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ABSTRACT. We propose a numerical scheme to solve the
time-dependent linear Schrödinger equation. The discretiza-
tion is carried out by combining a Runge-Kutta time step-
ping scheme with a finite element discretization in space.
Since the Schrödinger equation is posed on the whole space
Rd, we combine the interior finite element discretization with
a convolution quadrature based boundary element discretiza-
tion. In this paper, we analyze the resulting fully discrete
scheme in terms of stability and convergence rate. Numerical
experiments confirm the theoretical findings.

1. Introduction. The Schrödinger equation is one of the main
governing equations of quantum mechanics and, as such, has manifold
applications in physics and engineering. In its most common form,
it is posed on the whole space of Rd, making it difficult to discretize
using standard finite element (FEM) or finite difference methods. Most
numerical techniques rely on identifying a bounded computational
domain on which a numerical method such as the FEM is employed,
and the unbounded exterior of the computational domains is accounted
for by means of some (approximate) transparent boundary condition.
A good recent survey is [1]. A popular technique, which permits one
to stay within the FEM framework, is the PML (perfectly matched
layer) method, in which the computational domain is surrounded
by a (thin) region that absorbs outgoing waves. Other techniques
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include the use of infinite elements or methods that approximate the
exact or discrete boundary conditions. In the present paper, we also
employ FEM for the finite computational domain but account for
the unbounded complement by means of a boundary element method
(BEM). Advantages of using a BEM based approach for the transparent
boundary conditions include great geometric flexibility, which allows for
the choice of non-convex computational domains, good stability (and
energy conservation) properties, and the option to (cheaply) recover
the exterior solution by post processing.

The method of the present article relies on FEM-BEM coupling.
Two classical FEM-BEM coupling procedures are the symmetric cou-
pling introduced in [12, 15] and the Johnson-Nédélec coupling [17].
In the present paper, we will focus on the symmetric approach.

Our treatment of the exterior domain also introduces non-local
operators in time, specifically, operators of convolution type in time.
Convolution quadrature (CQ) as a method for discretizing convolution
integrals or, more specifically, fractional derivatives was introduced by
Lubich in 1988 in the two papers [20, 21]. There, the CQ is based
on multistep methods. Higher order convolution quadrature methods
based on Runge-Kutta time stepping schemes were later introduced by
Lubich and Ostermann in [19]. Since then, the method has attracted
significant interest as a technique for applying BEMs to time-dependent
problems, not only for parabolic equations, for which it was first
conceived, but also for hyperbolic problems.

A first numerical study of convolution quadrature for the Schrödinger
equation, based on a coupling of finite elements and boundary elements
was done by Schädle in [25], where he observes optimal convergence
rate in time when the 2D Schrödinger equation is discretized using
convolution quadrature based on the trapezoidal rule in time and a
collocation BEM, and both discretizations are combined using a one
equation coupling (Johnson-Nédélec coupling).

The numerical analysis of hyperbolic convolution quadrature has
mostly focused on the wave equation. Usually, the analysis is carried
out in the Laplace domain as in [6, 7, 9]. These works do not focus on
a setting of FEM-BEM coupling; a milestone for studying CQ-based
FEM-BEM couplings is the work by Laliena and Sayas [18], which,
however, focuses on the Laplace domain. The first full analysis of an
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FEM-BEM coupling arising from convolution quadrature for the wave
equation is given in [8].

The analysis in the present paper is carried out directly in the time
domain, making use of the theory of Runge-Kutta approximation of
semigroups as developed by Brenner, Thomée and Crouzeix [11, 13].
This allows for stability results that are of interest in their own right and
gives sharper growth conditions (in time) in the constants appearing
from the convergence results in comparison to the standard techniques
that use Laplace/Z-transform to carry out the analysis in the Laplace
domain. A similar observation has recently been made in [5] when
applying multistep method based convolution quadrature to the wave
equation.

The present work differs from [8] in the techniques employed. In
particular, our tools allow us to analyze a large class of Runge-Kutta
methods, whereas [8] is specific to combining a leapfrog method in
the interior with a multistep method for convolution quadrature. In
this connection, it is worth pointing out that we use the same Runge-
Kutta method both in the interior and the exterior. This forces us
to use implicit schemes (since A-stability is needed for convolution
quadrature) also for the interior problem.

Another advantage of the point of view taken by us, in particular the
avoidance of the Laplace domain, is that the analysis naturally covers
methods that are not strongly A-stable, most notably the Gauss meth-
ods, which have better properties with respect to energy conservation
and artificial dissipation.

By using the well-established theory of semigroup approximation, we
also benefit by avoiding the “reduction of order” phenomenon, which
is present in all the Laplace domain based analyses of convolution
quadrature. Instead, we recover the full convergence order of the
Runge-Kutta scheme employed (instead of only the stage order or less),
although this property also strongly depends on our restricting to the
case of a homogeneous equation.

This paper is organized as follows. In subsection 1.1 we introduce
the Schrödinger equation and the assumptions we need to make in or-
der to apply our discretization scheme. We derive the semi-discrete
problem after applying the Runge-Kutta method in time and reformu-
late it as a problem on a bounded domain with transparent boundary
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conditions. Section 2 is concerned with the spatial discretization using
a Galerkin scheme in some abstract subspaces. We then show existence
and uniqueness of the discrete problems and derive a different charac-
terization of the scheme, which is better suited for analysis. In Section 3
we develop an abstract theory for problems of the form of Problem 2.1,
giving stability and approximation results. Section 4 is concerned with
applying this theory to the Schrödinger equation to derive uniform sta-
bility and a best approximation property of the fully discrete scheme
with respect to the sequence of approximations which are semi-discrete
in time. In Section 5, we go back to the continuous in space/discrete
in time setting to derive some stability, regularity and approximation
results. We do this by exploiting that the Runge-Kutta approximation
can be viewed as a rational approximation of a semigroup. Combining
these results with the best approximation property and well-known re-
sults of finite element approximation, in Section 6, we finally arrive at
an explicit convergence rate estimate for our approximation sequence.
Section 7 is concerned with confirming the theoretical results of the
previous sections in numerical experiments. Appendix A deals with
generalizing some results on boundary element methods from the scalar
Helmholtz equation to systems of “Helmholtz-like” problems.

1.1. Model problem and notation. For a potential V : Rd → R,
we define the Hamilton operator H : H2(Rd) → L2(Rd) by

Hu := −∆u+ V(·)u.

The Schrödinger equation reads: given u0 ∈ H2(Rd), find u ∈
C1((0,∞),H2(Rd)) ∩ C0([0,∞),H2(Rd)) such that

iut(t) = Hu(t), for all t > 0,(1.1)

u(0) = u0.(1.2)

Let Ω ⊆ Rd be the bounded Lipschitz domain of interest for the
solution. We denote the exterior of Ω by Ω+ := Rd\Ω and its boundary
by Γ := ∂Ω. The internal trace operators will be denoted by γ− and
∂−n , while the traces on the exterior domain will have the index +,
where ∂n is the normal derivative with the normal pointing out of Ω.
The jumps of a function u over the boundary will be denoted as

JγuK := γ−u− γ+u, J∂nuK := ∂−n u− ∂+n u.
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In order to be able to apply our scheme, we need to make some
assumptions on the problem.

Assumption 1.1.

(i) The potential x 7→ V(x) is real valued and bounded.
(ii) The potential is constant on Ω+, i.e., V(x) ≡ V0 for all x ∈ Ω+.
(iii) The initial condition vanishes outside of Ω, i.e., supp(u0) ⊆ Ω.

Notation 1.2. For a space X, we will denote the product space Xm

by X. For an operator G : X → X, we will write G : X → X for the
operator diag(G, . . . , G).

We will also use the notation B(X,Y ) to denote the set of all
bounded linear operators from X to Y . We write a . b if there exists
a constant C > 0 for which a ≤ Cb holds; the constant C may depend
on Ω, the Runge-Kutta method used, the potential V, but not on the
principal quantities of interest, such as the time step size k, the exact
solution u, the approximations un or the terminal time T . We will also
write a ∼ b to mean a . b . a.

For any open set O, we write L2(O) and Hk(O) for the usual
Lebesgue and Sobolev spaces. We will write C∞

0 (O) for the set of
smooth functions with compact support in O. Given that BEM will
feature prominently, we will also use the fractional order Sobolev
spaces on the boundary Γ of Ω: Hs(Γ) for s > 0 and its dual
H−s(Γ) := (Hs(Γ))′. Occasionally, we will need the adjoint operator
of an operator T which will be denoted by T ′.

For a Banach space V , we write V ′ for its dual space and ⟨·, ·⟩V ′×V
for the duality pairing. The inner product of a Hilbert space H is
denoted (·, ·)H . On the boundary Γ, we write ⟨·, ·⟩Γ for the extension

of the standard L2(Γ) inner product to H−1/2(Γ)×H1/2(Γ). In order
to simplify the notation, we will sometimes encounter matrix products
with elements of an abstract Banach space. For A ∈ Rn×m and v ∈ X,
we write Av ∈ X, for (Av)i :=

∑m
j=0Aijvj , i = 1, . . . , n.

In this paper, we consider discretizations based on Runge-Kutta
methods; we refer to [14] for details on Runge-Kutta methods.
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Definition 1.3. A Runge-Kutta method with m stages is given by a
matrix A ∈ Rm×m and vectors b ∈ Rm and c ∈ Rm. Given a step size
k > 0 applied to the problem (1.1), the (time) discretization is given
by

(I + ikAH)Un = un1,(1.3a)

un+1 = (1− bTA−1
1)un + bTA−1Un,(1.3b)

where Un is an m-dimensional vector, called the stage vector, and un

represents the approximation of u(nk). Here 1 denotes the constant-
ones-vector 1 = (1, . . . , 1)T ∈ Rm.

We need to make some further assumptions on the Runge-Kutta
method used, namely:

Assumption 1.4.

(i) The Runge-Kutta method is A-stable, i.e., for all z ∈ C with
ℜ(z) ≤ 0, the matrix I − zA is regular, and the stability function

(1.4) R(z) := 1 + zbT (I − zA)−1
1

satisfies |R(z)| ≤ 1.
(ii) The matrix A is invertible.

Remark 1.5. Examples of A-stable Runge-Kutta methods with inver-
tible matrix A include the well-known families of Radau IIA and Gauss
methods (see [14] for their definitions). Thus, methods of arbitrary
order and some symplectic methods (the Gauss methods) are included.
It is common in the literature on convolution quadrature to make
further assumptions on the stability function R, such as |R(it)| < 1 for
t ∈ R \ {0}, which excludes the Gauss methods; our analysis naturally
includes these methods without further difficulty.

We will often use an alternative representation of R(z) (the simple
proof of the equivalence can, for example, be found in [7]):

(1.5) R(z) = (1− bTA−1
1) + bTA−1 (I − zA)

−1
1.

For the remainder of the paper we will use the definition R(∞) :=
1 − bTA−1

1, multiply equation (1.3) by −iA−1 and set d := −iA−1
1
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to simplify the notation. This gives us the equivalent system:(
−iA−1 + kH

)
Un = und,(1.6a)

un+1 = R(∞)un + bTA−1Un.(1.6b)

The properties of system (1.6) strongly depend upon the spectrum
of A. This is the content of the next lemma.

Lemma 1.6. If the matrix A of an A-stable Runge-Kutta method is
invertible, then its spectrum satisfies:

σ(A) ⊆ {λ ∈ C : ℜ(λ) > 0}.

Proof. By assumption, we have 0 /∈ σ(A). For λ ̸= 0 with ℜ(λ) ≤ 0
we calculate:

A− λI = −λ
(
I+

1

λ
A

)
.

The following holds:

ℜ
(
1

λ

)
= ℜ

(
λ

|λ|2

)
≤ 0.

Since the method is A-stable, the matrix (I + 1/λA) is invertible, cf.,
equation (1.5); thus, λ /∈ σ(A). �

The tool we use to derive transparent boundary conditions will be
the Z-transform or generating function. We formulate this transforma-
tion in a general lemma:

Lemma 1.7. Let X be a Hilbert space. Let T be a closed, not
necessarily bounded, operator on X. Let two sequences (yn)n∈N ⊆ X
and (Y n)n∈N ⊆ X be given that satisfy

y0 = 0,(1.7) (
−iA−1 + kT

)
Y n = ynd,(1.8)

yn+1 = R(∞)yn + bTA−1Y n.(1.9)
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We define the Z-transform of the sequence (Y n)n∈N as the formal
power series

Ŷ :=
∞∑
n=0

Y nzn.

If we assume that the Z-transform of (Y n)n∈N exists for sufficiently
small z as a power series in X, for example, if we have ∥Y n∥ ≤ Ceωn

for some constants C and ω, then the Z-transform of (Y n)n∈N solves

(1.10) − iδ(z)

k
Ŷ + T Ŷ = 0,

where the matrix-valued function z 7→ δ(z) is defined as

(1.11) δ(z) :=

(
A+

z

1− z
1bT

)−1

.

Proof. First, we note a characterization of δ(z) that is a simple
consequence of the Sherman-Morrison formula: for |z| < 1, we have

δ(z) = A−1 − zA−1
1bTA−1

1− zR(∞)
.

We consider the Z-transform of (yn)n∈N. Starting from equa-
tion (1.9), we multiply with zn. Summing over all n ∈ N then gives:

(1.12) z−1 (ŷ − y0) = R(∞)ŷ + bTA−1Ŷ ,

or, since we assumed that y0 = 0:

ŷ =
(
z−1 −R(∞)

)−1
bTA−1Ŷ .

The Z-transform of (Y n)n∈N is more involved, since it concerns an
unbounded operator. We begin with equation (1.8), again multiply
with zn and sum up to a fixed N ∈ N to get

T
N∑
n=0

Y nzn =
N∑
j=0

(
ik−1A−1Y n + ynk

−1d
)
zn.

If we assume that the Z-transform exists, we have that both aN :=∑N
j=0 Y

nzn and bN := TaN =
∑N
n=0(ik

−1A−1Y n + ynk
−1d) zn con-

verge for N → ∞. Since T is closed, we have T limN→∞ aN =
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limN→∞ bN , or

T

( ∞∑
n=0

Y nzn
)

=

∞∑
n=0

(
ik−1A−1Y n + ynk

−1d
)
zn.

This is an equation for the Z-transforms:

T Ŷ = ik−1A−1Ŷ + k−1dŷ.

Inserting the expressions for ŷ and d gives

T Ŷ = ik−1

(
A−1 −A−1 1

z−1 −R(∞)
1bTA−1

)
Ŷ ,

and a simple calculation then concludes the proof. �

The matrix-valued function z 7→ δ(z) defined in equation (1.11) plays
an important role in the method. The next proposition, taken from [7],
estimates its spectrum:

Proposition 1.8 ([7, Lemma 2.6]). For an RK-method with invertible
A and for |z| < 1, the spectrum of δ(z) satisfies

σ(δ(z)) ⊆ σ(A−1) ∪ {w ∈ C : R(w)z = 1}.

Hence, if the Runge-Kutta method is A-stable, then σ(δ(z)) lies in the
open right half-plane C+ := {z ∈ C : ℜ(z) > 0}.

We apply Lemma 1.7 to our Runge-Kutta approximations, restricted
to the exterior domain Ω+, with X = L2(Ω+) and T := H. Because
the sequence of approximations is norm preserving, see Lemma 5.3, we
obtain for |z| < 1 that the Z-transform exists as an L2(Ω+) power
series and therefore solves the differential equation:

(1.13) −∆Û −
(
iδ(z)

k
− V0

)
Û = 0 in Ω+.

The above partial differential equation is structurally similar to a
Helmholtz problem with complex wave number (the difference that,
for m > 1, it is matrix-valued is addressed in Appendix A). This allows
us to use boundary element methods for the discretization.
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We recall some important definitions below, see the books [16, 22,
24, 28] for details on the BEM and integral equations.

Definition 1.9. For ℜ(s) > 0, the fundamental solution of the opera-
tor ∆− s2 is given by

(1.14) Φ(x, y; s) :=

{
i
4H

(1)
0 (is |x− y|) for d = 2

e−s|x−y|/(4π |x− y|) for d = 3,

where H
(1)
0 is the Hankel function of the first kind and order 0.

Next, we define the Newton, single and double layer potentials: For
f ∈ C∞

0 (Rd \ Γ), λ ∈ H−1/2 (Γ), and ϕ ∈ H1/2 (Γ), we set

(N(s)f) (x) :=

∫
Rd\Γ

Φ(x, y; s)f(y) dy, for all x ∈ Rd \ Γ,

(1.15a)

(S(s)λ) (x) :=

∫
Γ

Φ(x, y; s)λ(y) dΓ(y), for all x ∈ Rd \ Γ,

(1.15b)

(D(s)ϕ) (x) :=

∫
Γ

∂n(y)Φ(x, y; s)ϕ(y) dΓ(y), for all x ∈ Rd \ Γ.

(1.15c)

We will also need the following operators on the boundary, formally
given by:

V (s)λ :=

∫
Γ

Φ(·, y, s)λ(y) dΓ(y),(1.16a)

KT (s)λ :=

∫
Γ

∂n(·)Φ(·, y, s)λ(y) dΓ(y),(1.16b)

K(s)ϕ :=

∫
Γ

∂n(y)Φ(·, y, s)ϕ(y) dΓ(y),(1.16c)

W (s)ϕ := −∂n
∫
Γ

∂n(y)Φ(·, y, s)ϕ(y) dΓ(y).(1.16d)

We have the following connections between the potentials and the
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operators:

γ±S = V, ∂±n S = ∓1

2
I +KT ,(1.17)

γ±D = ±1

2
I +K, ∂±nD = −W.(1.18)

We will often replace the wave number s with a matrix. This is
understood in the following sense:

Definition 1.10. Let F : G→ B(X,Y ) be a holomorphic function that
is defined on a domain G ⊆ C and maps into the space of bounded
linear operators between the Banach spaces X and Y . Let B be a
matrix with σ(B) ⊆ G. We then define F (B) via the Riesz-Dunford
functional calculus for holomorphic functions:

F (B) :=
1

2πi

∫
C
(B − λ)

−1 ⊗ F (λ) dλ,

where C ⊂ G is a closed path with winding number 1 encircling σ(B).
The operator ⊗ denotes the Kronecker product, i.e., for a matrix A,

A⊗ F :=

a11F · · · a1mF
... · · ·

...
am1F · · · ammF

 ,

defines an operator mapping from the product space X to the product
space Y .

Proposition 1.11 (Calderón system). For B ∈ Cm×m, let X ∈
H1(Rd \ Γ) solve the equation −∆X + B2X = 0 in Rd \ Γ. Then,
the following identities hold on the boundary :(

γ−X
∂+nX

)
=

(
1
2 −K(B) V (B)
W (B) −1

2 +KT (B)

)( JγXKJ∂nXK
)
.

Here, K(B) is defined using the scalar operator K from equation (1.16c),
and the concatenation K(B) is taken in the sense of Definition 1.10.
The operator ±1/2 is short for ±1/2× the identity operator in the ap-
propriate product space.
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Proof. The result is well known for the scalar case and easily gener-
alizes to the case of systems (see Appendix A for details). �

Corollary 1.12. The Z-transform Û satisfies the following boundary
integral equations, cf., equation (1.13):

(1.19)

(
1
2 −K V
W − 1

2 +KT

)(
γ−Û

∂−n Û

)
=

(
0

−∂−n Û

)
,

where all operators are understood with respect to the matrix

(1.20) B(z) :=

√
−
(
iδ(z)

k
− V0

)
,

using the principal branch of the square root, i.e., satisfying ℜ(z) ≥ 0,
and the Riesz-Dunford calculus.

Proof. The function X defined by X = Û in Ω+ and 0 in Ω−

satisfies the Helmholtz equation. Applying Proposition 1.11 to X and

afterwards using the fact that γ−Û = γ+Û , ∂+n Û = ∂−n Û gives the
stated result. �

Notation 1.13. For simplicity, we will often drop the matrix depen-
dence in the arguments of BEM operators and just write, for example,
V (z) instead of V (B(z)). If it is not explicitly stated otherwise, the
BEM operators will always be understood “with respect to the matrix”

B(z) :=

√
−
(
iδ(z)

k
− V0

)
.

Remark 1.14. The fundamental solution Φ is an analytic function on
C+. This also implies that the boundary integral operators analytically
depend upon the wave number s. Thus, also z → V (B(z)), etc., are
analytic.

Using the stability estimates of Lemmas 5.2 and 5.3, it is easy to see
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that we have the estimate:

∥HUn∥L2(Rd) ≤ C(k)
(
∥Un∥L2(Rd) + ∥un∥L2(Rd)

)
≤ C(k)

∥∥u0∥∥
L2(Rd)

.

Hence, the power series
∑∞
n=0 z

n∆Un also converges, and we can apply
γ− and ∂−n to calculate

∂−n Û = ∂−n

∞∑
n=0

Unzn =
∞∑
n=0

∂−n U
nzn = ̂(∂−n Un)n,

γ−Û = ̂(γ−Un)n.

We will use the following notation, which is standard in the literature
on convolution quadrature:

Definition 1.15. Let X and Y be two Banach spaces and B(X,Y )
the space of bounded linear operators mapping from X to Y . Let
F : C+ → B(X,Y ) be holomorphic. Let g = (gn)n∈N0 be a sequence of
elements in X. We define a sequence F (∂kt )g as

(
F (∂kt )g

)
n
:=

n∑
j=0

Wn−j(F )gj ,

where the operators Wn−j are defined as the coefficients of the power
series

(1.21) F

(
δ(z)

k

)
=:

∞∑
j=0

W j(F )zj .

Here, δ(z) is defined in equation (1.11). Since we will always be
dealing with operators of the form F (

√
−iz + V0), see B(z) as defined

in Proposition 1.11, we will just shorten the notation to F (∂kt )g :=
(F ◦

√
−i ·+V0)(∂kt )g.

Notation 1.16. We will commit a slight abuse of notation in order to
simplify the sequence notation. We write

F (∂kt )gn :=
(
F (∂kt )g

)
n
,
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i.e., we pretend F (∂kt ) acts like an operator on gn instead of on the
whole sequence. This should not lead to confusion; we only must
remember that all the CQ-operators will always be non-local in time.

An important property of Definition 1.15, which makes it useful for
deriving transparent boundary conditions, is that it commutes with the
Z-transform. We formalize this in the next lemma.

Lemma 1.17. Let F and g be as in Definition 1.15. Assume that ĝ(z)

exists for |z| sufficiently small. Then (F̂ (∂kt )g)(z) also exists, and the
following identity holds:

F̂ (∂kt )g = F

(
δ(z)

k

)
ĝ.

Proof. We begin with the right-hand side. Abbreviate z̃ := δ(z)/k.
Inserting the power series from the definition of the coefficients Wn

and using the Cauchy product formula gives

F (z̃)ĝ =

( ∞∑
n=0

Wnzn
)( ∞∑

j=0

gjz
j

)

=
∞∑
n=0

zn
(∑n

j=0
Wn−jgj

)
= F̂ (∂kn)g. �

Since we are interested in a Galerkin approximation, we will switch
to a weak formulation. The following sesquilinear form, representing
the weak form of a Runge-Kutta step, will be used throughout the rest
of the paper.

Definition 1.18. For an open set O and a function g ∈ L∞(O), we
define the sesquilinear form AO,g by:

AO,g (U, V ) := (−iA−1U, V )L2(O) + k(∇U,∇V )L2(O) + k(gU, V )L2(O).

With this notation, we can rewrite equation (1.6) as an equivalent
system with transparent boundary conditions that are realized in terms
of boundary integral operators.
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Theorem 1.19. Setting λn := ∂−n U
n, the semi-discrete problem of

equation (1.6) is equivalent to the following problem for the sequence
(Un, λn).

For all n ∈ N, find Un ∈ H1 (Ω), un ∈ H1 (Ω), λn ∈ H−1/2 (Γ) such
that, for all V ∈ H1 (Ω) and µ ∈ H−1/2 (Γ):

(1.22a)

AΩ,V (Un, V ) + k
⟨
W (∂kt )γ

−Un −
(
1/2−KT (∂kt )

)
λn, γ−V

⟩
Γ

= (und, V )L2(Ω),⟨
(1/2−K(∂kt ))γ

−Un, µ
⟩
Γ
+
⟨
V (∂kt )λ

n, µ
⟩
Γ
= 0.(1.22b)

The solution outside of Ω can be recovered by applying convolution
quadrature to the representation formula:

Un|Ωc = −S(∂kt )λn +D(∂kt )γ
−Un.

Introducing the operator Aint : H
1(Ω) → (H1(Ω))′ corresponding to

AΩ,V (·, ·), problem (1.22) can be written more compactly in the matrix
operator form:
(1.23)(
Aint + k(γ−)′W (∂kt )γ

− k (γ−)′
(
−1/2 +KT (∂kt )

)(
1/2−K(∂kt )

)
γ− V (∂kt )

)(
Un

λn

)
=

(
un d
0

)
,

where γ− denotes the trace operator, (γ−)′ its adjoint, and the equality
is understood in the sense of (H1(Ω))′ ×H1/2(Γ).

Proof. Here, we will only show that the sequences Un, λn solve
problem (1.22). The equivalence will follow later from the uniqueness
of the solution, as shown in Corollary 2.6. Recall equation (1.19) of
Corollary 1.12. Using Lemma 1.17 and exploiting the fact that the
coefficients of a power series are unique, we get:(

1
2 −K(∂kt ) V (∂kt )
W (∂kt ) − 1

2 +KT (∂kt )

)(
γ−Un

∂−n U
n

)
=

(
0

−∂−n Un
)
.(1.24)

We multiply equation (1.6) with a test function V ∈ H1(Ω), inte-
grate over Ω and integrate by parts. The resulting boundary term
−k ⟨∂−n Un, γ−V ⟩Γ can be replaced using the second equation of (1.24),

and we arrive at (1.22). �
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Remark 1.20. Looking at equation (1.23), we clearly see the rela-
tion to the symmetric coupling of finite and boundary elements, as
developed by Costabel [12] and Han [15]. We only had to replace
the boundary operators which appear with the convolution quadrature
version, e.g., W →W (∂kt ), etc.

2. Spatial discretization. In order to obtain a fully discrete
scheme, we choose closed spaces Xh ⊆ H1 (Ω) and Yh ⊆ H−1/2 (Γ).
Then the fully discrete problem is given by:

Problem 2.1. For all n ∈ N, find Unh ∈ Xh, u
n
h ∈ Xh and λnh ∈ Yh

such that, for all Vh ∈ Xh, µh ∈ Yh

AΩ,V (Unh , Vh) + k
⟨
W (∂kt )γ

−Unh −
(
1/2−KT (∂kt )

)
λnh, γ

−Vh

⟩
Γ

(2.1a)

= (unhd, Vh)L2(Ω),⟨(
1/2−K(∂kt )

)
γ−Unh , µh

⟩
Γ
+
⟨
V (∂kt )λ

n
h, µh

⟩
Γ
= 0.(2.1b)

The approximation at t = (n+ 1)k is then defined as:

(2.1c) un+1
h = R(∞)unh + bTA−1Unh .

Define

Ũn∗ (x) :=
(
−S(∂kt )λnh

)
(x) +

(
D(∂kt )γ

−Unh
)
(x), x ∈ Rd \ Γ,(2.2a)

ũn+1
∗ := R(∞)ũn∗ + bTA−1Ũn∗ .(2.2b)

The restrictions Ũn∗ |Ω+ and ũn∗ |Ω+ can be understood as approximations
to Un|Ω+ and un|Ω+ .

Remark 2.2. The fact that we allowed x ∈ Ω in the definition of
Ũn∗ will be important for the later characterization of the FEM-BEM
coupling problem as a PDE problem in Rn.

In the following, we will derive a problem that is equivalent to
Problem 2.1 and that is better suited for theoretical analysis since it
avoids the non-locality in time of the convolution terms. However, it
will no longer consist of computable terms due to its being posed on
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the whole space. The construction is such that, under the Z-transform,
it will result in the non-standard transmission problem from [18] for
the symmetric FEM-BEM coupling.

We introduce the following spaces:

(2.3)
X 0 := L2 (Ω)× L2

(
Rd \ Γ

)
,

X 1 := H1 (Ω)×H1
(
Rd \ Γ

)
,

equipped with the sum inner products, and a new sesquilinear form on
X 1:

(2.4) B

((
U
U∗

)
,

(
V
V ∗

))
:= AΩ,V (U, V ) +ARd\Γ,V0

(U∗, V ∗) .

For the analysis, it will be useful to introduce a stabilized energy
sesquilinear form. Let

(2.5) α > 1 + ∥V∥L∞(Rd) ,

and set:

(2.6) H̃ (u, v) := (∇u,∇v)X 0 + (Vu, v)X 0 + α(u, v)X 0

for all u, v ∈ X 1. Here, Vu denotes multiplication with V(·) in the

first component and V0 in the second. It is easy to see that H̃ (u, u)
is equivalent to the X 1-norm with a constant that depends only on V
and α. We flag at this point that H̃ will also be used to denote the
operator induced by the sesquilinear form (2.6). Furthermore, we will

later require H̃(·, ·) and H̃ to denote sesquilinear forms and induced
operators on products of spaces.

We recall the definition of the annihilator of a subspace:

Definition 2.3. Let X ⊆ Y be Banach spaces. The annihilator of X
in Y , denoted X◦ ⊆ Y ′, is defined by

X◦ :=
{
f ∈ Y ′ : ⟨f, x⟩Y ′×Y = 0 for all x ∈ X

}
.

We are now able to formulate the equivalent problem in the next
lemma.



206 JENS MARKUS MELENK AND ALEXANDER RIEDER

Lemma 2.4. For given Hilbert spaces Xh ⊆ H1(Ω), Yh ⊆ H−1/2(Γ),
define the space

Ĥ(Xh, Yh) := {(v, v∗) ∈ X 1 : v ∈ Xh ∧ Jγv∗K = −γ−v ∧ γ−v∗ ∈ Y ◦
h }.

Then the sequence of problems: Find (Unh , Ũ
n
∗ ) ∈ Ĥ(Xh, Yh) such that

B

((
Unh
Ũn∗

)
,

(
Vh
V ∗

))
=

((
unhd
ũn∗d

)
,

(
Vh
V ∗

))
X 0

(2.7)

for all (Vh, V
∗) ∈ Ĥ(Xh, Yh),

where the un+1
h and ũn+1

∗ are again defined in the usual way, i.e.,

un+1
h := R(∞)unh + bTA−1Unh ,

ũn+1
∗ := R(∞)ũn∗ + bTA−1Ũn∗ ,

is equivalent to the fully discrete problem (Problem 2.1) with the un-

derstanding that ũn∗ and Ũn∗ are defined by the post-processing of equa-
tion (2.2).

In particular, for Xh = H1(Ω) and Yh = H−1/2 (Γ), the approxima-
tions: {

Unh in Ω

Ũn∗ |Rd\Ω in Rd \ Ω,{
unh in Ω

ũn∗ |Rd\Ω in Rd \ Ω,

coincide with those of equation (1.3). Furthermore, ũn∗ |Ω = 0 and

Ũn∗ |Ω = 0. Finally, JγŨn∗ K = −γ−Unh and J∂nŨn∗ K = −∂−n Unh = −λnh.

Before proving this lemma, we first take a separate look at a family of

problems that will allow us to describe the “exterior” terms (ũn∗ ), (Ũ
n
∗ )

as solutions to elliptic problems with important trace relations.

Lemma 2.5. Let Xh ⊆ H1(Ω) and Yh ⊆ H−1/2(Γ) be Hilbert spaces.
Consider sequences of functions (Xn

∗ )n∈N ⊆ H1
(
Rd \ Γ

)
, (xn∗ )n∈N ⊆
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H1
(
Rd \ Γ

)
that satisfy γ−Xn

∗ ∈ Y ◦
h and solve, for all n ∈ N,

ARd\Γ,V0
(Xn

∗ , V
∗) = (xn∗d, V

∗)L2(Rd\Γ) for all V ∗ ∈ H∗
0 (Yh),(2.8)

xn+1
∗ := R(∞)xn∗ + bTA−1Xn

∗(2.9)

with H∗
0 (Yh) := {v∗ ∈ H1

(
Rd \ Γ

)
: γ−v∗ ∈ Y ◦

h ∧ Jγv∗K = 0}.
Then the sequences have the following properties:

(i) with H∗(Xh) := {u ∈ H1
(
Rd \ Γ

)
: JγuK ∈ γ−Xh}, the following

holds, for all V ∗ ∈ H∗(Xh),

(2.10)

ARd\Γ,V0
(Xn

∗ , V
∗)− k

⟨
∂+nX

n
∗ , JγV ∗K⟩

Γ
− k

⟨J∂nXn
∗ K , γ−V ∗⟩

Γ

= (xn∗d, V
∗)L2(Rd\Γ) .

(ii) On the boundary, we have J∂nXn
∗ K ∈ Yh.

(iii) The traces solve

∂+nX
n
∗ =

(
−1/2 +KT (∂kt )

) J∂nXn
∗ K +W (∂kt ) JγXn

∗ K ,(2.11a)

0 =
⟨
V (∂kt ) J∂nXn

∗ K , µh⟩Γ +
⟨
(1/2−K(∂kt )) JγXn

∗ K , µh⟩Γ(2.11b)

for all µh ∈ Yh.

Proof. First, we choose test functions V ∗ = v∗ ej with v∗ ∈
C∞

0 (Rd \ Γ) ⊆ H∗
0 (Yh) in equation (2.8) and obtain by integration by

parts:

(2.12)
(
−iA−1 − k∆+ k V0

)
Xn

∗ = xn∗d in Rd \ Γ.

This implies, by doing integration by parts in equation (2.8), that, if
we insert arbitrary V ∗ ∈ H∗

0 (Yh), i.e., allowing non-vanishing boundary
terms, the following holds:⟨

∂−nX
n
∗ , γ

−V ∗⟩
Γ
−
⟨
∂+nX

n
∗ , γ

+V ∗⟩
Γ
= 0.

Proof of (ii). Let ξ ∈ Yh
◦ ⊆ H1/2(Γ) and choose V ∗ ∈ H1

(
Rd \ Γ

)
as a lifting such that γ+V ∗ = γ−V ∗ = ξ. This gives:
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⟨J∂nXn
∗ K , ξ⟩Γ = 0 for all ξ ∈ Yh

◦,

or J∂nXn
∗ K ∈ (Yh◦)◦ = Yh.

Proof of (iii). We proceed completely analogously to the derivation
of the transparent boundary conditions. We take the Z-transform and

see by Lemma 1.7 that X̂∗ solves

−
(
iδ(z)

k
− V0

)
X̂∗ −∆X̂∗ = 0 on Rd \ Γ.

Applying the Calderón identities (Proposition 1.11) and taking the
inverse Z-transform then gives (2.11) if we use that ⟨γ−Xn

∗ , µh⟩Γ = 0,

since γ−Xn
∗ ∈ Yh

◦.

Proof of (i). Equation (2.10) is a simple consequence of the differ-
ential equation (2.12) and integration by parts. �

Proof of Lemma 2.4. We start with solutions unh, λ
n
h and Unh of

equation (2.1). We construct a sequence (Ũn∗ , ũ
n
∗ )n∈N that satisfies the

conditions of the previous lemma. To that end, we set ũ0∗ := 0 and

define the functions Ũn∗ and ũn∗ inductively so that they satisfy

ARd\Γ,V0
(Ũn∗ , V

∗) = (ũn∗d, V
∗)L2(Rd\Γ) for all V ∗ ∈ H∗

0 (Yh),

(2.13a)

JγŨn∗ K = −γ−Unh ,(2.13b)

ũn+1
∗ := R(∞)ũn∗ + bTA−1Ũn∗ .(2.13c)

In order to construct this, take ξn as a lifting of γ−Unh on the exterior

and 0 on the interior. Then set Ũn∗ := Xn
∗ + ξn, where X

n
∗ ∈ H∗

0 (Yh)
solves

ARd\Γ,V0
(Xn

∗ , V
∗) = (ũn∗d, V

∗)L2(Rd\Γ) −ARd\Γ,V0
(ξn, V

∗)

for all V ∗ ∈ H∗
0 (Yh). The existence of the solutions is guaranteed by

Lemma A.3 and the fact that the scalar problems are elliptic due to a
non-vanishing imaginary part of the “wave number.” We must show

that (Unh , Ũ
n
∗ ) solves equation (2.7). In view of equation (2.13), we may

apply Lemma 2.5 to Ũn∗ . From equation (2.11b) and JγŨn∗ K = −γ−Unh ,
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we get⟨
V (∂kt )J∂nŨn∗ K, µ⟩

Γ
−
⟨(
1/2−K(∂kt )

)
γ−Unh , µ

⟩
Γ
= 0 for all µ ∈ Yh.

This is the same equation as (2.1b) for −λnh. In order to showJ∂nŨn∗ K = −λnh, we use the definition of V (∂kt ) as the sum over the
history to arrive at:

n∑
j=0

⟨
V j
(J∂nŨn−j∗ K + λn−jh

)
, µh

⟩
Γ
= 0 for all µh ∈ Yh.

Since both λnh and J∂nŨn−j∗ K are in the discrete space Yh, it is easy

to see that an induction will yield J∂nŨn∗ K = −λnh as soon as we have
asserted that V 0 is injective when viewed as an operator Yh → Yh

′. We

note that V 0 = V (B(0)) with B(0) defined in equation (1.20) since V 0

is the leading term in the Taylor series of V (B(z)) at 0. By [2, 3], [18,
Proposition 16], V (s) satisfies the ellipticity estimate:

ℜ
(
eiArg s ⟨λ, V (s)λ⟩Γ

)
≥ ℜ(s)min(1,ℜs)

|s|2
∥λ∥2−1/2 ;

therefore, the inverse operator V −1(s) exists as an operator between
discrete spaces Y ′

h → Yh. From the composition property of the Riesz-
Dunford calculus or by using the Jordan form, similar to the proof of
Lemma A.3, this implies that V (B(0)) : Yh → Yh

′ is also invertible

and, in particular, injective. We conclude λnh = −J∂nŨn∗ K for all n ∈ N.
If we insert J∂nŨn∗ K = −λnh into equation (2.11a), we obtain:

−∂+n Ũn∗ = (−1/2 +KT (∂kt ))λ
n
h +W (∂kt )γ

−Unh .(2.14)

We now claim that (Unh , Ũ
n
∗ ) solves equation (2.7). To evaluate

B
[(

Un
h

Ũn
∗

)
,
(
Vh

V ∗

)]
, we employ equation (2.10) and write

(2.15)

ARd\Γ,V0
(Ũn∗ , V

∗) = k
⟨
∂+n Ũ

n
∗ , JγV ∗K⟩

Γ
+ k

⟨J∂nŨn∗ K, γ−V ∗
⟩
Γ

+ (ũn∗d, V
∗)L2(Rd\Γ) .

The second term on the right-hand side of equation (2.15) vanishes sinceJ∂nŨn∗ K is in Yh and γ−V ∗ is in Yh
◦ by assumption. We insert equa-
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tion (2.14) into the first term on the right-hand side of equation (2.15):

(2.16) ARd\Γ,V0
(Ũn∗ , V

∗)

= k
⟨
(−1/2 +KT (∂kt ))λ

n
h +W (∂kt )γ

−Unh , JγV ∗K⟩
Γ

+ (ũn∗d, V
∗)L2(Rd\Γ)

and observe that this leads to equation (2.7) in view of equation (2.1).

It remains to be shown whether the functions Ũn∗ , ũ
n
∗ that are obtained

by the convolution quadrature post-processing of (U jh) and (λjh) defined

in (2.2) coincide with solution components Ũn∗ and ũn∗ as defined

above. We consider the Z-transform of the function Ũn∗ defined by
equation (2.2). It satisfies the differential equation (1.10) and also has
the same jumps across Γ. Uniqueness of the Helmholtz problem then
gives the result.

In order to see that solutions of equation (2.7) solve problem (2.1),
we select test functions Vh := 0 and V ∗ ∈ H∗

0 (Yh) (as defined in

Lemma 2.5) and observe that equation (2.7) simplifies to

ARd\Γ,V0
(Ũn∗ , V

∗) = (ũn∗d, V
∗)L2(Rd\Γ) .

Hence, we are in the setting of Lemma 2.5. We set λnh := −J∂nŨn∗ K. If
we take any pair (Vh, V

∗) ∈ Ĥ(Xh, Yh) and again argue as above, we

arrive at (2.16). Using equation (2.7), one then sees that Unh and λnh
solve equation (2.1a). Equation (2.1b) follows from equation (2.11b).

In the case that Xh = H1(Ω) and Yh = H−1/2(Γ), the condition

γ−Ũn∗ ∈ Yh
◦ implies γ−Ũn∗ = 0. Since ũ0∗|Ω = 0, by definition

we obtain by induction that Ũn∗ |Ω = 0 for all n ∈ N, since Ũn∗ |Ω
solves the homogeneous problem with zero boundary conditions. With
this knowledge, it is easy to see that equation (2.7) is just the weak
formulation of equation (1.6). �

Corollary 2.6. The sequence of fully discrete problems is uniquely
solvable for any choice of closed subspaces Xh ⊂ H1(Ω), Yh ⊂ H1/2(Γ)
and any step size k > 0. Choosing Xh = H1 (Ω) and Yh = H−1/2 (Γ),
this also shows uniqueness for the semi-discrete problem in Theo-
rem 1.19.
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Proof. Since the fully discrete problem is equivalent to equation (2.7),
it suffices to show existence and uniqueness there. This is covered by
the statement in Lemma A.3. �

3. Abstract analysis. In this section, we analyze the time stepping
of Lemma 2.4 in an abstract setting.

Assumption 3.1. Let H0 and H1 be Hilbert spaces with H0 ⊇ H1

continuously and densely embedded, and let Hh ⊆ H1 be a closed
subspace. We assume Hh is equipped with the H1 inner product, and we
will explicitly state when we equip it instead with the H0 inner product.

Assume we are given a sesquilinear form H : H1 × H1 → C that
is bounded and Hermitian, i.e., H(u, v) = H(v, u). Also assume that
there exists a constant α > 0 such that the stabilized sesquilinear form

(3.1) H̃ (u, v) := H(u, v) + α(u, v)H0

satisfies an inf-sup condition

(3.2) inf
u∈Hh\{0}

sup
v∈Hh\{0}

|H̃ (u, v) |
∥u∥H1

∥v∥H1

≥ βH̃.

We will write H(·, ·) and H̃ (·, ·) for the corresponding sum sesquilinear
forms on H1 ×H1.

Define the sesquilinear form

B(U, V ) := −(iA−1U, V )H0 + kH(U, V ) for all U, V ∈ H1.(3.3)

We consider solutions Xn
h ∈ Hh, x

n
h ∈ Hh of :

B(Xn
h , Vh) = (xnh d, Vh)H0 + (Fn, Vh)H0 for all Vh ∈ Hh,(3.4a)

xn+1
h = R(∞)xnh + bTA−1Xn

h ,(3.4b)

for some given right-hand sides Fn ∈ H0 and initial condition x0h ∈ Hh.

We will need the well-known spectral representation theorem for
bounded, self-adjoint operators. We shall use it in the following
“multiplication operator” form:
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Proposition 3.2 ([23, page 227, Theorem VII.3], [29, page 335, Satz
VII.1.21]). Let T be a bounded, self-adjoint operator on a separable
Hilbert space H. Then there exists a finite measure space ⟨O, µ⟩,
a bounded measurable function F : O → R, and a unitary map
U : H → L2(O, dµ), such that

(UTU−1f)(z) = F (z)f(z) for all z ∈ O.

We would like to keep the analysis as general as possible in order
to set the stage for problems other than the Schrödinger equation. For
this reason, in Assumption 3.1 we merely required inf-sup stability and
not ellipticity, although the Schrödinger Hamiltonian considered here
is in fact elliptic. In order to track where the stronger condition of

ellipticity of H̃ (·, ·) is needed instead of merely inf-sup stability, we
mark the corresponding estimates with (∗).

In Lemma 3.4, we will need that Hh is able to represent its dual
space using the X 0 inner product. That this is indeed the case is the
subject of the next lemma.

Lemma 3.3. The set M := {(·, uh)H0 : uh ∈ Hh} is dense in
(Hh, ∥·∥H1

)′.

Proof. We show that the annihilator M◦ = {0}. Let x ∈ M◦ ⊆
(H ′

h)
′. Since Hh is reflexive, we can assume that x ∈ Hh. This means

that f(x) = 0 for all f ∈ M , or 0 = (x, uh)H0 for all uh ∈ Hh. Setting
uh = x shows x = 0. �

The next lemma is the main ingredient of our stability and conver-
gence proofs. It can be seen as a version of a theorem by von Neumann
(see [14, Corollary 11.3]) about Runge-Kutta stability, adapted to our
setting.

Lemma 3.4 (Discrete stability). Let Assumption 3.1 hold. Then,
without any conditions on k or the space Hh, we have that the sequence
of solutions to equation (3.4) is non-expansive, i.e., for all n ∈ N:

(3.5) ∥xnh∥H0
≤
∥∥x0h∥∥H0

+ C
n−1∑
j=0

∥Fj∥H0
.
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If we also assume that H̃ (·, ·) is H1-elliptic, with βH̃ as the coercivity
constant, then there exists a constant C > 0 depending only on βH̃ and
the Runge-Kutta method such that
(3.6)

∥xnh∥H1

(∗)
≤ C

[∥∥x0h∥∥H1
+

n−1∑
j=0

inf
Wh∈Hh

(
∥Wh∥H1

+ k−1/2 ∥Fj −Wh∥H0

)]
.

For discrete right-hand sides Fh ∈ Hh, the following, stronger estimate
is valid :

(3.7) ∥xnh∥H1

(∗)
≤ C

(∥∥x0h∥∥H1
+

n−1∑
j=0

∥Fj∥H1

)
.

In the case that the RK-method satisfies |R(it)| = 1 for all t ∈ R and
Fn = 0 for all n ∈ N, we get conservation of the H0-norm, i.e.,

∥xnh∥H0
=
∥∥x0h∥∥H0

for all n ∈ N.

Under the stricter ellipticity assumption on H̃(·, ·), we also get “con-
servation of energy”:

H(xnh, x
n
h)

(∗)
= H(x0h, x

0
h).

Before we can prove this statement, we need the following reformu-
lation of a Runge-Kutta step.

Lemma 3.5. Let H0, H1, B, H̃, Xn
h , x

n
h and Fn be as in Assump-

tion 3.1. The sequence xnh solves the equation:

(3.8) (xn+1
h , φ)H0 = (RTxn, φ)H0 + (STFn, φ)H0 for all φ ∈ Hh,

where RT : H0 → H0, ST : H0 → H0 are bounded linear operators with
rangeRT ⊆ Hh and rangeST ⊆ Hh. The operators satisfy the bounds:

∥ST ∥H0→H0
≤ C, ∥ST ∥Hh→Hh

(∗)
≤ C, ∥ST ∥H0→H1

(∗)
≤ Ck−1/2,

(3.9)

∥RT ∥H0→H0
≤ C, ∥RT ∥Hh→Hh

(∗)
≤ C, ∥RT ∥H0→H1

(∗)
≤ Ck−1/2,

(3.10)
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with constants that depend only on the Runge-Kutta method and H̃, but
not on k or Hh.

The operator RT can be written as

RTu := R(∞)u− bTA−1
((
iA−1 + kαI

)
T − kI

)−1
Tdu,

where T is a self-adjoint, bounded operator on H0 and bounded on Hh.

If we assume H̃ (·, ·) to be elliptic, then T is also self-adjoint on Hh

when equipped with the equivalent H̃ (·, ·) inner product.

Proof. We construct T with the goal of T ≈ H−1, which we will
then use to represent the Runge-Kutta step in terms of the stability
function R.

We define the operator T : H0 → H0 by setting T (w) := u where
u ∈ Hh is the unique solution to

H̃ (u, y) = (w, y)H0 for all y ∈ Hh.

Since the Hermitian sesquilinear form on the left-hand side satisfies
an inf-sup condition, we get that T is well defined for all w ∈ H0 and
bounded (see, for example, [24, Theorem 2.1.44]), with a constant that
depends only on βH̃. By construction, the operator has range(T ) ⊆ Hh,
and thus, we may also treat it as a linear operator Hh → Hh and
H0 → H1.

For w, x ∈ H0, we calculate:

(w, Tx)H0 = H̃ (Tw, Tx) = H̃ (Tx, Tw)

= (x, Tw)H0 = (Tw, x)H0 ,

where we used the fact that H̃ (·, ·) was assumed to be Hermitian and
Tx, Tw ∈ Hh.

The operator T is, in general, not self-adjoint with respect to the

H1 inner product. In the case where H̃ (·, ·) is elliptic, i.e., if it induces
an equivalent inner product on H1, we calculate for w, x ∈ Hh:

H̃ (Tw, x) = (w, x)H0 = (x,w)H0 = H̃ (Tx,w) = H̃ (w, Tx) .

Thus, we have that T is also self-adjoint in the H̃-scalar product.
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We define the operator ST : H0 → H0 by

ST := −bTA−1
((
iA−1 + kαI

)
T − kI

)−1
T .

We need to show that this operator is well defined, i.e., the inverse
((iA−1+kαI)T −kI)−1 exists, taken from H0 → H0. T is a self-adjoint
operator and, therefore, only has real spectrum. We rewrite the above
inverse as

(3.11)
((
iA−1 + kαI

)
T − kI

)−1

=
[
T − k

(
iA−1 + kαI

)−1
]−1 [

iA−1 + kαI
]−1

.

The inverse of (iA−1 + kαI) exists, since ℜ(σ(A)) > 0 (Lemma 1.6).
For the other inverse of the right-hand side of equation (3.11), it is easy
to see that the matrix has a spectrum with a non-vanishing imaginary
part. Therefore, we can apply Lemma A.3, setting V = H = H0 and
a(x, y) := (Tx, y)H0 for the existence of the inverse in H0.

Next, we show that ST satisfies the operator bounds (3.9). Let
Φ ∈ H0 be arbitrary, and set Y := ((−iA−1−kαI)T +kI)−1TΦ. Since
T has the structure T = diag(T, . . . , T ), it commutes with matrices, so
that ((

iA−1 + kαI
)
T − kI

)−1
T = T

((
iA−1 + kαI

)
T − kI

)−1
.

Thus, we can write Y = T ((−iA−1 − kαI)T + kI)−1Φ. This implies
Y ∈ rangeT ⊆ Hh, and also rangeST ⊆ Hh.

We fix a test function Wh ∈ Hh, and calculate:

B(Y,Wh) = (−iA−1Y ,Wh)H0 + kH(Y,Wh)

= H̃
(
T (−iA−1Y ),Wh

)
+ kH̃ (Y,Wh)− kα(Y,Wh)H0

= H̃
((
−iA−1T − kαT + kI

)
Y,Wh

)
+ kαH̃ (TY,Wh)− kα(Y,Wh)H0

= H̃ (TΦ,Wh) + 0

= (Φ,Wh)H0 .

This variational problem fits the requirements of Lemma A.3, thus
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implying the estimates:
(3.12)

∥Y ∥H0
. ∥Φ∥H0

∥Y ∥H1

(∗)
. ∥Φ∥Hh

, ∥Y ∥H1

(∗)
. k−1/2 ∥Φ∥H0

.

(In the second equation, we assumed Φ ∈ Hh). From the definition of

ST we get STΦ = bTA−1Y , which implies (3.9).

To show the equality (3.8), we perform a similar calculation but use
the formal adjoint operator in the second argument of B. Let φ ∈ H0

be arbitrary, and set Y := −((−iA−T + kαI)T − kI)−1A−T bφ. By the
definition of T we have TY ∈ Hh and, for any function Wh ∈ Hh:

B(Wh, TY ) = (−iA−1Wh, TY )H0 + kH(Wh, TY )

= (−iA−1Wh, TY )H0 − αk(Wh, TY )H0 + kH̃ (Wh, TY )

= (−iA−1Wh, TY )H0 − αk(Wh, TY )H0 + k(Wh, Y )H0

= (Wh,
((
iA−T − kαI

)
T + kI

)
Y )H0

= (Wh, A
−T bφ)H0 .

Using equation (3.4) with TY as a test function and Wh = Xn
h in the

previous calculation gives:

(bTA−1Xn
h , φ)H0 = (Xn

h , A
−T bφ)H0

= B(Xn
h , TY )

= (xnhd, TY )H0 + (Fn, TY )H0

= (STdx
n
h, φ)H0 + (STFn, φ)H0 ,

where, in the last step, we used that T is H0-self-adjoint in order
to move the operators to the left-hand side of the inner product.
Adding a term (R(∞)xnh, φ)H0 to both sides and using the definition

xn+1
h = R(∞)xnh + bTA−1Xn

h then completes the proof. �

Proof of Lemma 3.4. Using the representation (3.8), we can show
the stated stability estimates by using the A-stability of the method.
Since T is a self-adjoint operator, Proposition 3.2 ensures the existence
of a measure space (O, µ), a unitary transformation U : H0 → L2(µ),
and a measurable function f : O → R such that, for all x ∈ L2(µ):

UTU−1x = f · x =:Mf (x).
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Using this transformation, we get:

(RT −R(∞))u = U−1bTA−1
[(
iA−1 + kα

)
Mf − k

]−1

Mf [iA
−1
1]Uxnh

= U−1Mg Uxnh

with the new function g(z) := bTA−1((I − ikαA)f(z) + ikA)−1f(z)1.

For f(z) = 0, it is easy to see that g(z) = 0. For f(z) ̸= 0, we get:

g(z) = bTA−1 ((I − ikαA) f(z) + ikA)
−1
f(z)1

= bTA−1

(
(I − ikαA) +

ik

f(z)
A

)−1

1

= bTA−1

(
I − ik

(
α− 1

f(z)

)
A

)−1

1

= R

(
ik

(
α− 1

f(z)

))
−R(∞).

Setting h(z) := (α − (1/f(z))) with the convention h(z) := ∞ for
f(z) = 0, we arrive at:

(3.13)

∥RTxnh∥H0
= ∥(R(∞) + g(z))Uxnh∥L2(µ)

= ∥R(ikh(z))Uxn∥L2(µ)

≤ ∥xnh∥H0
,

where, in the last step, we utilized that z 7→ f(z), and thus, also
z 7→ h(z) is real valued, |R(z)| ≤ 1 on the imaginary axis and U
is unitary. If we assume that H̃ (·, ·) is elliptic and write H̃1 for

H1 with the H̃ (·, ·) inner product, we can apply the same argument,
using the spectral representation theorem in (Hh, ∥·∥H̃1

) to show that∥∥RTxn+1
h

∥∥
H̃1

(∗)
≤ ∥xnh∥H̃1

.

Setting φ := xn+1
h in equation (3.8) then directly gives the H0-

stability estimate (3.5):∥∥xn+1
h

∥∥
H0

≤ ∥xnh∥H0
+ C ∥Fn∥H0

,

which implies equation (3.5) via the discrete Gronwall lemma.

We now show (3.6). We repeat the previous construction. In order

to reformulate equation (3.8) in terms of the H̃1 inner product instead
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of the H0 inner product, we take a sequence (Lε)ε≥0 ⊆ Hh such that

(W,Lε)H0

ε→0→ H̃
(
W,xn+1

h

)
for all W ∈ Hh (which is possible due

to Lemma 3.3, and the fact that the right-hand side is a continuous
functional in Hh). Then we use φ := Lε as a test function. By
Lemma 3.5,

(xn+1
h , Lε)H0 = (RTx

n
h, Lε)H0 + (STFn, Lε)H0 .

Since the stability properties of ST depend on whether or not its
argument is in H0 or Hh, cf., equation (3.9), we choose an arbitrary
Wh ∈ Hh and write:

(xn+1
h , Lε)H0 = (RTx

n
h, Lε)H0 +(STWh, Lε)H0 +(ST (Fn −Wh), Lε)H0 .

Passing to the limit ε→ 0 and using the H1-stability of ST , we get

lim sup
ε→0

|(STWh, Lε)H0 |
(∗)
≤ C ∥Wh∥H̃1

∥∥xn+1
h

∥∥
H̃1
,

lim sup
ε→0

|(ST (Fn −Wh), Lε)H0 |
(∗)
≤ Ck−1/2 ∥Fn −Wh∥H0

∥∥xn+1
h

∥∥
H̃1
.

Therefore, we end up with:

(3.14)

∥∥xn+1
h

∥∥2
H̃1

(∗)
≤ ∥RTxnh∥H̃1

∥∥xn+1
h

∥∥
H̃1

+ C ∥Wh∥H̃1

∥∥xn+1
h

∥∥
H̃1

+ Ck−1/2 ∥Fn −Wh∥H0

∥∥xn+1
h

∥∥
H̃1
.

Since we have already established the bound (3.13) on RTx
n
h, we get

from (3.14):∥∥xn+1
h

∥∥
H̃1

(∗)
≤ ∥xnh∥H̃1

+ C ∥Wh∥H̃1
+ Ck−1/2 ∥Fn −Wh∥H0

.

By taking the infimum over all Wh and applying the discrete Gronwall
lemma, this gives:

∥xnh∥H̃1

(∗)
≤
∥∥x0h∥∥H̃1

+ C

n−1∑
j=0

inf
Wh∈Hh

(
∥Wh∥H̃1

+ k−1/2 ∥Fj −Wh∥H0

)
.

The equivalence of the H̃1 and H1-norms then gives the estimate (3.7).

To obtain the conservation of the H0 norm we need to show the
reverse inequality. This time, we use φ := RTx

n
h as a test function in
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(3.8) to get
(xn+1
h , RTx

n
h)H0 = (RT x

n
h, RTx

n
h)H0 .

We again use the characterization of RT by the spectral theorem and
see that we can replace the inequality (3.13) by an equality if we assume
|R(it)| = 1. Combining this observation with the Cauchy-Schwarz
inequality for the left-hand side, we get∥∥xn+1

h

∥∥
H0

≥ ∥xnh∥H0
.

Completely analogously to the H0-case we can also show conservation

of the H̃1-norm when |R(it)| = 1 (again, assuming ellipticity). Since

the stated energy only differs by α ∥xnh∥
2
H0

from this norm, we can just

subtract it (we already showed that the H0-norm is conserved) in order
to get energy conservation. �

We now investigate convergence properties of the spatial discretiza-
tion, which in our abstract setting is determined by the space Hh ⊆ H1.
The semi-discrete problem is formulated as follows.

Assumption 3.6. Let H2 ⊆ H1 be a subspace, and let c : H2×H1 → R
be a bounded sesquilinear form. Define the kernel of c as the space
V0 := {vh ∈ H2 : c(vh, wh) = 0 for all wh ∈ Hh} ⊆ H2. Let Xn ∈ H2

and xn ∈ H2 solve:

B(Xn, V ) + kc(Xn, V ) = (xn d, V )H0 + (Fn, V )H0 for all V ∈ Hh,

(3.15a)

xn+1 = R(∞)xn + bTA−1Xn,(3.15b)

for some given right-hand sides Fn ∈ H0 and x0 ∈ H1, where

c(U, V ) :=
∑m
j=0 c(uj , vj).

Remark 3.7. In our analysis below, the purpose of the sesquilin-
ear form c is to account for a consistency error that arises from the
fact that our error analysis is performed in a non-conforming setting.
Specifically, the discrete and continuous test spaces satisfy, in gen-

eral, Ĥ(Xh, Yh) ̸⊆ Ĥ(H1(Ω),H−1/2(Γ)), where the constrained spaces

Ĥ(Xh, Yh) and Ĥ(H1(Ω),H−1/2(Γ)) are defined in Lemma 2.4.
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In order to estimate the error xn − xnh we introduce a Ritz-style
projector.

Definition 3.8. Set Πh : H2 → Hh, w 7→ uh, where uh ∈ Hh solves

(3.16) H̃ (uh, vh) = H̃ (w, vh) + c(w, vh) for all vh ∈ Hh.

Note that Πh is well defined by Assumption 3.1. This projection
allows us to bound the error of our fully discrete scheme in terms of
the approximation properties of Πh. We formalize this in the next
lemma.

Lemma 3.9. Let Assumptions 3.1 and 3.6 be satisfied. Write HXj :=
ik−1A−1(Xj − xj1).

(i) There exist constants C0, C1 > 0 that depend only on the Runge-

Kutta method and H̃ (·, ·) but not on k and Hh such that, for all
n ∈ N, we can estimate:

(3.17)

∥∥xn+1 − xn+1
h

∥∥
H0

≤ C0

(∥∥x0 − x0h
∥∥
H0

+
∥∥x0 −Πhx

0
∥∥
H0

)
+ C1 k

n∑
j=0

∥∥(I −Πh
)
HXj

∥∥
H0

+
∥∥(I −Πh

)
Xj
∥∥
H0
.

(ii) Assume additionally that H̃(·, ·) is elliptic and the following ap-
proximation property holds for all u ∈ H1:

(3.18) inf
wh∈Hh

∥u− wh∥H0
≤ Ck+1/2 ∥u∥H1

.

Then, we have

(3.19)

∥∥xn+1 − xn+1
h

∥∥
H1

(∗)
≤ C0

(∥∥x0 − x0h
∥∥
H1

+
∥∥x0 −Πhx

0
∥∥
H1

)
+ C1 k

n∑
j=0

∥∥(I −Πh
)
HXj

∥∥
H1

+
∥∥(I −Πh

)
Xj
∥∥
H1
.



SCHRÖDINGER EQUATION FEM-BEM COUPLING 221

Remark 3.10. The definition of H may seem arbitrary in the abstract
context, but it is chosen in a way that reflects the pointwise semi-
discrete problem of (1.3).

Remark 3.11. Assumption (3.18) introduces a (in practice quite
weak) coupling between mesh size h and time-step size k. In Section 6.1,
we will later also see a way to remove this assumption for a restricted
set of Runge-Kutta methods.

Proof of Lemma 3.9. For simplicity, we consider for the moment the
case α = 0 and Fj = 0 for all j ∈ N0 and calculate, for Vh ∈ Hh,

B
(
ΠhX

n, Vh
)
= (−iA−1ΠhX

n, Vh)H0 + k H̃
(
ΠhX

n, Vh
)

= (−iA−1ΠhX
n, Vh)H0 + k H̃ (Xn, Vh)

+ kc(Xn, Vh)

(3.3),
(3.15)
= (−iA−1ΠhX

n, Vh)H0+ (xnd, Vh)H0

+ (iA−1Xn, Vh)H0

= (Πhx
nd, Vh)H0 + (xnd−Πhx

nd, Vh)H0

+ (iA−1(I −Πh)X
n, Vh)H0

= (Πhx
nd, Vh)H0 + (

[
xnd+ iA−1Xn

]
−Πh

(
xnd+ iA−1Xn

)
, Vh)H0

= (Πhx
nd, Vh)H0 + k(

(
I −Πh

)
HXn, Vh)H0 .

In the general case, performing a completely analogous computation,
we see that ΠhX

n solves:

B(ΠhX
n, Vh) = (Πhx

nd, Vh)H0 + (Fn, Vh)H0 + (Ξn, Vh)H0 ,(3.20)

with Ξn := k
(
I −Πh

)
HXn + k α

(
I −Πh

)
Xn.

We now consider the error propagation between the projection
and the fully discrete solution, and set En := (ΠhX

n − Xn
h ) and

en := Πhx
n − xnh.

For simplicity, we now assume that x0h = Πhx
0. Then, the error
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solves:

(3.21)

B(En, Vh) = B(ΠhX
n, Vh)−B(Xn

h , Vh)

= (Πhx
nd, Vh)H0 − (xnhd, Vh)H0 + (Ξn, Vh)H0

= (end, Vh)H0 + (Ξn, Vh)H0 .

By linearity of Πh, we have en+1 = R(∞)en + bTA−1En. So the error
terms fit into the setting of our discrete stability lemma (Lemma 3.4).
We get:

∥en+1∥H0
≤ C

n∑
j=0

∥∥Ξj∥∥
H0
,

∥en+1∥H1

(∗)
≤ C

n∑
j=0

∥∥Ξj∥∥
H1
,

where the second estimate again depends on the ellipticity of H̃ (·, ·),
and we absorbed the k−1/2 term using the approximation assumption
(3.18). Inserting the Ritz projector and using the triangle inequality
gives:∥∥xn+1 − xn+1

h

∥∥
H0

≤
∥∥xn+1 −Πhx

n+1
∥∥
H0

+
∥∥Πhxn+1 − xn+1

h

∥∥
H0

≤
∥∥(I −Πh)x

n+1
∥∥
H0

+ C k
n∑
j=0

[∥∥(I−Πh
)
HXj

∥∥
H0

+
∥∥(I−Πh

)
Xj
∥∥
H0

]
.

In order to slightly simplify the above expression we would like to
absorb the first term into the sum. Since we assumed Πhx

0 = x0,
we get

∥∥(I −Πh)x
n+1
∥∥
H0

=

∥∥∥∥ n∑
j=0

(I −Πh)
(
xj+1 − xj

)∥∥∥∥
H0

≤
n∑
j=0

∥∥(I −Πh)
(
xj+1 − xj

)∥∥
H0

= k
n∑
j=0

∥∥(I −Πh)
(
bTHXj

)∥∥
H0
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≤ C k
n∑
j=0

∥∥(I −Πh
)
HXj

∥∥
H0
,

which then gives equation (3.17). In order to remove the requirement
x0h = Πhx

0, we just note that, due to the discrete stability, proved
in Lemma 3.4, perturbing the initial condition only adds a term∥∥x0 − x0h

∥∥
H0

+
∥∥x0 −Πhx

0
∥∥
H0

to our final estimate. A completely

analogous argument, replacing H0 with H1 gives (3.19), as long as we
make the stated additional assumptions. �

Remark 3.12. Careful inspection of the proof shows that we did not
in fact need the approximation property (3.18) for arbitrary u ∈ H1

but only for the semi-discrete solutions Xn and HXn. This insight
may be useful when using non-uniform triangulations.

In the previous lemma, we reduced the approximation in each time
step to the approximation properties of the Ritz projection Πh. The
next lemma, which is a modified variation of Céa’s lemma, tells us that
this approximation is quasi-optimal in H1.

Lemma 3.13. There exists a constant C > 0 that depends only on

the continuity of H̃ (·, ·) and c(·, ·) and the inf-sup constant βH̃ from
equation (3.2) such that, for all x ∈ H2, the following estimate holds:
(3.22)

∥(I −Πh)x∥H1
≤ C

(
inf

xh∈Hh

∥x− xh∥H1
+ inf
yh∈V0

∥c(x− yh, ·)∥H′
h

)
.

Proof. For any xh ∈ Hh and yh ∈ V0, condition (3.2) gives:

∥(I −Πh)x∥H1
≤ ∥x− xh∥H1

+ ∥xh −Πhx∥H1

. ∥x− xh∥H1
+ sup
vh∈Hh\{0}

|H̃ (xh −Πhx, vh) |
∥vh∥H1

= ∥x− xh∥H1
+ sup
vh∈Hh\{0}

|H̃ (xh − x, vh)− c(x, vh)|
∥vh∥H1

= ∥x− xh∥H1
+ sup
vh∈Hh\{0}

|H̃ (xh − x, vh)− c(x− yh, vh)|
∥vh∥H1
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. ∥x− xh∥H1
+ sup
vh∈Hh\{0}

|c(x− yh, vh)|
∥vh∥H1

,

where we used that c(yh, vh) = 0 for yh ∈ V0 and vh ∈ Hh. �

4. Convergence and stability of the fully discrete scheme.
In this section, we will apply the abstract theory that we developed in
Section 3 to the Schrödinger equation. It is easy to verify that the fully
discrete problem, as described in Lemma 2.4, satisfies Assumption 3.1

with H0 = X 0, H1 = X 1 and Hh = Ĥ(Xh, Yh) = {(vh, v∗) ∈ X 1 : vh ∈
Xh ∧ Jγv∗K = −γ−vh ∧ γ−v∗ ∈ Y ◦

h }. We have already seen that the
stabilized Hamiltonian is elliptic if we assume α > 1 + ∥V∥L∞(R). This

implies the inf-sup condition (3.2).

In order to prove that the space Hh inherits some important prop-
erties from Xh and Yh we need the following well-known result.

Proposition 4.1 (Extension operator, see [27, Chapter VI.3]). Let
Ω ⊆ Rn be a Lipschitz domain. Then there exists a linear operator E
with the properties:

• for every k ∈ N0, E : Hk(Ω) → Hk(Rd) is a bounded linear
operator : ∥Eu∥Hk(Rd) ≤ C(k,Ω) ∥u∥Hk(Ω),

• Eu is an extension of u, i.e., Eu|Ω = u.

It is well known that the time evolution of the Schrödinger equation
corresponds to a unitary semigroup, i.e., the L2-norm of the initial
condition is conserved. Since we are only considering a bounded subset
of Rd, we cannot hope to retain that property, but we still have a
slightly weaker result for the fully discrete scheme. Similarly, it is
known that the energy (Hu(t), u(t))L2(Rd) is conserved over time. Our
discrete system also almost retains this property.

Corollary 4.2. Let V be constant in time and bounded. Then the
sequence of fully discrete solutions of Problem 2.1 is non-expansive:

∥unh∥L2(Ω) ≤
∥∥u0h∥∥L2(Ω)

, ∥unh∥H1(Ω) ≤ C
∥∥u0h∥∥H1(Ω)

.

In the case of RK-methods that satisfy |R(it)| = 1 for all t ∈ R,
the damping that appears in the previous inequalities can be controlled
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by adding additional (computable)-terms to get a “mass” and “energy”
conserving scheme, i.e.,

∥unh∥
2
L2(Ω) + ∥ũn∗∥

2
L2(Rd\Γ) =

∥∥u0h∥∥2L2(Ω)
,

H(unh, u
n
h) +H(ũn∗ , ũ

n
∗ ) = H(u0h, u

0
h),

with energy H(u, u) := ∥∇u∥2L2(Rd\Γ) + (Vu, u)L2(Rd\Γ).

Proof. We apply the discrete stability lemma (Lemma 3.4) to the
equivalent formulation (2.7). Since ũ0∗ = 0, we directly get the stated
results. �

We are now interested in an estimate for the convergence rate of
the fully discrete scheme. We will again use the equivalent form from
Lemma 2.4 and apply the abstract theory of Section 3. In order
to do so, we need to verify Assumption 3.6. The pairs (Un, Un∗ )

and (Unh , Ũ
n
∗ ) satisfy similar equations that differ, however, in the

test functions, namely, Ĥ(H1(Ω),H−1/2(Γ)) and Hh = Ĥ(Xh, Yh).
For (Vh, V

∗) ∈ Hh, one has γ−Vh = − JγV ∗K; furthermore, using
λn = − J∂nUn∗ K and Un∗ |Ω = 0, cf., Lemma 2.4, we assert by integration
by parts

(4.1) B

((
Un

Un∗

)
,

(
Vh
V ∗

))
+
⟨
kλn, γ−V ∗⟩

Γ
=

((
un d
un∗ d

)
,

(
Vh
V ∗

))
X 0

,

for all (Vh, V
∗) ∈ Hh.

Thus, we are in the setting of Assumption 3.6, if we define

c ((u, u∗), (v, v∗)) :=
⟨J∂nu∗K , γ−v∗⟩Γ .

In Lemmas 3.9 and 3.13, the approximation problem is reduced to
the question of best approximation in the space Hh. Relating this to
the properties of the spaces Xh and Yh is the subject of the next lemma.

Lemma 4.3. There exists a constant C > 0 that depends only on
Ω such that, for every v = (v, v∗) ∈ H1 (Ω) × H2

(
Rd \ Γ

)
withJγv∗K = −γ−v and γ−v∗ ∈ Y ◦

h , the following approximation property
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holds for s = 0, 1:

inf
vh∈Hh

∥v − vh∥X s ≤ C inf
xh∈Xh

∥v − xh∥Hs(Ω),

inf
yh∈V0

∥c(v − yh, ·)∥H′
1
≤ C inf

yh∈Yh

∥J∂nv∗K − yh∥H−1/2(Γ).

Proof. Let xh ∈ Xh be arbitrary, and set x∗ := v∗ + δ∗ where
δ∗ = E(xh − v), with the extension operator of Proposition 4.1 in Ω+

and δ∗ = 0 in Ω. Since Jγv∗K = −γ−v and γ−v∗ ∈ Y ◦
h , we get that

x := (xh, x∗) ∈ Hh. From the continuity of the extension operator E we
get ∥δ∗∥H1(Rd\Γ) ≤ C ∥v − xh∥H1(Ω) and ∥δ∗∥L2(Rd\Γ) ≤ ∥v − xh∥L2(Ω).

For the difference v − x we obtain, for s = 0, 1:

∥v − x∥2X s = ∥v − xh∥2Hs(Ω) + ∥v∗ − v∗ − δ∥2Hs(Rd\Γ)

≤ ∥v − xh∥2Hs(Ω) + C ∥v − xh∥2Hs(Ω) .

We are left with estimating the contribution due to c(·, ·). Let
(w,w∗) ∈ Hh be arbitrary, and let ξh ∈ Yh be arbitrary. Since γ−w∗ ∈
(Yh)

◦ ⊂ H1/2(Γ), we may choose a lifting y∗ to the full space such thatJ∂ny∗K = ξh ∈ Yh. We get c((0, y∗), (w,w∗)) = ⟨J∂ny∗K , γ−w∗⟩Γ = 0,
and therefore, (0, y∗) ∈ V0, as defined in Assumption 3.6. Since taking
traces is continuous in H1

(
Rd \ Γ

)
, we obtain

inf
yh∈V0

∥c(v − yh, ·)∥(X 1)′

yh=(0,y∗)

. inf
ξh∈Yh

∥J∂nv∗K − ξh∥H−1/2(Γ) . �

This allows us to give an estimate for the error due to spatial
discretization:

Theorem 4.4. Let V ∈ L∞(Rd). Then, there exists a constant
C > 0 that depends only on V, Ω, and the Runge-Kutta method
(namely, A and b), such that, for all closed subspaces Xh ⊆ H1 (Ω),
Yh ⊆ H−1/2 (Γ), for all n ∈ N, and for all k > 0, the following estimate
holds:

∥un − unh∥L2(Ω) ≤ Ck
n−1∑
j=0

inf
xh∈Xh

∥∥HU j − xh
∥∥
H1(Ω)
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+ Ck
n−1∑
j=0

inf
xh∈Xh

∥∥U j − xh
∥∥
H1(Ω)

+ Ck

n−1∑
j=0

inf
yh∈Yh

∥∥∂+nHU j − yh
∥∥
H−1/2(Γ)

+ Ck
n−1∑
j=0

+ inf
yh∈Yh

∥∥∂+n U j − yh
∥∥
H−1/2(Γ)

.

If we assume that k and Xh satisfy:

(4.2) inf
wh∈Xh

∥u− wh∥L2(Ω) ≤ Capproxk
1/2 ∥u∥H1(Ω) ,

then the estimate holds in the H1-norm (the constant now additionally
depends on Capprox):

∥un − unh∥H1(Ω) . Ck
n−1∑
j=0

inf
xh∈Xh

∥∥HU j − xh
∥∥
H1(Ω)

+ Ck
n−1∑
j=0

inf
xh∈Xh

∥∥U j − xh
∥∥
H1(Ω)

+ Ck
n−1∑
j=0

inf
yh∈Yh

∥∥∂+nHU j − yh
∥∥
H−1/2(Γ)

+ Ck

n−1∑
j=0

inf
yh∈Yh

∥∥∂+n U j − yh
∥∥
H−1/2(Γ)

.

Proof. We want to apply Lemma 3.9. We have already seen that we
can reduce the approximation requirements of the constrained space
Hh to Xh and Yh via Lemma 4.3. By equation (1.3), the semi-discrete
full-space solutions satisfy (−iA−1 + kH)Un = und. This means that
the definition of HUn in Lemma 3.9 coincides with the pointwise
application of the Hamilton operator to the semi-discrete functions
U j (up to identifying the global function with the pair (U j |Ω, U j |Ω+)).
Using equation (3.19), Lemma 3.13 and applying Lemma 4.3 then gives
the stated result. �
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5. The semi-discrete problem. In Theorem 4.4, we showed that
our fully discrete scheme gives quasi-optimal convergence to the semi-
discrete solution. In order to estimate the error for the exact solution
we will need some properties of the semi-discrete problem. We only
consider the simplest case of potentials that are constant in time, since
they allow us to use the theory of C0-semigroups.

First we show some approximation properties.

Theorem 5.1. Assume that a Runge-Kutta method of order q is used.
Let u0 be sufficiently smooth. Then the following estimates hold for all
nk ≤ T :

∥un − u(nk)∥L2(Rd) ≤ CTkq
∥∥Hq+1u0

∥∥
L2(Rd)

,

∥un − u(nk)∥H1(Rd) ≤ CTkq
(∥∥Hq+2u0

∥∥
L2(Rd)

+
∥∥Hq+1u0

∥∥
L2(Rd)

)
.

Proof. We use some results from the theory of rational approxima-
tions of semigroups. Reference [11, Theorem 4] states that:

∥un − u(nk)∥L2(Rd) ≤ CTkq
∥∥Hq+1u0

∥∥
L2(Rd)

.

Since H commutes with both the time evolution and the application of
the Runge-Kutta method, this also gives

∥Hun −Hu(nk)∥L2(Rd) ≤ CTkq
∥∥Hq+2u0

∥∥
L2(Rd)

.

Thus, it is easy to see that

∥un − u(nk)∥H1(Rd) ≤ CTkq
(∥∥Hq+2u0

∥∥
L2(Rd)

+
∥∥Hq+1u0

∥∥
L2(Rd)

)
.

�

Since the convergence rates depend on the approximation quality for
the semi-discrete stages we need some a priori estimates.

Lemma 5.2. Let x 7→ V(x) be sufficiently smooth. Let u0 ∈ Hs(Rd)
for some s ∈ R, s ≥ 0. Then, there exists a constant Cs that depends
only on V and s such that

∥un∥Hs(Rd) ≤ Cs
∥∥u0∥∥

Hs(Rd)
.
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Proof. Denote by R(ikH)n the solution operator u0 7→ un. We use
that the time stepping commutes with H. Therefore, we get, for ℓ ∈ N,
ℓ ≥ s/2:

Hℓun = HℓR(ikH)nu0 = R(ikH)nHℓu0.

Lemma 3.5 gives that ∥R(ikH)n∥L2(Rd)→L2(Rd) ≤ 1, and therefore,

as long as u0 is smooth enough such that un is smooth as well, and
the norms are uniformly bounded by

∥∥Hlun
∥∥
L2(Rd)

≤
∥∥Hlu0

∥∥
L2(Rd)

.

Since the potential V is assumed to be smooth we can estimate the
norm of −∆lun by

∥∥Hlun
∥∥ + lower order terms. In addition, since

we are working on the full space Rd, we can use Fourier techniques
to bound the full H2l norm by

∥∥−∆lun
∥∥
L2(Rd)

. This gives that

the operator R(ikH)n is bounded in L2(Rd) → L2(Rd) and also in
H2l(Rd) → H2l(Rd), uniformly with respect to n. By interpolation, we
also obtain the uniform bound in Hs(Rd). �

We need the smoothness of the internal stages. Since we already
have smoothness of the semi-discrete solutions, and thus the right-
hand side of the defining equation of the stage vectors, this is a simple
consequence of elliptic regularity:

Corollary 5.3. Let V be sufficiently smooth. Let u0 ∈ Hs(Rd) for
some s ∈ R, s ≥ 0. Then there exists a constant C > 0 that depends
only on V and s, such that

∥Un∥Hs(Rd) ≤ C
∥∥u0∥∥

Hs(Rd)
.

Proof. For ℓ ∈ N, ℓ ≥ s/2, HℓUn solves the equation(
−iA−1 + kH

)
HℓUn = Hℓund.

By Lemma A.3 and Lemma 5.2 we can bound the L2 norms as∥∥∥HℓUn
∥∥∥
L2(Rd)

≤ C
∥∥Hℓun

∥∥
L2(Rd)

≤ C
∥∥u0∥∥

H2ℓ(Rd)
.

This allows us to estimate, again assuming smoothness of the potential,
the full H2ℓ norm and, via interpolation, the Hs norm. �

6. Full error estimate. All that remains is to estimate the error
between the fully discrete approximation and the exact solution. We
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assume Γ to be piecewise smooth and write Hs
pw(Γ) for the space

of functions that are in Hs(Γi) for each boundary piece Γi, see [24,
Definition 4.1.48]. The convergence of the fully discrete scheme is
summarized in the next theorem.

Theorem 6.1. Let Γ be piecewise smooth, and denote by q the order
of the Runge-Kutta method used. Assume the following approximation
properties:

inf
xh∈Xh

∥u− xh∥Hs(Ω) ≤ Chp1+1−s
1 ∥u∥Hp1+1(Ω) for all u ∈ Hp1+1 (Ω) ,

(6.1a)

inf
yh∈Yh

∥λ− yh∥H−1/2(Γ) ≤ Ch
p0+3/2
0 ∥λ∥

H
p0+1
pw (Γ)

for all λ ∈ Hp0+1
pw (Γ),

(6.1b)

for s ∈ {0, 1} and parameters h0 > 0, h1 > 0 and p0, p1 ∈ N0, with
constants that depend only on Ω and p0, p1.

Let u0 ∈ Hmax(p1+1,p0+5/2)(Rd), and let V be sufficiently smooth,
i.e., such that the semi-discrete sequences satisfy Un,HUn ∈ Hp1+1(Rd)
and ∂−n U

n, ∂−nHU
n ∈ Hp0+1

pw (Γ), see Corollary 5.3. Then there exists

a constant depending on Ω, the Runge-Kutta method, i.e., A and b, V,
p0, p1 and u0, but not on k, n, h, or T such that :

∥unh − u(nk)∥L2(Ω) ≤ CT
(
hp11 + h

p0+3/2
0 + kq

)
.

If we assume that the approximation assumption

inf
wh∈Xh

∥u− wh∥L2(Ω) ≤ Capproxk
1/2 ∥u∥H1(Ω) ,

i.e., h . k1/2, see equation (4.2), holds, then

∥unh − u(nk)∥H1(Rd) ≤ CT
(
hp11 + h

p0+3/2
0 + kq

)
.

Proof. We only show the H1 bound; the L2 one follows along the
same lines. We use the triangle inequality to get:

∥unh − u(nk)∥H1(Ω) ≤ ∥unh − un∥H1(Ω) + ∥un − u(nk)∥H1(Ω) .

The first term can be estimated by Theorem 4.4. Using the regularity
results and the approximation properties from the finite element spaces



SCHRÖDINGER EQUATION FEM-BEM COUPLING 231

we get

∥unh − un∥H1(Ω) ≤ CT
(
hp1 + hp0+3/2

)
,

where the constants depend on u0 but not on n or k. The second term
can be controlled via the approximation property of the semi-discrete
solution from Theorem 5.1:

∥un − u(nk)∥H1(Ω) ≤ CTkq. �

Remark 6.2. The assumptions on the FEM/BEM spaces of equa-
tion (6.1) are satisfied, for example, for standard continuous piecewise
polynomial discretizations of degree p1 to discretize Xh on a quasiuni-
form mesh and discontinuous polynomial boundary elements of degree
p0 to discretize Yh, see [24, Theorems 4.3.20, 4.3.22].

6.1. Better H1 and H−1/2-estimates. The requirement on the
mesh size for the H1-estimate in Theorem 6.1 is somewhat artificial.
In order to get rid of it, we first bound a sequence of finite difference
quotients of the spatial discretization error in the L2-norm and then
use the definition of the stage vectors to leverage this “time-regularity”
for stronger spatial norms.

Lemma 6.3. Let Xn
h , x

n
h and Fn be defined as in Assumption 3.1,

and assume x0h = 0. Consider the sequences y0 := 0, Y n :=
k−1A−1(Xn − xn1) and yn+1 := R(∞)yn + bTA−1Y n. Define the
sequence (Θn)n∈N0 ⊆ H0 as the inverse Z-transform (in H0) of

Θ̂(z) :=
δ(z)

k
F̂ (z).

Then the sequence yn, Y n solves the following equations for all n ∈ N:

B(Y n, Vh) = (ynd, Vh)H0 + (Θn, Vh)H0 for all Vh ∈ Hh,(6.2a)

yn+1 = R(∞)yn + bTA−1Y n.(6.2b)

This implies the following a priori estimates:

(6.3) ∥yn∥H0
≤ C

n−1∑
j=0

∥∥Θj∥∥
H0
.
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We write [∂kt x]
n := yn (this notation can be justified by taking the

Z-transform to establish the equivalence to the definition via operator
calculus notation for K(s) = s).

Proof. We show that the sequences Zn, zn, defined as the solutions
to equation (6.2), and the sequence of the functions Y n, yn, defined in
the statement of Lemma 6.3, have the same Z-transforms. Proceeding

as in the proof of Lemma 1.7, it is easy to see that Ẑ solves:(
−iδ(z)

k
Ẑ, Vh

)
H0

+H
(
Ẑ, Vh

)
= (Θ̂, Vh)H0 for all Vh ∈ Hh.

Analogously, we get that the Z-transform of Xn
h solves:(

−iδ(z)

k
X̂, Vh

)
H0

+H
(
X̂, Vh

)
= (F̂ , Vh)H0 for all Vh ∈ Hh.

By (1.12), we have x̂(z) = (z−1 − R(∞))−1bTA−1X̂(z). By the

definition of δ(z), this becomes x̂1 = X̂−Aδ(z)X̂.

Inserting the definition of Ŷ , this implies for Vh ∈ Hh:(
−iδ(z)

k
Ŷ , Vh

)
H0

+H(Ŷ , Vh) =

(
−iδ(z)

k
k−1A−1(X̂ − x̂1), Vh

)
H0

+H
(
k−1A−1(X̂ − x̂1), Vh

)
=

(
−iδ(z)

k
k−1A−1 (Aδ(z)) X̂, Vh

)
H0

+H
(
k−1A−1 (Aδ(z)) X̂, Vh

)
=

(
−iδ(z)

k
X̂,

δ(z)T

k
Vh

)
H0

+H

(
X̂,

δ(z)T

k
Vh

)
=

(
F̂ ,

δ(z)T

k
Vh

)
H0

= (Θ̂, Vh)H0 .
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The stability estimate (6.3) is then a direct corollary of Lemma 3.4. �

We can now improve the results of Theorem 6.1, assuming some
additional regularity of the initial condition and an additional stability
condition for the method.

Theorem 6.4. Let Γ be piecewise smooth. Assume |R(∞)| < 1 and
denote by q the order of the Runge-Kutta method. Let Xh, Yh satisfy
the approximation properties (6.1).

Let u0 ∈ Hmax(p1+3,p0+7/2)(Rd), and let V be sufficiently smooth,
i.e., such that the semi-discrete sequences satisfy Un,HUn,H2Un ∈
Hp1+1(Rd) and ∂−n U

n, ∂−nHU
n, ∂−nH

2Un ∈ Hp0+1
pw (Γ), see Corol-

lary 5.3.

Then, there exists a constant C > 0 depending on Ω, the Runge-
Kutta method (i.e., A and b), V, p0, p1 and u0, but not on k, n, h or
T such that :

∥unh − u(nk)∥H1(Rd) ≤ CT
(
hp11 + h

p0+3/2
0 + kq

)
.

∥µnh − ∂nu(nk)∥H−1/2(Γ) ≤ CT
(
hp11 + h

p0+3/2
0 + kq

)
where the µnh are defined by

µ0
h = 0, µn+1

h = R(∞)µnh + bTA−1λnh.

Compared to Theorem 6.1, this means we do not have any mesh size
restriction and obtain an error estimate for λ.

Proof. We proceed analogously to the proof of Theorem 6.1 and use
the triangle inequality to estimate:

∥unh − u(nk)∥H1(Ω) ≤ ∥unh − un∥H1(Ω) + ∥un − u(nk)∥H1(Ω) .

The second term can be estimated via the approximation property of
the semi-discrete solution from Theorem 5.1:

∥un − u(nk)∥H1(Ω) ≤ CTkq.

For the estimates of the first term, we return to the proof of
Lemma 3.9 and again consider the difference en := unh − Πhu

n, En :=
Unh−ΠhU

n. Assume for the moment that u0h = Πhu
0. From Lemma 6.3
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and the stability of solving equation (6.2) as shown in Lemma A.3, we
obtain ∥∥k−1A−1 (En − en1)

∥∥
X0

≤ C
n∑
j=0

∥∥Θj∥∥X0
,

where Θj are defined so that Θ̂ = (δ(·)/k)Ξ̂ using the consistency
errors Ξj := k(I − Πh)(HU

j + αU j) from equation (3.20). We also
write ξj = k(I − Πh)(Hu

j + αuj). Since the sequence U j originates
from a Runge-Kutta time stepping, it is easy to compute Θj . We claim:

(6.4) Θj = k−1A−1(Ξj − ξj1) +R(∞)jk−1A−1ξ01.

This can be seen by taking the Z-transform of the right-hand side,
analogously to the proof of Lemma 1.7, and noting that u0 ̸= 0 so that
an additional term appears. This means writing Z for the Z-transform,

Z
[
k−1A−1(Ξj − ξj1) +R(∞)jk−1A−1ξ01

]
= k−1A−1Ξ̂− k−1A−1ξ̂1+

1

1−R(∞)z
k−1A−1ξ01

=
δ(z)

k
Ξ̂,

where, in the last step, we used the equality

ξ̂ =
(
z−1 −R(∞)

)−1
bTA−1Ξ̂ + (1−R(∞)z)

−1
ξ0,

which follows analogously to equation (1.12) (ξj and Ξj satisfy the
same relation ξj+1 = R(∞)ξj + bTA−1Ξj as the usual Runge-Kutta
approximations due to the linearity of Πh and H).

Inserting the definition of Ξj in equation (6.4) and then the equation
for the semi-discretization for the difference U j − uj1 gives:

Θj = A−1(I −Πh)
(
(H+ α)

(
U j − uj1

))
+A−1R(∞)j(I −Πh) (Hu0 + αu0)1

= −ik(I −Πh)
[
(H+ α)HU j

]
+A−1

1[I −Πh]R(∞)j(Hu0 + αu0) .

The first term is already of the right order, as we can bound the
sum with the factor of k. We use the formula for the geometric series
to estimate
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(6.5)
n∑
j=0

∥∥∥∥A−1
1(I −Πh)R(∞)j (Hu0 + αu0)

∥∥∥∥
X0

=
1− |R(∞)|n

1− |R(∞)|
∥∥A−1

1(I −Πh) (Hu0 + αu0)
∥∥
X0

. ∥(I −Πh)Hu0∥L2(Ω) + α ∥(I −Πh)u0∥L2(Ω)

since we assumed |R(∞)| < 1.

Via the approximation properties of the spaces and the Ritz projec-
tor we arrive at:

(6.6)
1

k

∥∥A−1 (En − en1)
∥∥
X0

≤ Ck
n∑
j=0

(
hp1 + hp0+3/2

)
.

Analogously, we can use equation (3.21) and the discrete stability of
Lemma 3.4 to bound

(6.7) ∥En∥X0
≤ C

n∑
j=0

∥∥Ξj∥∥X0
≤ Ck

n∑
j=0

(
hp1 + hp0+3/2

)
.

The weak form of the stage vector equation is:

(6.8) H(En, Vh) = k−1(−iA−1 (En − en1), Vh)X0 + (Ξj , Vh)X0 .

Using Vh := En as a test function and applying the Cauchy-Schwarz
inequality we get via equations (6.6) and (6.7):

|H(En, En)| ≤ C

[
k

n∑
j=0

(
hp1 + hp0+3/2

)]2
.

Adding another L2 term to compensate for V(·) gives:

∥En∥X 1 ≤ Ck
n∑
j=0

(
hp1 + hp0+3/2

)
.

The inequality ∥unh − un∥X 1 ≤ ∥unh −Πhu
n∥X 1 + ∥Πhun − un∥X 1 and

the approximation properties of Πh then give the stated result.

For the case of u0h ̸= Πhu
0, we just note that the discrete time-

stepping is stable with regard to perturbations of the initial conditions
via Lemma 3.4, thus this only implies another error term of order∥∥u0 − u0h

∥∥
X1

.
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To get theH−1/2 estimate, we use Vh = (0, V∗) with V∗ ∈ C∞
0 (Rd\Γ)

as a test function in equation (6.8) and get the pointwise equality:
HEn∗ = −ik−1A−1(En∗ − en∗1) + Ξn,∗. (Here En∗ denotes the second
component of the error En = (Enh , E

h
∗ ), and analogously for en∗ and

Ξn∗ .) Using test functions in C∞
0 (Rd \ Γ) in the definition of the Ritz

projector equation (3.16) gives H̃[ΠhU
n
∗ ] = H̃Un∗ pointwise in Rd \ Γ.

Therefore, we can write:

H(Un∗ − Ũn∗ ) = H̃(Un∗ − Ũn∗ )− α(Un∗ − Ũn∗ )

= H̃(ΠhU
n
∗ − Ũn∗ )− α(Un∗ − Ũn∗ ),

where Ũn∗ denotes the second component of the fully discrete solu-
tion (2.7). This in turn implies the estimate∥∥∥H(Un∗ − Ũn∗ )

∥∥∥
L2(Rd\Γ)

.
∥∥∥−ik−1A−1 (En∗ − en∗1) + Ξn∗ − α(Un∗ − Ũn∗ )

∥∥∥
L2(Rd\Γ)

.

Together with estimate (6.6) and the H1-estimate for the error, this
allows us to bound the normal trace. �

Remark 6.5. The assumption |R(∞)| < 1 is satisfied by all L-stable
methods, including the family of Radau-IIA methods, since they satisfy
R(∞) = 0.

6.2. A refined L2 estimate. In Theorem 6.1, the convergence rate
in space with respect to the L2 norm is the same as that for the H1

norm. Under some additional conditions on Ω, this can be improved
using the standard “Aubin-Nitsche trick.”

Lemma 6.6. Assume that Ω is convex or has a smooth boundary
(so that a shift theorem holds for the homogeneous Dirichlet problem)
and that V is sufficiently smooth. Let u =: (u, u∗) ∈ X 1 with
∥∆u∗∥L2(Rd\Γ) < ∞ and γ−u = − Jγu∗K, as well as γ−u∗ = 0. Then,

the following error estimate holds for the Ritz projector Πh:

∥u−Πhu∥X 0 ≤ Ch(∥u−Πhu∥H1 + inf
yh∈Yh

∥J∂nu∗K − yh∥H−1/2(Γ)).
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Proof. We write Πhu =: (uh, u
∗
h) for the two components. Consider

the solutions ψ1, ψ2 to the following two problems:

−∆ψ1 + (V + α)ψ1 =

{
u− uh in Ω,

u∗ − u∗h in Ω+,Jγψ1K = J∂nψ1K = 0,

−∆ψ2 + (V0 + α)ψ2 = u∗ − u∗h in Ω,

γ−ψ2 = 0.

Since ψ1 is the solution to a full space elliptic problem, we can estimate
∥ψ1∥H2(Rd) ≤ C ∥u−Πhu∥X 0 . The same estimate holds for ψ2, as

we assumed that a shift theorem holds for Ω, i.e., ∥ψ2∥H2(Ω) ≤
C ∥u−Πhu∥X 0 . We rearrange the terms into

ψ := ψ1|Ω,

ψ∗ :=

{
ψ2 in Ω,

ψ1 in Ω+

and write ψ := (ψ,ψ∗). Integration by parts then gives:

∥u− uh∥2L2(Ω) + ∥u∗ − u∗h∥
2
L2(Rd)

= (−∆ψ + (V (x) + α)ψ, u− uh)L2(Ω)

+ (−∆ψ∗ + (V0 + α)ψ∗, u∗ − u∗h)L2(Rd\Γ)

= H̃
(
ψ, u−Πhu

)
−
⟨
∂−n ψ, γ

−(u− uh)
⟩
Γ

−
⟨
∂−n ψ

∗, γ−(u∗ − u∗h)
⟩
Γ
+
⟨
∂+n ψ

∗, γ+(u∗ − u∗h)
⟩
Γ

= H̃
(
ψ, u−Πhu

)
−
⟨
∂−n ψ, γ

−(u− uh)
⟩
Γ

−
⟨
∂+n ψ

∗, Jγ(u∗ − u∗h)K⟩Γ −
⟨J∂nψ∗K , γ−(u∗ − u∗h)

⟩
Γ
.

Since ∂−n ψ = ∂−n ψ1 = ∂+n ψ1 = ∂+n ψ
∗ and γ−(u−uh) = − Jγ(u∗ − u∗h)K,

this becomes:

∥u− uh∥2L2(Ω) + ∥u∗ − u∗h∥
2
L2(Rd)

= H̃
(
ψ, u−Πhu

)
−
⟨J∂nψ∗K , γ−(u∗ − u∗h)

⟩
Γ
.

For ψh := (ψh, ψ
∗
h) ∈ Hh and λh, µh ∈ Yh we can use the definition of

the Ritz projection Πhu, the fact that γ−ψh and γ−(u− uh) ∈ Y ◦
h and
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γ−ψ∗ = 0, to get:

(6.9)

∥u− uh∥2L2(Ω) + ∥u∗ − u∗h∥
2
L2(Rd)

= H̃
(
ψ − ψh, u−Πhu

)
+
⟨J∂nuK − λh, γ

−(ψ∗ − ψ∗
h)
⟩
Γ

−
⟨J∂nψ∗K − µh, γ

−(u∗ − u∗h)
⟩
Γ

.
(∥∥ψ − ψh

∥∥
X 1 + ∥J∂nψ∗K − µh∥H−1/2(Γ)

)
×
(
∥J∂nuK − λh∥H−1/2(Γ) + ∥u−Πhu∥X 1

)
.

The best approximation property of Hh, given in Lemma 4.3, together
with the approximation properties of Xh and Yh from equation (6.1)
then give:

inf
ψh∈Hh

∥∥ψ − ψh
∥∥
X 1 + inf

µh∈Yh

∥J∂nψ∗K − µh∥H−1/2(Γ)

. h
(
∥ψ∥H2(Ω) + ∥J∂nψ∗K∥H1/2(Γ)

)
. h ∥u−Πhu∥X 0 ,

where, in the last step, we used the regularity of (ψ,ψ∗). Combining
this estimate with equation (6.9) then completes the proof. �

Remark 6.7. It can be shown that the Ritz projector is equivalent
to the Galerkin projection for the symmetric coupling of the problem
−∆u + (V + α)u = f , where u∗ is computed via the representation
formula. Thus, Lemma 6.6 also gives a result about the L2 convergence
of such a post-processing step for the FEM-BEM coupling of stationary
elliptic problems.

Analogous to Theorem 6.1, we get the following stronger convergence
result in the L2 norm.

Theorem 6.8. Assume that the assumptions of Theorem 6.1 are
satisfied. Additionally, assume that Ω is convex or has a smooth
boundary. Then, there exists a constant C > 0 depending on Ω, the
Runge-Kutta method (i.e., A and b), V, p0, p1 and u0, but not on k,
n, h or T such that :

∥unh − u(nk)∥L2(Ω) ≤ CT (hp1+1
1 + h

p0+5/2
0 + kq).
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Proof. The proof follows along the same lines as that for Theo-
rem 6.1 but by using the stronger approximation result for Πh given
by Lemma 6.6. �

7. Numerical results.

7.1. Implementation. We implemented the fully discrete scheme de-
scribed in this paper, using the software package NGSolve, see [26], for
the finite element discretization and Bem++, see [10], for the bound-
ary integral operators. To compute the convolution quadrature con-
tributions, we used the FFT-based method introduced by Banjai in
[4], which avoids the explicit computation of the convolution weights,
as defined by equation (1.21), and instead is based on approximating
them via numerical quadrature.

Let ∂Bλ(0) denote the circle of radius λ > 0 centered at 0. By the
Cauchy integral formula we can write for the different operators

(7.1) An :=
1

2πi

∫
∂Bλ(0)

A(z) z−n−1dz,

where A may stand for V , K, KT or W .

In order to get an approximation that can actually be computed, we
discretize the integrals above via a Q-point trapezoidal rule:

(7.2) An ≈ Ãn :=
λ−n

Q+ 1

Q∑
l=0

A(λζ−lQ+1) ζ
ln
Q+1,

where ζQ+1 := e2πi/(Q+1). In the theory about convolution quad-

rature, it is well known that choosing λ ≈ eps1/[2(Q+1)], where eps
denotes machine precision, leads to good approximation results (this
was already suggested in [21]). In [9, Remark 5.11], it was observed
that, when considering an additional perturbation of the operators
A(λζ−lQ+1), for example, due to H-matrix approximation, it is recom-

mended to choose λ ∼ k3/(Q+1). In our experiments, we therefore used
λ := max(eps1/[2(Q+1)], k3/(Q+1)). Our analysis did not account for
quadrature errors, but we observed that choosing Q ≥ n gives good
results. In order to evaluate the matrix functions V (B(z)), etc., we di-
agonalize the matrix δ(z) instead of computing the contour integral in
Definition 1.10. This is justified for Radau IIA methods of two stages
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in [4, Proposition 3.4], and we did not observe any problems for any
of the other methods tested. If we write M and S for the mass and
stiffness matrix of the finite element approximation, the block systems
which appear have the structure(

−iA−1M + kS + kW (0) k(1/2−KT (0))
−1/2 +K(0) V (0)

)
and the linear systems were solved using a preconditioned GMRES
method. The preconditioner used has diagonal block structure, i.e.,

P−1 :=

(
P−1
FEM 0
0 P−1

BEM

)
,

where the preconditioner PBEM makes use of the fact that V (0) is
already assembled in diagonalized form by using an H-matrix LU-
factorization for each operator V (λj), where the λj are the eigenvalues
of B(0). The FEM preconditioner is again block-diagonal itself and
defined as

P−1
FEM :=


P−1
MG(A11) 0 · · · 0

0 P−1
MG(A22) 0

...
... 0

. . . 0
0 0 P−1

MG(Amm)

 ,

where PMG(λ) is a standard multigrid preconditioner, based on a block-
Jacobi smoother as is already implemented in NGSolve, for the FEM-
matrix −iλM +k S. We selected this preconditioning strategy because
it is easily implemented using the preconditioners already available in
NGSolve and BEM++. While we do not have any theoretical analysis
of the preconditioning strategy, it appears to work well for our model
problem, taking for example only 56 steps to reduce the residual by a
factor 10−11, in the case of a two stage Radau IIA method and degree
(3, 2) FEM-BEM spaces, where the FEM space consisted of 912, 673
degrees of freedom.

7.2. Gaussian beams and the free Schrödinger equation. In
this section, we look at numerical results for the free Schrödinger
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equation, V = 0 in 3D, that is, we consider the model problem:

(7.3)

{
iut(x, t) = −∆u, x ∈ R3,

u(x, 0) = u0.

Given a point xc ∈ R3 and a wave vector p0 ∈ R3, we consider the
Gaussian beam

u0(x) :=
4

√
2

π
e−|x−xc|2+ip0·(x−xc).

For this initial condition, the exact solution is given by

uex(x, t) =
4

√
2

π

√
i

−4t+ i
exp

(
−i |x− xc|2 − p0 · (x− xc) + |p0|2 t

−4t+ i

)
.

As a computational domain, we chose a cube with side length 8
centered at the origin. For our numerical experiments, we chose a
combination of two Gaussian beams as initial condition, u01 and u02.
u01 is centered at (−1, 1, 0) and has a wave number (1, 0, 0). This
makes the exact solution a Gaussian wave packet, traveling out of the
domain Ω. We center u02 at (1,−1, 0) with wave number (0, 0, 0), which
means that we will mostly see a dispersive effect. This second term was
added to better distinguish between convergence and artificial damping
introduced by the method. This choice of initial condition does not
satisfy the condition suppu0 ⊆ Ω, but, due to the fast decay rate, the
error due to truncating outside of Ω becomes negligible. Figure 1 shows
the exact solution for t = 0 and t = 2.

Example 7.1. In this example, we look at the convergence rates for
the one-stage Gauss method and the two- and three-stage Radau IIA
methods. We chose the mesh and time step size to be proportional,
i.e., k ∼ h, by performing a uniform refinement of the mesh, each
time halving the time step size. In light of Theorem 6.1, we expect
convergence of orders 2, 3 and 5 respectively, as long as we couple with
finite elements of the same order and boundary elements of order p0 =
p−1. We compare the maximum of the L2 andH1 error, taken between
t = 0 and t = 2 in the FEM term, i.e., maxn=0,...,N ∥unh − u(tn)∥L2(Ω)

and maxn=0,...,N ∥unh − u(tn)∥H1(Ω). In order to better compare the two

methods, we plot mn in the x-axis, where m is the number of stages.
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Figure 1. Modulus of exact solution of equation (7.3) at t = 0 (left) and
t = 2 (right) for z = 0.

This reflects the fact that, for the higher order method, we need to
assemble m-times the number of boundary operators. We see that the
one-stage Gauss and the two-stage Radau IIA methods converge with
the predicted full rates of 2 and 3, respectively. For the higher order
Radau method, we do not see the predicted rate, most likely due to a
preasymptotic behavior, but, comparing the number of operators to the
achieved accuracy, we see that the higher order methods prove more
efficient.
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(a) One-stage Gauss method (order 2).
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(b) Two-stage Radau IIA method (order 3).
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(c) Three-stage Radau method (order 5).

Figure 2. Comparison of a one-stage Gauss method and two- and three-
stage Radau IIA methods.
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APPENDIX

A. Boundary element methods for vector-valued problems.
In this section, we generalize some well-known results regarding bound-
ary element methods for the Helmholtz equation to the case of vector-
valued problems, where the “wave number” is replaced by a matrix.
We start by recalling the scalar case with the following proposition.

Proposition A.1 (Representation formula). Let u ∈ H1(Rd \ Γ) with
(∆− s2)u ∈ L2(Rd \ Γ). Then, for ℜ(s) > 0, we can write u as:

(A.1) u = −N(s)
(
(∆− s2)u

)
+ S(s) J∂nuK −D(s) JγuK on Rd \ Γ.

For solutions to the Helmholtz equation, i.e., (∆ − s2)u = 0, this
becomes

u = S(s) J∂nuK −D(s) JγuK on Rd \ Γ.

Proof. Representation formula (A.1) is shown as follows: for large
balls BR(0) ⊆ Rd, equation (A.1) is obtained by integration by parts
with the additional term∫

∂BR(0)

Φ(x, y; s)∂n(y)u(y) dΓ(y)−
∫
∂BR(0)

∂n(y)Φ(x, y; s)u(y) dΓ(y).

The assumption ℜ(s) > 0 implies that, for a fixed x, the function
Φ(x, ·; s) (and its derivatives) decays exponentially as |y| → ∞. The
assumption u ∈ H1(Rd \Γ) then allows one to show that the additional
term vanishes in the limit R→ ∞. �

Lemma A.2 (Representation formula, matrix version). Let B be a
matrix with σ(B) ⊆ C+ := {z ∈ C : ℜz > 0}, and let Y ∈ H1(Rd \ Γ)
be a solution to the differential equation

(A.2) −∆Y +B2Y = 0 in Rd \ Γ.

Then we can write Y as

Y = S(B) J∂nY K −D(B) JγY K .
Proof. We begin with the right-hand side. Inserting the definitions,

we obtain for the jth unit vector ej and an integration path C ⊆ C+
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encircling σ(B):

eTj
(
S(B) J∂nY K −D(B) JγY K )
=

1

2πi
eTj

∫
C
(B − λ)−1 ⊗ S(λ) J∂nY K

− 1

2πi
eTj

∫
C
(B − λ)−1 ⊗D(λ) JγY K dλ

=
1

2πi

∫
C
S(λ)eTj (B − λ)−1 J∂nY K(A.3)

− 1

2πi

∫
C
D(λ)eTj (B − λ)−1 JγY K dλ.

If we apply the scalar representation formula (A.1) for the function
eTj (B − λ)−1Y , we get:

(A.3) =
1

2πi

∫
C
eTj (B − λ)−1Y +N(λ)

(
∆− λ2

) (
eTj (B − λ)−1Y

)
dλ

= eTj Y +
1

2πi

∫
C
N(λ)

(
∆− λ2

) (
eTj (B − λ)−1Y

)
dλ.(A.4)

Thus, it remains to show that the last term vanishes. For λ ∈ C\σ(B),
we calculate(

∆− λ2
)
(B − λ)

−1
Y = (B − λ)

−1 (
∆Y −B2Y

)
+ (B − λ)

−1 (
B2 − λ2

)
Y

= 0 + (B − λ)
−1

(B − λ) (B + λ)Y

= (B + λ)Y.

The integral in (A.4) becomes∫
C
N(λ)eTj (B + λ)Y dλ.

Since the integrand is holomorphic on C+ and C is a closed path, this
integral vanishes. �

In this paper, we often need to solve systems of equations of special
structure arising from the Runge-Kutta method. The next lemma gives
a condition for unique solvability and some stability estimates that are
used throughout the paper.
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Lemma A.3. Let B ∈ Cm×m. Let V and H be Hilbert spaces with
continuous embedding V ⊆ H. Let a(·, ·) : V × V 7→ C be a continuous
sesquilinear form. Assume the variational problem of finding u ∈ V
such that

a(u, v) + (λu, v)H = ⟨f, v⟩V ′×V for all v ∈ V

has a unique solution for all λ ∈ σ(B) and for all right-hand sides
f ∈ V ′. Then the following is true.

(i) There exists a unique solution u ∈ H to the vector-valued problem

(A.5) a (u, v) + (Bu, v)H = ⟨f, v⟩V ′×V for all v ∈ V ,

where a(·, ·) denotes the sum sesquilinear form

a (u, v) :=

m∑
j=1

a(uj , vj).

(ii) Assume 0 /∈ ℑ(σ(B)). Let f ∈ H ′. Then the solution can be
estimated in the H norm by

(A.6) ∥u∥H ≤ C ∥f∥H′ ,

where C > 0 depends on B but is independent of a(·, ·).
(iii) Let a(·, ·) be Hermitian and positive semidefinite, i.e., a(u, u)

induces a seminorm on V . Assume that 0 /∈ ℑ(σ(B)). Consider
the family of sesquilinear forms given by aε(·, ·) := ε a(·, ·) for
a small parameter ε > 0, and let uε be the solution when a is
replaced with aε in (A.5). Then there exists a constant C > 0
depending on B but independent of ε such that, for all right-hand
sides f ∈ H ′, the following estimate holds:

(A.7) εa (uε, uε) + ∥uε∥2H ≤ C ∥f∥2H′ .

(iv) If we identify the functional f ∈ H ′ in (iii) with its Riesz represen-
tation, i.e., (f, v)H = f(v) for all v ∈ H, and make the regularity
assumption that f ∈ V , then we can further estimate:

(A.8) a(uε, uε) + ∥uε∥2H ≤ C ∥f∥2V .

Again, the constant C depends on B but is independent of ε.
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Proof. We transform the matrix B to Jordan form: B = XJX−1.
Then the problem transforms to

a(X−1u,XT v)+(JX−1u,XT v)H =
⟨
X−1f,XT v

⟩
V ′×V for all v ∈ V .

By setting ũ := X−1u, ṽ := XT v and f̃ := X−1f , the above problem
has a unique solution if and only if

(A.9) a (ũ, ṽ) + (Jũ, ṽ)H =
⟨
f̃ , ṽ
⟩
V ′×V

for all ṽ ∈ V ,

has a unique solution. To simplify the notation, we only consider the
case where J consists only of a single Jordan block. The proof of
the general case works along the same lines. Selecting test functions
ṽ = (0, . . . , vj , . . . 0) for all j = 1, . . . ,m with vj ∈ V shows that
equation (A.9) is equivalent to the system of scalar problems

(A.10) a (ũj , vj) + (λũj + ũj+1, vj)H =
⟨
f̃j , vj

⟩
V ′×V

for all vj ∈ V, j = 1, . . . ,m− 1,

where λ is the eigenvalue of the Jordan block. For the case j = m, a
similar equation holds:

(A.11) a (ũm, vm) + (λũm, vm)H =
⟨
f̃m, vm

⟩
V ′×V

for all vm ∈ V.

By our assumption, this last problem has a solution ũm ∈ V . This
enables us to solve the (m − 1)st equation and, by induction, we get
the solution ũ. Since each solution of the scalar problems is unique,
this also makes the vector-valued solution unique. Hence, (i) is shown.

To obtain the estimates (A.6) and (A.7) of (ii) and (iii), we set
vj := ũj and recall the definition aε = εa. This gives, for (A.11),

εa (ũm, ũm) + (λũm, ũm)H =
⟨
f̃m, ũm

⟩
V ′×V

.

Separating real and imaginary parts gives

εa (ũm, ũm) + ℜ(λ)(ũm, ũm)H = ℜ
⟨
f̃m, ũm

⟩
V ′×V

,

ℑ(λ)(ũm, ũm)H = ℑ
⟨
f̃m, ũm

⟩
V ′×V

.
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Since, by assumption, ℑ(λ) ̸= 0 and f ∈ H ′, we easily get from these
two equations the estimates (A.6) and (A.7) for ũm. By doing similar
calculations for (A.10) for j = m − 1, . . . , 1, we obtain the desired
estimates by induction.

We turn to the proof of (iv). In order to refine our estimates for the
smooth case f ∈ V , i.e., to show (A.8), we proceed similarly. By the
previous result, we only need to show that we can bound a(u, u). We

choose vj := λũj − f̃j in (A.11) and get, for the mth component,

εa
(
ũm, λũm − f̃m

)
+ (λũm, λũm − f̃m)H =

⟨
f̃m, λũm − f̃m

⟩
V ′×V

.

Rearranging terms and taking the imaginary part gives, in view of⟨
f̃m, v

⟩
V ′×V

= (f̃m, v)H for all v ∈ V and (v, v)H ∈ R,

εℑ
(
a
(
ũm, λũm − f̃m

))
= ℑ(f̃m − λũm, λũm − f̃m)H = 0.

Hence, εℑ(λ)a(ũm, ũm) = εℑ(a(ũm, f̃m)), or, using the Cauchy-
Schwarz inequality for a:

a (ũm, ũm) . a (ũm, ũm)
1/2

a
(
f̃m, f̃m

)1/2
. a (ũm, ũm)

1/2
∥∥∥f̃m∥∥∥

V
.

Induction again then gives the analogous statement for the ũj , where
j = 1, . . . ,m− 1.

In order to transform back, we use the fact that a induces a seminorm
on V . Since u = Xũ, we can estimate

a(u, u)1/2 = a(Xũ,Xũ)1/2 ≤ ∥X∥ a (ũ, ũ)1/2 ,

and similarly for the H-norm. All the estimates then transfer to the
original u by taking linear combinations. �
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25. Achim Schädle, Non-reflecting boundary conditions for the two-dimensional
Schrödinger equation, Wave Motion 35 (2002), 181–188.
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