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ABSTRACT. This paper considers the existence of Lp-
solutions for a class of fractional integral equations involving
abstract Volterra operators in a separable Banach space.
Some applications for the existence of Lp-solutions for
different classes of fractional differential equations are given.

1. Introduction. Consider the fractional integral equation in a
Banach space E:
(1.1)

u(t) = (Pu)(t) +

∫ t

0

(t− s)α−1

Γ(α)
(Qu)(s) ds almost everywhere t > 0,

where P,Q : Lp
loc([0, a), E) → Lp

loc([0, a), E), 1 < p < ∞, are continu-
ous abstract Volterra operators, (Pu)(0) = u0 for all u ∈ Lp

loc([0, a), E)
for a given u0 ∈ E, α > 0 and 0 < a ≤ ∞. We recall that
an operator Q : Lp

loc([0, a), E) → Lp
loc([0, a), E) is a causal operator

or an abstract Volterra operator if, for each τ ∈ [0, a) and for all
u(·), v(·) ∈ Lp

loc([0, a), E) with u(t) = v(t) for every t ∈ [0, τ ], we have
Qu(t) = Qv(t) for t ∈ [0, τ ] almost everywhere. As we will show, taking
different particular classes of operators, this type of integral equation
covers a large variety of integral equations of Volterra type as well as
fractional differential equations. The existence of Lp-solutions for dif-
ferent kinds of integral equations has been intensively studied by many
authors, such as [1]–[39]. The existence of Lp-solutions for fractional
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differential equations and the integral fractional equation has been
studied in only a few papers; see, for example, [4, 5, 10, 11, 17, 25].

The paper is organized as follows. In Section 2, we recall some
definitions and results required in this paper. In Section 3, under
some suitable conditions involving compactness type conditions, we
establish a result of the existence of solutions in the space Lp([0, a], E)
for the integral equation (1.1). Also, by using some Lipschitz type
conditions, we obtain the existence and uniqueness of solution in the
space Lp([0, a], E) for the integral equation (1.1). In Section 4, we
obtain a result on the existence of Lp-solutions on an infinite interval.
More precisely, we shall prove the existence of solutions in the space
Lp
loc([0,∞), E) for the integral equation (1.1). In Section 5, we will give

some examples which highlight the wide range of applicability of our
results.

2. Preliminaries. Let E be a real Banach space endowed with
the norm ∥ · ∥. If A nonempty subset in E, then A, conv(A) and
conv(A) denote the closure of A, the convex hull of A and the closure
of the convex hull of A, respectively. We shall denote by C([0, a], E)
the Banach space of continuous bounded functions from [0, a] into E
endowed with the norm ∥u(·)∥ = sup0≤t≤a ∥u(t)∥. The space of all
(equivalence classes of) strongly measurable and Bochner integrable
functions u(·) : [0, a] → E such that

∥u (·)∥p :=

(∫ a

0

∥u(t)∥p dt
)1/p

< ∞

for 1 ≤ p < ∞, will be denoted by Lp([0, a], E). Then Lp([0, a], E)
is a Banach space with respect to the norm ∥u(·)∥p. Also, we shall
denote by L∞([0, a], E) the space of all (equivalence classes of) strongly
measurable functions u(·) : [0, a] → E which are essentially bounded on
[0, a]. Then L∞([0, a], E) is a Banach space with respect to the norm

∥u (·)∥∞ := ess sup
t∈[0,a]

∥u(t)∥ = inf{M ≥ 0; ∥u(t)∥

≤ M for almost every t ∈ [0, a]}.

We recall that, if 1 ≤ p < q ≤ ∞, then

Lq([0, a], E) ⊂ Lp([0, a], E),
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and
∥u∥p ≤ a1/p−1/q ∥u∥q for every u ∈ Lq([0, a], E).

The Kuratowski measure of non-compactness of a nonempty bounded
set A ⊂ E is defined by ([27]):

β(A) = inf{δ > 0; A can be expressed as the union of
a finite number of sets such that the diameter of each
set does not exceed δ}.

We recall some properties of β, see [23]. If A,B are bounded subsets
of E, then:

(1) β(A) = 0 if and only if A is compact;
(2) β(A) = β(A) = β(conv(A));
(3) β(λA) = |λ|β(A) for every λ ∈ R;
(4) β(A) ≤ β(B) if A ⊂ B;
(5) β(A+B) = β(A) + β(B).

In the following, we let βp denote the Kuratowski measures of
noncompactness of sets in space Lp([0, a], E).

We recall the next lemma due to Heinz [21].

Lemma 2.1. Let A be a countable set of strongly measurable functions
u : [0, a] → E such that there exists an m(·) ∈ L1([0, a],R+) such that
∥u(t)∥ ≤ m(t) for each u(·) ∈ A and for almost every t ∈ [0, a]. Then
the function t 7→ v(t) := β({u(t);u(·) ∈ A}) is integrable on [0, a] and,
for each t ∈ [0, a], we have

β

({∫ t

0

u(s) ds;u (·) ∈ A

})
≤ 2

∫ t

0

v(s) ds.

Lemma 2.2. Let A ⊂ Lp([0, a], E)(1 < p < ∞) be countable such that
there exists an m(·) ∈ L1([0, a],R+)such that ∥u(t)∥ ≤ m(t) for each
u(·) ∈ A and for almost every t ∈ [0, a].

(i) ([20, Lemma 1.2.2]). If

(2.1) lim
h→0

sup
u(·)∈A

∫ a

0

∥u(t+ h)− u(t)∥pdt = 0,
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then

βp(A) ≤ 2

(∫ a

0

[β(A(t))]
p
dt

)1/p

.

(ii) ([20, Theorem 1.2.8]). A is relatively compact if and only if (2.1)
is satisfied and A(t) is relatively compact (in E) for almost every
t ∈ [0, a].

Lemma 2.3. (Mönch fixed point theorem [33, Theorem 2.1]). Let E be
a Banach space, K ⊂ E closed and convex, and F : K → K continuous
with the further property that, for some x ∈ K, we have

C ⊂ K countable, C ⊂ co ({x} ∪ F (C)) =⇒ C is relatively compact.

Then F has a fixed point in K.

3. Existence of Lp-solutions on finite intervals. In this section,
we obtain a result of the existence of solutions in the space for the
following integral fractional equation

(3.1) u(t) = (Pu)(t) +

∫ t

0

(t− s)α−1

Γ(α)
(Qu)(s) ds

almost everywhere t ∈ [0, a], where P,Q : Lp([0, a], E) → Lp([0, a], E)
are abstract Volterra operators, a ∈ (0,∞) and 1 < p < ∞ is a real
number such that p > 1/α with α ∈ (0, 1). We also assume that:

(H1) P : Lp([0, a], E) → Lp([0, a], E) is a compact abstract Volterra
operator such that b(·) ∈ Lp([0, a],R+) exists with

∥(Pu)(t)∥ ≤ b(t) for almost every t ∈ [0, a].

(H2) Q : Lp([0, a], E) → Lp([0, a], E) is a continuous abstract
Volterra operator such that c(·) ∈ Lp([0, a],R+) and d > 0 exist with

∥(Qu)(t)∥ ≤ c(t) + d ∥u(t)∥ for almost every t ∈ [0, a],

and for every u(·) ∈ Lp([0, a], E).

(H3) There exists a k1 > 0 such that

(3.2) β((QH)(t)) ≤ k1β(H(t))

for t ∈ [0, a] and for each bounded subset H ⊂ Lp([0, a], E).
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Remark 3.1. Unfortunately, the measure of non-compactness cannot
be eliminated from the assumptions because of the criteria for compact-
ness in the spaces C([0, a], E) and Lp([0, a], E), when E is an infinite-
dimensional Banach space. It is known that the fractional Riemann-
Liouville integral of order α > 0, given by

(Iαu)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds,

defines a bounded linear operator Iα from Lp([0, α], E) into itself, and
also from C([0, α], E) into itself. However, in the case of infinite-
dimensional Banach spaces, this operator does not map bounded sets
of continuous functions into compact sets on bounded intervals. For
example, if we consider the ball B(0,Γ(α+1)/aα) in C([0, a], E), then
Iα(B(0,Γ(α+ 1)/aα)) = B(0, 1) ⊂ C([0, a], E). However, the unit ball
is not a compact set in C([0, a], E).

Theorem 3.2. Assume that conditions (H1)–(H3) are satisfied. Then
the fractional integral equation (3.1) has at least one solution in
Lp([0, a], E), provided

(3.3) γ :=
aα

Γ(α)

(
1

αp

)1/p(
p− 1

αp− 1

)1−1/p

≤ 1

d
.

Proof. First, we will show that each solution of (3.1) is a priori
bounded in Lp([0, a], E). Indeed, since

∥u(t)∥ ≤ ∥(Pu)(t)∥+ 1

Γ(α)

∫ t

0

(t− s)α−1 ∥(Qu)(s)∥ ds

then, using Holder’s inequality, we have

∥u(t)∥ ≤ ∥(Pu)(t)∥+ 1

Γ(α)

(∫ t

0

(t− s)q(α−1)ds

)1/q

∥(Qu) (·)∥p

≤ b(t) +
1

Γ(α)

(
p− 1

αp− 1

)1−1/p

tα−1/p [∥c (·) ∥p + d∥u (·) ∥p] ,

so that
∥u (·)∥p ≤ ∥b (·) ∥p + γ [∥c (·) ∥p + d∥u (·) ∥p] .
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Then, using (3.3), we have ∥u(·)∥p ≤ r, where

r ≥ ∥b (·) ∥p + γ∥c (·) ∥p
1− dγ

.

Next, we consider the operator A defined by

(3.4) (Au)(t) = (Pu)(t) +

∫ t

0

(t− s)α−1

Γ(α)
(Qu)(s) ds

almost everywhere t ∈ [0, a]. If we putB := {u(·) ∈ Lp([0, a], E); ∥u(·)∥p
≤ r}, then it is easy to check that A(B) ⊂ B, that is, A is an operator
from B into itself.

Now, we show that A is a continuous operator. For this, let
{un(·)}n≥1 be a convergent sequence in Lp([0, a], E) such that un(·) →
u(·) as n → ∞. Since

∥(Aun) (t)− (Au) (t)∥ ≤ ∥(Pun) (t)− (Pu) (t)∥

+
1

Γ(α)

∫ t

0

(t− s)
α−1∥(Qun) (s)−(Qu) (s)∥ ds

≤ ∥(Pun) (t)− (Pu) (t)∥+ 1

Γ(α)

(
p− 1

αp− 1

)1−1/p

· tα−(1/p) ∥Qun (·)−Qu (·)∥p ,

it follows that

∥(Aun) (·)− (Au) (·)∥p ≤ ∥(Pun) (·)− (Pu) (·)∥p
+ γ ∥(Qun) (·)− (Qu) (·)∥p .

Since P and Q are continuous operators, ∥Aun(·) − Au(·)∥p → 0 as
n → ∞, so that A is a continuous operator. In the next step, we show
that

lim
h→0

sup
u(·)∈B0

∫ a

0

∥(Au)(t+ h)− (Au)(t)∥pdt = 0

for every countable subset B0 of B. If t ∈ [0, a] and h > 0 are such
that t+ h ∈ [0, a], then, for every u(·) ∈ B0, we have

∥(Au) (t+ h)− (Au) (t)∥ ≤ ∥(Pu) (t+ h)− (Pu) (t)∥

+
1

Γ(α)

∫ t

0

∣∣(t+ h− s)α−1 − (t− s)α−1
∣∣
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· ∥ (Qu) (s)∥ ds

+
1

Γ(α)

∫ t+h

t

(t+ h− s)α−1 ∥(Qu) (s)∥ ds

= ∥(Pu) (t+ h)− (Pu) (t)∥

+
1

Γ(α)
[η1 (t, h) + η2 (t, h)] .

Now, using Holder’s inequality, we have

η1 (t, h) ≤
∫ t

0

∣∣(t− s)α−1 − (t+ h− s)α−1
∣∣ ∥ (Qu) (s)∥ ds

≤
(

p− 1

αp− 1

)1−1/p

·
(
h(p−1)/(αp−1) + t(p−1)/(αp−1) − (t+ h)(p−1)/(αp−1)

)1−1/p

· ∥ (Qu) (·) ∥p

≤ η

(
p− 1

αp− 1

)1−1/p

hα−1/p,

and

η2 (t, h) =

∫ t+h

t

(t+ h− s)α−1∥Qu(s)∥ ds ≤ η

(
p− 1

αp− 1

)1−1/p

hα−1/p,

where η := ∥c(·)∥p + dr. Hence,∫ a

0

ηpi (t, h) dt ≤ aηp
(

p− 1

αp− 1

)p−1

hαp−1 −→ 0(3.5)

as h → 0, i = 1, 2.

Since P is a compact operator, using Lemma 2.2, we have

(3.6) lim
h→0

sup
u(·)∈B0

∫ a

0

∥(Pu)(t+ h)− (Pu)(t)∥pdt = 0.

Consequently, since∫ a

0

∥(Au)(t+ h)− (Au)(t)∥pdt

≤ 2p−1

∫ a

0

∥(Pu)(t+ h)− (Pu)(t)∥pdt
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+
2p−1

[Γ(α)]p

∫ a

0

[η1 (t, h) + η2 (t, h)]
p
dt,

and using (3.5) and (3.6), we obtain

(3.7) lim
h→0

sup
u(·)∈B0

∫ a

0

∥(Au)(t+ h)− (Au)(t)∥pdt = 0.

Next, let H be a countable subset of B such that H ⊂ co((AH) ∪
{0}). We will use the compactness criteria from Lemma 2.2 to show
that H is a relatively compact set in Lp([0, a], E). First, from (3.7), we
have

(3.8) lim
h→0

sup
u(·)∈H

∫ a

0

∥u(t+ h)− u(t)∥pdt = 0.

Since H is a bounded set in Lp([0, a], E), from (3.8) and Lemma 2.2,
we have

(3.9) βp(H) ≤ 2

(∫ a

0

[α(H(t))]
p
dt

)1/p

.

On the other hand, using the properties of the Kuratowski measures of
noncompactness and (3.2), we have

β(H(t)) ≤ β(co(((AH)(t)) ∪ {0})) = β((AH)(t)).

Using compactness of the operator P , we have

β(H(t)) ≤ β

(
(PH)(t) +

∫ t

0

(t− s)α−1

Γ(α)
(QH)(s) ds

)
≤ β((PH)(t)) + β

(∫ t

0

(t− s)α−1

Γ(α)
(QH)(s) ds

)
≤ k1

Γ(α)

∫ t

0

(t− s)α−1β(H(s)) ds,

and thus, by [22, Lemma 7.1.2], it follows that β(H(t)) = 0 for all
t ∈ [0, a]. Now, by (3.9), we obtain βp(H) = 0, that is, H is a
relatively compact set in Lp([0, a], E). Summarizing, we have shown
that A : B → B is a continuous operator with the property that, for a
countable subset H of B such that H ⊂ co((AH)∪{0}), H is relatively
compact. Since B is a closed and convex set in Lp([0, a], E) then, by
the Mönch fixed point theorem, it follows that there exists u(·) ∈ B
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such that u(·) = (Au)(·), that is, the integral equation (3.1) has at least
one solution u(·) ∈ B. �

Theorem 3.3. Let conditions (H1) and (H2) be satisfied. Also, sup-
pose that there exist 0 < L1 < 1 and L2 > 0 such that the following
Lipschitz type conditions are satisfied :

(3.10) ∥(Pu)(t)− (Pv)(t)∥ ≤ L1 ∥u(t)− v(t)∥

and

(3.11) ∥(Qu)(t)− (Qv)(t)∥ ≤ L2 ∥u(t)− v(t)∥ ,

for almost every t ∈ [0, a] and u(·), v(·) ∈ Lp([0, a], E). Then, (3.1)
has a unique solution, provided (3.3) holds and

(3.12) L1 + γL2 < 1.

Proof. Let A : Lp([0, a], E) → Lp([0, a], E) be the operator defined
by (3.4). Then, for any u(·), v(·) ∈ Lp([0, a], E), and for almost every
t ∈ [0, a], we have

∥(Au) (t)− (Av) (t)∥ ≤ ∥(Pu)(t)− (Pv)(t)∥

+
1

Γ(α)

∫ t

0

(t− s)α−1 ∥(Qu)(s)− (Qv)(s)∥ ds

≤ L1 ∥u(t)− v(t)∥

+
L2

Γ(α)

(
p− 1

αp− 1

)1−1/p

tα−1/p ∥u (·)− v (·)∥p,

so that

∥Au (·)−Av (·)∥p ≤ (L1 + γL2) ∥u (·)− v (·)∥p .

Since L1 + γL2 < 1, it follows that A is a contraction in Lp([0, a], E).
Consequently, A has a unique fixed point, and thus, (3.1) has a unique
solution u(·) ∈ Lp([0, a], E). �

3.1. Fractional differential equations. Let α > 0, and letAC([0, a],
E) be the space of all absolutely continuous functions from [0, a] to E.
It is well known, see, for example, [43], that, if u(·) ∈ Lp([0, a], E),
then the fractional Riemann-Liouville integral of order α > 0, defined
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by

(3.13) (Iαu) (t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds,

exists for almost every t ∈ [0, a]. Moreover, Iα is a bounded linear
abstract Volterra operator from Lp([0, a], E) into itself, see [43]. If
α ∈ (0, 1), then the fractional Riemann-Liouville derivative of order
α ∈ (0, 1) is defined by

(3.14) (Dαu) (t) =
1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αu(s) ds.

It is easy to see that (Dαu)(t) exists for almost every t ∈ [0, a] if
and only if u(·) ∈ Lp([0, a], E) is such that (I1−αu)(·) ∈ AC([0, a], E)
and (d/dt)(I1−αu)(t) exists for almost every t ∈ [0, a]. The Caputo
fractional derivative of order α ∈ (0, 1) is defined by(

CDαu
)
(t) = (Dα(u (·)− u(0))) (t).

Then (CDαu)(t) exists for almost every t ∈ [0, a] if and only if
u(·) ∈ Lp([0, a], E) is such that (I1−αu)(·) ∈ AC([0, a], E) and
(d/dt)(I1−αu)(t) exists for almost every t ∈ [0, a]. For α ∈ (0, 1)
and p ≥ 1, we denote by Ωp,α([0, a], E) the space of all functions
u(·) ∈ Lp([0, a], E) is such that (I1−αu)(·) ∈ AC([0, a], E) and
(d/dt)(I1−αu)(t) exists for almost every t ∈ [0, a]. It is easy to
see that u(·) ∈ Ωp,α([0, a], E) if and only if u(·) ∈ Lp([0, a], E) and
(Dαu)(·) ∈ L1([0, a], E).

Remark 3.4. Let g(·) ∈ Lp([0, a], E) be a given function. The constant
operator P : Lp([0, a], E) → Lp([0, a], E), defined by (Pu)(·) = g(·)
for all u(·) ∈ Lp([0, a], E), is evidently a compact abstract Volterra
operator. Also, it is well known that the following initial value problem
involving the fractional Caputo derivative

(3.15)

{
(CDαu)(t) = (Qu)(t) almost everywhere t ∈ [0, a],

u(0) = u0

is equivalent to the following integral equation

u(t) = u0 +

∫ t

0

(t− s)α−1

Γ(α)
(Qu)(s) ds almost everywhere t ∈ [0, a].
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Therefore, the next results hold.

Corollary 3.5. If g(·) ∈ Lp([0, a], E) and

Q : Lp([0, a], E) −→ Lp([0, a], E)

are continuous abstract Volterra operators satisfying the conditions
from Theorem 3.2, then the fractional integral equation

u(t) = g(t) +

∫ t

0

(t− s)α−1

Γ(α)
(Qu)(s) ds

has at least one solution in Lp([0, a], E), provided 1− dγ > 0.

Corollary 3.6. If Q : Lp([0, a], E) → Lp([0, a], E) is a continu-
ous, abstract Volterra operator satisfying the conditions from Theo-
rem 3.2, then the initial value problem (3.15) has at least one solution
in Ωp,α([0, a], E), provided 1− dγ > 0.

4. Existence of Lp-solutions on infinite intervals. Let us de-
note by Lp

loc([0,∞), E), 1 < p < ∞, the space of locally integrable
functions on [0,∞). It is well known that Lp

loc([0,∞), E) is a Fréchet
space with respect to the seminorms

∥u (·)∥p,k :=

(∫ tk

0

∥u(t)∥p dt
)1/p

for 1 < p < ∞,

with tk ∈ (0,∞), k = 1, 2, . . . .

In the next theorem, we obtain a result of the existence of global
solutions to the fractional integral equation in the space Lp

loc([0,∞), E)
for the following fractional integral equation
(4.1)

u(t) = (Pu)(t) +

∫ t

0

(t− s)α−1

Γ(α)
(Qu)(s) ds almost everywhere t > 0,

where P,Q : Lp
loc([0,∞), E) → Lp

loc([0,∞), E) are abstract Volterra
operators.

Theorem 4.1. Let p ≥ 1 be such that p > 1/α with α ∈ (0, 1).
Suppose that, for every a ∈ (0,∞), the operators P,Q : Lp([0, a], E) →
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Lp([0, a], E) satisfy (H1)–(H3). Then, the fractional integral equation
(4.1) has at least one solution in Lp

loc([0,∞), E) provided 1− dγ > 0.

Proof. Let 0 < t1 < t2 < · · · < tn < · · · be such that tn → ∞ as
n → ∞. Then, from Theorem 3.2, for each n = 1, 2, . . ., there exists
un(·) ∈ Lp([0, tn], E) which solves

(4.2) un(t) = (Pun)(t) +

∫ t

0

(t− s)α−1

Γ(α)
(Qun)(s) ds

almost everywhere t ∈ [0, tn]. In addition, there exist constants
rk ∈ [0,∞), k = 1, 2, . . ., such that n ≥ k implies

∥u (·)∥p,k =

(∫ tk

0

∥un(t)∥pdt
)1/p

≤ rk.

As in the proof of Theorem 3.2 it is easy to show that {un(·)}n≥k

is relatively compact in Lp([0, tk], E) for k = 1, 2, . . . . In particular,
{un(·)}n≥1 is relatively compact in Lp([0, t1], E). Therefore, there exist
an infinite set N1 ⊂ {1, 2, . . .} and a function v1(·) ∈ Lp[0, t1] such that∫ t1

0

∥un(t)− v1(t)∥pdt −→ 0 as n −→ ∞ in N1.

Since {un(·)}n∈N1 is a Cauchy sequence in Lp([0, t1], E), and it con-
verges to v1(·), there exists an infinite set N1

1 ⊂ N1 such that un(t) →
v1(t) almost everywhere on [0, t1] as n → ∞ in N1

1 . Let N
12
1 = N1

1 \{1}.
As before, {un(·)}n∈N12

1
is relatively compact in Lp([0, t2], E). There-

fore, there exist an infinite set N2 ⊂ N12
1 and a function v2(·) ∈ Lp[0, t2]

such that ∫ t2

0

∥un(t)− v2(t)∥pdt → 0 as n → ∞ in N2.

Since {un(·)}n∈N2 is a Cauchy sequence in Lp([0, t2], E), there exists
an infinite set N1

2 ⊂ N2 such that un(t) → v2(t) almost everywhere on
[0, t2] as n → ∞ in N1

2 .

Next, take N12
2 = N1

2 \ {2}, and continue the argument inductively.
Since N1

2 ⊂ N1
1 , it follows that v1(·) = v2(·) almost everywhere on

[0, t1]. Now, we define the function u(·) : [0,∞) → E, by u(t) = vk(t)
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for almost every t ∈ [0, tk] and k = 1, 2, . . . . Since∫ tn

0

∥u(t)∥pdt =
∫ tn

0

∥vn(t)∥pdt ≤ rn for n = 1, 2 . . . ,

it follows that u(·) ∈ Lp
loc([0,∞), E).

Next, we show that the function u(·) is a solution for the integral
equation. Since Q : Lp([0, tk], E) → Lp([0, tk], E) is continuous and
un(·) → yk(·) in Lp([0, tk], E) as n → ∞ in Nk, there exists an infinite
set Mk ⊂ Nk such that (Qun)(·) → (Qyk)(·) almost everywhere on
[0, tk] as n → ∞ in Mk. On the other hand, if t ∈ (0, tk] is given, then
it is easy to see that

s 7−→ mk(s) := (t− s)α−1(b(t) + γ ∥c(·)∥p + drk)

belong to Lp([0, tk], E), and (t− s)α−1∥(Qun)(s)∥ ≤ mk(s) for almost
every s ∈ [0, tk]. Hence, taking n → ∞ in Mk in (4.2), by Lebesgue’s
dominated convergence theorem, we obtain

vk(t) = (Pvk)(t) +

∫ t

0

(t− s)α−1

Γ(α)
(Qvk)(s) ds.

Since vk(t) = u(t) for almost every t ∈ [0, tk], we find

u(t) = (Pu)(t) +

∫ t

0

(t− s)α−1

Γ(α)
(Qu)(s) ds

almost everywhere t ∈ [0, tk], and thus, u(·) is a solution for (4.1) in
Lp
loc([0,∞), E). �

5. Examples.

Example 5.1. Riemann-Liouville fractional differential equa-
tions. Consider the fractional differential equation involving the
Riemann-Liouville derivative in Banach space E:

(5.1)

{
Dαu(t) = f(t, u(t)) t > 0,

t1−αu(t)|t=0 = u0,

where f(·, ·) : [0,∞)× E → E satisfies the following conditions:
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(F1) (a) f(·, ·) is a Carathéodory function, that is, t 7→ f(t, u) is
strongly measurable for every u ∈ E, u → f(t, u) is continuous for
almost every t ∈ [0,∞);

(b) there exist c(·) ∈ Lp
loc([0,∞),R+) and d > 0 with

(5.2) ∥f(t, u(t))∥ ≤ c(t) + d∥u(t)∥, for almost every t ∈ [0,∞);

(F2) there exists a k1 > 0 such that

(5.3) β(f(t, B)) ≤ k1β(B) almost everywhere on [0,∞),

for every bounded set B ∈ E.

Let a ∈ (0,∞) be given. It is well known that, under condition
(F1), the Nemytskii operator, defined by (Qu)(t) := f(t, u(t)), is a
continuous abstract Volterra operator for Lp([0, a], E) into itself, see
[19, Theorem 3.4.4]. Also, by (F2), we have that
(5.4)

β ((QB)(t)) ≤ β(f(t, B)) ≤ k1β(B) almost everywhere on [0, a],

for every bounded set B ∈ E. Consequently, (H1)–(H3) are satisfied.

Next, since(∫ a

0

tp(α−1)dt

)1/p

=

(
1

p(α− 1) + 1

)1/p

a[p(α−1)+1]/p < ∞

for p <
1

1− α
,

it follows that the function g(t) := tα−1u0 belongs to Lp([0, a], E) if and
only if p < (1/1− α). Also, it is well known, see [43], that a function
u(·) ∈ Ωp,α([0, a], E) is a solution of (5.1) if and only if u(·) is a solution
of the integral equation

u(t) = tα−1u0 +

∫ t

0

t− s)α−1

Γ(α)
f(s, u(s)) ds,

which can be written as
(5.5)

u(t) = g(t) +

∫ t

0

t− s)α−1

Γ(α)
(Qu)(s)) ds almost everywhere t ∈ [0, a].
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Then, from

∥u(t)∥ ≤ ∥g(t)∥+
∫ t

0

t− s)α−1

Γ(α)
∥(Qu)(s))∥ ds

≤
∫ t

0

t− s)α−1

Γ(α)
[c(t) + d∥u(t)∥] ds

≤ ∥g(t)∥+ 1

Γ(α)

(
p− 1

αp− 1

)1−1/p

· tα−(1/p) [∥c (·) ∥p + d∥u (·) ∥p] ,

it follows that

∥u(·)∥p ≤ ∥g(·)∥p + γ [∥c (·) ∥p + d∥u (·) ∥p] .

This leads to

∥u(·)∥p ≤ r :=
∥g(·)∥p + γ∥c (·) ∥p

1− dγ

if and only if 1/α < p and 1− dγ > 0. Hence, a solution of the integral
equation (5.5) is a priori bounded if and only if 1/α < p and 1−dγ > 0.

Summarizing, we have 1/α < p < (1/(1− α)) and α ∈ (1/2, 1).
Then, from Corollary 3.5, it follows that the integral equation (5.5) has
at least one solution in Lp([0, a], E), for every a ∈ (0,∞).

Consequently, by Theorem 4.1, we obtain the next result.

Theorem 5.2. Let p > 1 be such that (1/α) < p < (1/(1− α)) with
α ∈ (1/2, 1). If conditions (F1) and (F2) hold, then the fractional
differential equation (5.6) has at least one solution in Lp

loc([0,∞), E),
provided 1− dγ > 0.

Example 5.3. Neutral fractional differential equations. Con-
sider the following neutral fractional differential equation
(5.6){

CDα[u(t)−
∫ t

0
K(t, s)g(s, u(s))ds]=f(t, u(t)) for almost every t > 0,

u(0) = u0,

involving the Caputo derivative where 0 < α < 1, f(·, ·), g(·, ·) :
[0,∞) × E → E and K : △ = {(s, t) : 0 ≤ s, t ≤ ∞} → L(E).
Assume that the following conditions hold.
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(HF) f(·, ·) satisfies condition (F1),

(HG) (a) g(·, ·) is a Carathéodory function, and there exist b1(·) ∈
Lp
loc([0,∞),R+) and d1 > 0 such that

∥g(t, u(t))∥ ≤ b1(t) + d1 ∥u(t)∥ for almost every t ≥ 0;

(b) there exists a k2 > 0 such that

(5.7) β(g(t, B)) ≤ k2β(B) almost everywhere on [0,∞),

for every bounded set B ∈ E;

(HK) Also, for each a > 0, there exists an Ma > 0 such that

ess sup
t∈[0,a]

(∫ a

0

∥K(t, s)∥qds
)1/q

:= Ma < ∞.

for p, q > 1 with p(1− 1/q) > 1.

We recall that a function u(·) : [0, a] → E is said to be a solution of
(5.6) on [0, a] if u(0) = u0, the function

t 7−→ u(t)−
∫ t

0

K(t, s)g(s, u(s)) ds

is absolutely continuous and differentiable almost everywhere on [0, a],
and satisfies (5.6) for t ∈ [0, a]. Note that u(·) itself may not be
absolutely continuous and differentiable almost everywhere on [0, a].

For a given a > 0, it is easy to see that, if u(·) : [0, a] → E is a
solution of (5.6), then it satisfies the integral equation:

(5.8)

u(t) = u0 +

∫ t

0

K(t, s)g(s, u(s)) ds

+

∫ t

0

(t− s)α−1

Γ(α)
f(s, u(s)) ds, t ∈ [0, a],

Conversely, if u(·) satisfies (5.8) then u(·) is a solution of (5.6) on [0, a].
Also, it is easy to see that (5.8) can be written as

(5.9) u(t) = (Pu)(t) +

∫ t

0

(t− s)α−1

Γ(α)
(Qu)(s) ds, t ∈ [0, a],

where the operators P and Q are defined as follows. The Nemytskii
operator, defined by (Qu)(t) := f(t, u(t)), is a continuous abstract
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Volterra operator for Lp([0, a], E) into itself, and it satisfies (5.4). Con-
sequently, Q satisfies conditions (H2) and (H3).Also, under conditions
(HG) (a) and (HK), the Volterra operator

(Pu)(t) = u0 +

∫ t

0

K(t, s)g(s, u(s)) ds

is a continuous, abstract Volterra operator from Lp([0, a], E) into itself,
see [20, Lemma 2.3.1] and [16, Theorem 9.5.6]. Moreover, condition
(HG) (b) assures the compactness of the operator P , see [20, Theorem
2.3.1]. Consequently, operator P satisfies condition (H1). Then from
Theorem 3.2, it follows that the integral equation (5.9) has at least one
solution in Lp([0, a], E) for every a ∈ (0,∞). Hence, by Theorem 4.1,
we obtain the following result.

Theorem 5.4. If conditions (HF), (HG) and (HK) hold, then the frac-
tional differential equation (5.9) has at least one solution in Lp

loc([0,∞),
E), provided 1− dγ > 0.
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România
Email address: aasmath3@gmail.com

National University of Ireland, School of Mathematics, Statistics and
Applied Mathematics, University Road, Galway, Ireland

Email address: Donal.oregan@nuigalway.ie


