape theoretic properties of the point inverses of an approximate
fibration or the homotopy properties of an approximate fibration,
there is no loss of generality in assuming that E and B are convenient.

We use the ANR system approach to shape theory developed by
S. Mardesi¢ and J. Segal [14]. In particular, given a compact set F in
a convenient ANR E, we associate with F an ANR sequence, F, as
follows: choose a sequence of neighborhoods {U;} such that each U;
is a compact ANR, U; C Int U;_,, and MU, = F; and use the inclusions
as bonding maps. In this paper we say that F = {U;} is an ANR
sequence associated with F by inclusion. By [14, Cor. 1] any other
ANR sequence associated with F has the same homotopy type as F.

This section is concerned with the shape-theoretic properties of the
point-inverses of an approximate fibration, p. The point-inverse p~!(b)
is denoted F, and is referred to as the fiber over b.

TueoreM 2.4. If p: E — B is an approximate fibration and b € B,
then given any neighborhood U of F,, there is a neighborhood V of F,
in U such that for any neighborhood W of F, in V, there is a neighbor-
hood W, of Fy, in W and a homotopy G : E X I — E such that

(1) Go=1,

(2) G| CE — U)U W, = 1forallt,

(3) G(V)C U forallt,and

4) Gy(V)Cw.



APPROXIMATE FIBRATIONS 281

Proor. First we show

(*) If p € Band C is any ANR neighborhood of b, there is a compact
neighborhood D of b such that for each ANR neighborhood A of b in
D there is a homotopy H: B X I — B and a neighborhood A, of b
such that

(1) Hy=1

(2) H|Cl(B— C)U Ay = 1forallt,
(3) H(D) C Cforall ¢, and

(4) H\(D) C A.

Given C, let D be a compact neighborhood of b which contracts to b in
C. There is a homotopy F: D X I — C such that F, = 1p, F{(D) =
b, and F,(b) = b for all t [6, Ch. XV, Th. 6.5]. Given A, choose a
neighborhood A, of b which is so small that F | Ay X I is homotopic in
A to the map i(a,t) = a by a homotopy ¢ such that ¢(a,0,s) =
a,¢(a,t,0) = F(a,t) and ¢(a,t, 1) =i(a,t) for all s,t E 1 a E A,
Let ¢ : (D X {1} X {0}) U (A X {1} X I) = Abe defined by

F(x,1),s=0
&(a, 1,s),a € A,

By [3A] ¢ extends to a homotopy ¢ : D X {1} X I — A. Now define
' :(DX{0,1} X U (A X IXT)U (D XIX {0}) > Cby

Y(x,1,8) =

U(x, t,s),t=1

, x, t=20

bt = F(x,t), s=0
d(x, t, 8), x € A,.

Extendtoy” : D X I X I — C by [3A].

Define H': DX I - C by H'(x,t) = ¢"(x,t,1). Then H,' = 1p,
H,'(D)C Aand H,' | a, = 1a,forallt. Let L be an open neighborhood
of D in C whose closure is contained in C, and let J = C — L.

Define H" : C X {0} U (JU D) X I) - Cby

t=0orxE]J
{H "(x, t), otherwise.

Extend H" to a homotopy H"' : C X I — C by [3A] again. Finally,
extend over (B — C) X I by the identity to get the desired H.

Now, given U, let C be an ANR neighborhood of b such that
p~Y(C) C U. Let D be given by (*) and let V= p~(D). Given W,
choose an ANR neighborhood A of b such that p~1(A) C W. Let A, H

H"(x,t) =
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be as in (*), and let Wy = p~1(A,).

Define K: E X I — B by K(e, t) = H(p(e), t), fore EE, t €. Let
e = min{d(H(D X I), Ci(B — C)), d(H,(D), C(B— A))}. By hy-
pothesis there isamap G : E X I — E such that G, = 1, d(pG, K) < ¢,
and G is stationary when K is. It is easy to check that G satisfies the
conclusion of the theorem.

If F, = {U,, a;} is an ANR sequence associated with F, by inclu-
sion, it follows immediately from 2.4 that F}, is strongly movable in the
sense of Mardesi¢ [13]; i.e., for such i thereis ani’, i’ = i such that for
each i",i" = i, thereis aj,j= i’ and j = i", and a map "' : Uy — Ui
satisfying

1t

ot = oy

and
r'~""”a,'y_,~ = Qiy1je

It is proved in [4] and [13] that a metric compactum X has a
strongly movable associated ANR system if and only if X is a funda-
mental absolute neighborhood retract; that is, X is an absolute
neighborhood retract in the sense of shape theory (see [4] for a precise
definition). We summarize these remarks in the following corollary to
2.4, using Propositions 2.2, 2.3.

CoroLLARrY 2.5. If p : E — B is an approximate fibration and b € B,
then F, is strongly movable and thus F, is a fundamental absolute
neighborhood retract.

Remagrk. Other conditions on the neighborhoods of a point b € B
such as local homotopy connectedness, LC", can be used to get cor-
responding conditions on the fiber F,. The same argument also shows
that a Hurewicz fibration between manifolds has the property that
each fiber is an absolute neighborhood retract.

We now turn to the question of how the fibers are embedded as-
suming the spaces are manifolds. It is too much to expect a fiber to
have 1-ULC complements. For example, any map of S* onto itself
whose only nondegenerate point inverse is a wild, cellular arc is an
approximate fibration. However, we do get the following property. A
compact set F of a manifold satisfies the small loops condition [5], [7],
[8] if for each neighborhood U of F, there is a neighborhood V of F in
U and an € > 0 such that each loop in V-F of diameter less than €
which is null-homologous in V-F is null-homotopic in U-F.

THEOREM 26. Ifp : E — B is an approximate fibration, and if E and
B are manifolds, then for every b € B, F, satisfies the small loops
condition.
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Proor. Given a neighborhood U of F,, choose a cell neighborhood
C of b such that p~1(C) C U. Choose V such that F,, C V C p~(C)
and choose € > 0 such that each loop of diameter less than € in V is
null-homotopic in p~1(C). Now suppose that @ : BdI2 >V — F, is a
loop of diameter less than € which is null-homologous in V — F}. Then
there is a map g: I> — p~Y(C) such that g | Bd I> = w. Since C — p
has the homotopy type of a sphere and pw is null-homologous in C —p,
pw is null-homotopic in C —p. Therefore, by using the fact that C is a
cell, pg extends to a map H: I2 X I — C such that b § H\(I?) and
H,|BdI?>= pw for all t. Let n = min {d(H,(I?), {b}), d(p(E — U),
C)}. By hypothesis there is an #-lift G of H which extends g and is
stationary with H. Then G,:I>? > U — F,and G, | Bd 2 = w.

We complete this section by showing that if p: E — B is an ap-
proximate fibration and B is path-connected, then any two fibers have
the same shape. This is analogous to the homotopy equivalence of
fibers of a Hurewicz fibration [16], and the proof has some similarities.

In Propositions 2.7 through 2.11 we suppose that p: E — B is an
approximate fibration and that E is a convenient ANR. Let a,b € B,
let {Ui} be an ANR sequence associated with F, by inclusion, and let
{V:} be an ANR sequence associated with F, by inclusion. In case
a=Db, take U; =V, for each i. Let {¢;} be a sequence of positive
numbers converging to zero such that p~!(N(b, 2;)) C V; for each i.
Let w:I — B be a path with a = w(0), b = o(1). There is another
sequence of numbers {§;} such that, for every i, 0 < §;_, < §; < (1/2)¢;
and any two 28;-close maps into N(w,€;) are (1/2)e;-homotopic in B.
An ({€;}, {8;})-covering of w is an increasing function G on the positive
integers together with a sequence of maps G;: Ug;, X I — E such that
Gi(x, 0) = x for all x, and for each i, d(pGi(x, t), (t)) < §; for all x, ¢.

ProrosiTION 2.7. Given any sequences {€;}, {8;} satisfying the condi-
tions above and any path w, there is an ({¢;}, {8;})-covering of w.

Proor. For each i, choose G;' : F, X I — E by the regular approxi-
mate homotopy lifting property such that d(pG;'(x, t), w(t)) < (1/2)8;
and G;'(x,0) = x for all x € F,, t € I. By [3A, Theorem 8.1], G;' ex-
tends to G : E X I — E such that G;"(x,0) = x for all x EE. By a
compactness argument, there is an integer G(i) such that d(pG;"(x, ¢),
w(t)) < §; for all x € Ug;), t € I. The proof is completed by choosing
G to be increasing and setting G; = G;" | Ug;, X I.

ProrosiTioN 2.8. If (G, {G;}) is an ({e;})-covering of w, and g; : Ug;,
— V,is defined by gi(x) = Gy(x, 1), then g= (G, {g;}) is a map of ANR-
sequences [14] . B
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Proor. If x € Ug;), then gi(x) € V; since d(pgi(x), o(1)) < §; <
2¢;. Givenj = i, we will show that g; | Ug;, = g;in V;. Since d(pGi(x, t),
w(t)) < &; and d(pGj(x, t), w(t)) < §; < §; for every x € Ug;), t € I, we
have d(pG; | Ug;, X I, pG;) < 28;. Therefore pG;| Ugj) X I is (1/2)€;-
homotopic to pG; by means of a homotopy H : Ug;) X I X I — Bsuch
that H(x,t,0) = pG;(x, t), H(x, t,1) = pG(x, t), d(H(x, t, 5), o(t)) < €,
and H(x, 0, s) = pgi(x,0) = pG;(x,0) for all x € Ug;),t € ,s €E 1. By
Proposition 1.6, there is a homotopy K: Ug;, X I X I — E between
G; and G;| Ugjy X I such that d(pK(x,t,s), H(x,t5s)) <e. The
homotopy defined by K(x,1,s) is the desired one since H(x,1,s) €
N(b,€;) and p~}(N(b, 2¢;)) C V..

We say that the g of Proposition 2.8 is a map of ANR-sequences
induced by o, but note that g also depends on {e;}, {5:}, and (G, {G:}).

ProposiTION 2.9. If w and ' are paths fromatob, o = ' rel {a, b},
and g and g' are maps of ANR-sequences induced by o and o' re-
spectively, then g = g'.

Proor. Let g = (G, {g;}) where g;(x) = Gi(x, 1) for some ({€;}, {8;})-
covering (G, {G;}) of w,andletg’ = (G’, {g;}) where g;'(x) = G;'(x,1)
for some ({e,"}, {8:"})-covering (G', {G;"}) of w'. Given i, let j =
max{G(i), G'(i)}. Now define a homotopy H: U; X I X I — B as fol-
lows. Since d(pGi(x, t), w(t)) < §; for x € U;, t E I, H can be defined
on U; X I X [0,1/3] to be a (1/2)e;-homotopy between Hy = pG; and
Hl,s(x t)= w(t). Similarly H|U; X IX [2/3,1] is a (12) -
homotopy between Hyj;(x,t) = w'(t) and H; = pG;’. Finally let
H|U; X I X [1/3,2/3] be defined by the hypothesized homotopy be-
tween w and w’. Applying Proposition 1.6 as above shows that g; |

=g ! I (]J in Vi-

We now say that the homotopy class of maps of ANR-sequences [g]
is induced by the homotopy class rel end points [w]. By Proposition
2.9, [g] depends only on [w].

Prorosrrion 2.10. If w is the constant path at b € B, and [g] is
induced by [w], then [g] = [1yv,)].

Proor. Choose the sequences {g;}, {8;} as required for an ({e;},
{8:})-covering of w. Pick G such that for each i, p(Vg) C N(b, 8;).
Define G;: Vg4 X I = E by Gi(x, t) = x for all x € Vg3, t € I. Then
(G, {G;}) is an ({€;}, {8;})-covering of w; and if g(x) = Gi(x,1) = x,
then g = (G, {g;}) is homotopic to the identity map of the ANR-
sequence {V;}.
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ProposrTioN 2.11. If w is a path from a to b, » ' is a path from b to
¢, [g] isinduced by [w], and [g'] isinduced by [w'], then [g’ g] is
induced by [ w*w']. - o

Proor. Let {W;} be an ANR sequence associated with F, by inclu-
sion. If a = ¢, take W; = U, and if b = ¢, take W; = V,. Let {¢;’} be
a sequence of positive numbers converging to zero such that
p~YN(c,2;')) C W, Choose a decreasing sequence of numbers
{8:"} such that 0 < §;’ < (1/2)¢;" and any two 28,;’-close maps into
N(w', €;) are (1/2);’'-homotopic in B. Choose an ({e;"}, {8;'})-covering
(G', {Gi"}) of w’. Now select another sequence of positive numbers
{e;}, converging to zero, such that p~!(N(b, 2;)) C V5. Choose a
monotone decreasing sequence of positive numbers {§;} such that §; =
8:;',8; = (1/2);, and any two 28;-close maps into N(w,¢;) are 1/2;-
homotopic in B. Finally, let (G, {G;}) be an ({e;}, {8;})-covering of w.
Define G" by G"(i) = G(G'(i)) and G;" : Ugnyy) X I — E by

GG‘y(i)(x, 2t), fo=t= 1/2
C',-(gcy(,-)(x), 2t — 1), iflI2=t= 1
It is easy to check that (G”, {G;"}) is an ({;"}, {8;}-covering of w*w'.

Since G;"(x,1) = g;'(gc13(x)), we conclude that [g’g] is induced by
[w*w']. T

G"(x, 1) =

Tueorem 2.12. If p: E — B is an approximate fibration, a,b € B,
and there is a path in B from a to b, then F, and F, have the same
shape. Hence if B is path connected, any two fibers have the same
shape.

Proor. By 2.2 and 2.3, the map pr : E X Q — B is an approximate
fibration with convenient total space, so that if there is a path in B
from a to b, (pr)~'(a) and (pm)~!(b) have the same shapes by 2.7-2.11.
The proof is completed by observing that for each x € B, pr~I(x) is
homeomorphic to F, X Q which is in turn shape equivalent to F,.

3. An exact sequence for amap. Let F be a compactsetin E,e € F,
and {U;} be an ANR sequence associated with F by inclusion.

Define m,(F, e) = lim_n,(U;,e) and =,(E, F, e) = lim_n,(E, U, e),
where the bonding maps of the inverse sequences are inclusion in-
duced. It is easy to prove that the resulting groups (or pointed sets) do
not depend on the choice of the sequence {U;}. For a general reference
on these groups, see [15]. An inverse sequence {G;, &/} of groups and
homormorphisms is constant provided that o/ | ima/*!:ima/+! —
im o/ is an isomorphism for each j. In this situation lim_G; = im a!
under projection.
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Tueorem 3.1. If p: E — B is an approximate fibration, E is a con-
venient ANR, b € B, and e € F,, then there exists an ANR sequence
{U;} associated with F, by inclusion such that the inverse sequences
{mq(U;, €), s’} and {mo(E, Uj, e), yx'} are constant for all q where o :
Ujyy = Ujandy/: (E, Uffl) — (E, U;) are inclusion maps.

Proor. Let U, be any neighborhood of F,. In Theorem 2.4 set U =
U, and define U, to be an ANR neighborhood contained in the V given
there. Now apply Theorem 2.4 again: set U = U, and define Uj; to be
an ANR neighborhood contained in the resulting V. To define U,,
apply Theorem 2.4 twice more. First set U= Uj; and define U,’ to be
the resulting V. Then set U = U,, U, = V, U; = W and define U," to
be the resulting W,. Finally define U, to be an ANR neighborhood
contained in U;' M U,”. Continuing in this manner, we obtain a
sequence {U;} with the property that for each j = 1 there is a homotopy
G:E X I — E such that Gy =1, G, | CE — U;) U U;,3 = 1 for all ¢,
Gy(U;41) C Ujfor all t, and G,(U;,,) C Uj,,.

To prove ax’ | im ax/*! : im a/*! — im ay/ is an epimorphism, let [ f;]
€ im ay’. Then f; = oif;, forsome [ f;, ] € m4(U;,,) (we suppress the
base point throughout the proof). By choice of {U;}, off,,., = oo *'f;,,
for some [ f;.o] € mq(Uj.o). Hence [ f] = aw/[ed ;0]

To prove that oy’ | im a4/ *! is a monomorphism, suppose as'[ fi+1] =
0 for some [ f;,,] € axi*L (Here we are assuming q > 0; the proof
for q =0 is similar) Then f,, = a/*!f,,, and adai*f,, =0 for
some [ fi,o] € my(Uj,2). Again by the choice of {U;}, there is a map of
U, into U;,, whose restriction to U;, is the identity. Hence of *1f;, 5 =
050 [£,1] = 0.

CoroLLARY 3.2. The projections onto the first factors oy : wq(Fy, €)
— im a4 ! and yx : m,(E, Fp, €) — im 4 ! are isomorphisms.

CoroLLary 3.3. There is an exact sequence

; 3
o = 1g(Fy €) 3 7y(E, €) > 1o(E, Fype) = mq_ () =«

where iy is a4 followed by the inclusion induced homomorphism
74Uy, e) > my(E, e), v is the inclusion induced homomorphism
74(E, e) = m4(E, Uy, e) followed by +yx~!, and & is usual boundary
operator w,(E, Uy, e) = mq_1(U,, €) preceded by vy« and followed by
ax L.

Proor. Using the exactness of the homotopy sequences of the pairs
(E, U)), (E, Uy), it is an easy diagram-chasing argument to prove that

> imoy! > 7, (E) > imysx! > imay! - - - -
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is exact. Then the second corollary follows from the first.

TueoreM 3.4. If p : E — B is an approximate fibration, b € B, and
e € F,, then p induces an isomorphism py : m,(E, Fy, ) — mq(B, b).

Proor. Without loss of generality we assume that both E and B are
convenient ANR’s. (Otherwise we prove the theorem for p X 1: E X
Q — B X Q using Propositions 2.2 and 2.3 and the theorem for p : E
— B follows since E X Q and B X Q are homotopy equivalent to E
and B respectively.) Choose an ANR sequence {U;} associated with F,
by inclusion as in Theorem 3.1 and a similar sequence {V;} associated
with b. By renumbering if necessary we may assume that p(U;) C V.
Then we have the commutative diagram

—— 7o(E, Ui )) -2 74(E, Uy) —>

N
B!

— Wq(B, Vi+1)—) TTq(B, Vi) —

where the lower groups are based at b, the upper groups are based at
e € F),, and B! is the inclusion. Define py : wy(E, f;, €) — m4(B, b) to
be the induced homomorphism on the inverse limits. py is clearly
independent of the sequences {U;}, {V;}. To see that p is an isomor-
phism, it suffices to show that py : (imyx’) — (imB4’) is an isomor-
phism. To prove that px is epic, choose [ f] € imBx!. By local con-
tractibility, we may assume that f(Bd I?) = b. Let W be a neighbor-
hood of b such that p~(W) C U;,,. Let e = d(b, B— W), and let &
be a cover of B such that §-close maps are e-homotopic. By hypothesis
there is a map g: (I9,19-') — (E, e) such that pg and f are §-close.
Ther{ [g] Emo(E,Uiyy) and ps[g] = [f] in my(B, Viyy). Thus
pey«'(g] = [f].

To show that py is monic on imyy’, suppose [f] € imyxi and
px[f] = 0. Choose k > 2 so that p~!(V;,x) C U,. By constancy, we
may assume that f: (I9, Bd I9, *) — (E, U;,4.,, e). By constancy again,
Px[f] = 0 in 7y(B, Vi, b). By lifting the appropriate homotopy, we
conclude that [ f] = Oinm,(E, U;, e).

CoroLLarY 3.5. Ifp : E — B is an approximate fibration b € B, and
e € F,, then there is an exact sequence

a1y (Fpe) 3 nEe) B nBb) S n, (Fpe) > -,

where iy was defined in Corollary 3.3 and 8 = 8px~1, 8 from
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Corollary 3.3, px = pxv«, px ~ ! from Theorem 3.4.

Remark. If E and B are assumed to be polyhedral and p: E — B
is assumed to satisfy the approximate homotopy lifting property for
each g-cell I9, the sequence of Corollary 3.5 can still be obtained in
the following manner.

Modify Spanier’s treatment of Serre (or weak) fibrations given in
[16, 7.2.5.-7.2.7.] to cover approximate liftings. Use Proposition 1.2
to keep the induction going for Theorem 7.2.6. Then observe that
when a lifting is needed in the proof of Theorems 2.4 and 3.4 under
this new hypothesis, it is given by the modifications of Spanier’s
lemmas.
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