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FOR NONLINEAR INFINITE DIMENSIONAL
EQUATIONS, WHICH TO BEGIN WITH:
LINEARIZATION OR DISCRETIZATION?

LAURENCE GRAMMONT, MARIO AHUES AND FILOMENA D. D’ALMEIDA

Dedicated to the memory of Alain Largillier

ABSTRACT. To tackle a nonlinear equation in a func-
tional space, two numerical processes are involved: dis-
cretization and linearization. In this paper we study the
differences between applying them in one or in the other
order. Linearize first and discretize the linear problem will
be in the sequel called option (A). Discretize first and lin-
earize the discrete problem will be called option (B). As a
linearization scheme, we consider the Newton method. It will
be shown that, under certain assumptions on the discretiza-
tion method, option (A) converges to the exact solution,
contrarily to option (B) which converges to a finite dimen-
sional solution. These assumptions are not satisfied by the
classical Galerkin, Petrov-Galerkin and collocation methods,
but they are fulfilled by the Kantorovich projection method.
The problem to be solved is a nonlinear Fredholm equation
of the second kind involving a compact operator. Numerical
evidence is provided with a nonlinear integral equation.

1. Introduction. We consider a complex Banach space X and a
nonlinear Fréchet differentiable operator F : O ⊆ X → X defined on a
nonempty open set O of X . The problem is set as

Find φ ∈ O : F (φ) = 0,(1)

where 0 is the null vector of X .

2010 AMS Mathematics subject classification. Primary 65J15, 45G10, 35P05.
Keywords and phrases. Nonlinear equations, Newton-like methods, Kantorovich

projection approximation, integral equations.
This research has been partially supported by the project IFCPAR-CEFIPRA

4101-1 and received financial support provided through CMUP by the European
Regional Development Fund through the programme COMPETE and by the Por-
tuguese Government through the FCT Fundação para a Ciência e Tecnologia under
the project PEst-C/MAT/UI0144/2011.

Received by the editors on September 23, 2013, and in revised form on Febru-
ary 16, 2013.
DOI:10.1216/JIE-2014-26-3-413 Copyright c⃝2014 Rocky Mountain Mathematics Consortium

413



414 L. GRAMMONT, M. AHUES AND F.D. D’ALMEIDA

The exact Newton method in function spaces leads to the Newton
sequence (φ(k))k≥0 defined through the relation:

F ′(φ(k))(φ(k+1) − φ(k)) = −F (φ(k)), φ(0) ∈ O.(2)

(For convergence results on Newton method, see the slide of the
conference of Villani [15] or the book of Argyros [4]).

Three options are to be considered:

(NK) Solve (2) in exact arithmetic (i.e., with so-called analytical
methods).

(A) Discretize (2) and solve a finite-dimensional linear problem.
(B) Discretize (1), apply Newton’s method to the discrete nonlinear

problem, and solve the corresponding finite dimensional linear
problem.

The first option is often impossible to perform, so one has to choose
between option (A) and option (B).

The treatment of (1) depends on the kind of operator involved in
the definition of F .

If F involves compact operators as integral operators, projection
and iterated projection methods or numerical quadrature rules are well
known techniques to compute approximate solutions to such a nonlinear
operator equation: in [13], the author explains how to build a sequence
of approximate solutions φn of the operator equation φ = Kφ, whereK
is a nonlinear operator in X and φn is the solution of an approximate
operator equation φn = Knφn. He analyses the error estimates for
Kn = πnK where (πn)n≥1 is a sequence of linear projections onto
finite dimensional subspaces. In [12, Chapter 4, page 244] and [14],
the authors approach the solution with that of a perturbed Galerkin
equation φn = πnKφn + Snφn where Sn is some other nonlinear
operator. We can also find in [7] a comparison between the Galerkin
approximation, obtained as a solution of the equation φG

n = πnK(φG
n ),

and the iterated Galerkin approximation defined as φS
n := K(φG

n ). The
authors prove, under appropriate assumptions, that both ∥φG

n − φ∥
and ∥φS

n − φ∥ tend to 0 as n → ∞ and they give corresponding
error estimates. In [9], the authors propose accelerated projection
and iterated projection methods. They consist in decomposing the
equation into two components, a finite dimensional one and an infinite
dimensional one. In all of the above-mentioned papers, one notices
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that methods start with a discretization procedure which leads to a
nonlinear approximate equation in a finite-dimensional linear space.
Next, in these papers, the authors apply a numerical scheme to treat
that nonlinear equation, such as Newton method or some of its many
variants. This scheme involves at each step the resolution of an n×n
updated linear system. This method corresponds to option (B). If
the nonlinear operator F is sufficiently smooth, we suggest to proceed
in the opposite sense. First linearize the original equation in the
infinite dimensional context, and then solve numerically the underlying
sequence of linear equations using some discretization scheme such as
a numerical quadrature rule, if the function F involves an integral
operator, or a projection method. This method corresponds to option
(A).

In the domain of numerical PDEs, operators are not compact. Many
papers have been published in the last decades on that issue (see [3],
[8], [10] and [16]). In them the discretization procedure is a Galerkin
or a Petrov-Galerkin method in which case option (A) and option (B)
coincide ([16]). The notion of mesh independence is not linked to
option (A) or (B) as it could seem at first glance:

Mesh independence of Newton’s method means that New-
ton’s method applied to a family of finite dimensional dis-
cretizations of a Banach space nonlinear operator equation
behaves essentially the same for all sufficiently fine dis-
cretizations [10].

So in this domain, with this particular discretization, the linearization
and discretization commute and our question has no interest.

For Fredholm equations of the second kind involving a compact op-
erator, there exist numerical methods which are more efficient than the
Galerkin or Petrov-Galerkin method. The aim of our paper is to exhibit
a class of discretization scheme for which linearization and discretiza-
tion do not commute. Under certain conditions on the discretization
scheme and on the nonlinear operator F , we prove that option (A) be-
haves better than option (B) for a same and fixed discretization level.

The paper is organized as follows. In Section 2, we present the
main theoretical result which is that, under suitable assumptions on the
operator and on the discretization process, if a Newton type method is
applied first and the discretization process of order n is used at each
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step of the Newton like method, then the sequence of iterates converges
to φ, the exact solution of (1), for any fixed integer n large enough. This
means that one can attain any desired accuracy by employing a suitable
discretization method of such a fixed order n. In Section 3, we illustrate
this result with an application to a nonlinear Fredholm equation of the
second kind involving a compact operator K and a given function f :

F (x) := x−K(x)− f.

We discretize (2) with the so-called Kantorovich scheme (see [2, page
186]):

(I − πnK
′(φ(k)

n ))(φ(k+1)
n − φ(k)

n ) = −φ(k)
n +K(φ(k)

n ) + f,

where (πn)n≥1 is a sequence of linear bounded projections. We remark
that πn acts only on K ′, which makes a significant difference with
respect to Galerkin, Petrov-Galerkin or collocation schemes in which
πn acts on the whole equation:

πn[(I −K ′(φ(k)
n ))(φ(k+1)

n − φ(k)
n )] = πn[−φ(k)

n +K(φ(k)
n ) + f ].

The scheme, which we propose in our paper, converges when K is
compact (and hence K ′ too) and the sequence (πn)n≥1 is pointwise
convergent to the identity operator I. Our work shows that options
(A) and (B) are not equivalent and that (A) should be preferred to
(B). Then we exhibit some numerical examples involving an integral
operator, confirming in practice our theoretical results. In section 4,
we give the discrete version of option (A). In section 5, we list some
concluding remarks and provisory conclusions.

In this paper, L(X ) denotes the real Banach algebra of all bounded
linear operators from X into itself, Bρ(u) denotes the closed ball with
center u ∈ X and radius ρ > 0 and F ′(x) denotes the Fréchet derivative
of F at x.

2. Option (A) vs option (B).

2.1. Theoretical analysis of option (A). The solution of problem
(1) is characterized as the limit of the sequence (φ(k))k≥0 defined
through the relation

F ′(φ(k))(φ(k+1) − φ(k)) = −F (φ(k)), φ(0) ∈ O.(3)
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These iterations are functional linear equations. To solve them numer-
ically, in most cases, we apply a discretization scheme. For example, if
F is a Fréchet differentiable nonlinear integral operator then, for each
x ∈ O, F ′(x) is a linear integral operator, and the discretization pro-
cess could be a numerical quadrature such as the Nyström scheme or a
projection method such as Kantorovich scheme.

If F ′(φ(k)) is invertible, equation (3) can be rewritten as

φ(k+1) = φ(k) − F ′(φ(k))−1F (φ(k)).

Let Σn : O → L(X ) be such that, in some discretized sense, for each
x ∈ O, Σn(x) is an approximation to F ′(x)−1. Then corresponding
discretized iterates satisfy:

φ(0)
n ∈ O, φ(k+1)

n = φ(k)
n − Σn(φ

(k)
n )F (φ(k)

n ).(4)

We give sufficient conditions on the approximate operator Σn to
ensure the cited conditions. For this purpose, we will interpret equation
(4) as a Newton-like method.

Theorem 2.1. A priori convergence theorem. Suppose that F , O,
φ ∈ O, µ > 0, R > 0, ℓ > 0 and α ∈ ]0, 1] are such that :

(i) F (φ) = 0, F ′(φ) is invertible and ∥F ′(φ)−1∥ ≤ µ.
(ii) The closed ball BR(φ) is included in the open set O, and

F ′ : O → L(X ) is (ℓ, α)−Hölder continuous on BR(φ).
(iii) For

r := min

{
R,

1

(2µℓ)1/α

}
,

there exists γn ∈ ]0, 1[ such that

sup
x∈Br(φ)

∥I − Σn(x)F
′(x)∥ ≤ γn.

(iv) The starting approximation φ
(0)
n is chosen in the closed ball

Bρn(φ), where

ρn := min
{
r,
( 1− γn
4ℓµ(1 + γn)

)1/α}
.
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Then, for all k, φ
(k)
n ∈ Bρn(φ), and

∥φ(k)
n − φ∥ ≤ ρn

(
1 + γn

2

)k

→ 0 as k → ∞.

Proof. We first prove that, for all x ∈ Br(φ), F
′(x) is invertible and

∥F ′(x)−1∥ ≤ 2µ.

In fact, for all x ∈ Br(φ),

F ′(x) = F ′(φ) + F ′(x)− F ′(φ) = F ′(φ)[I + F ′(φ)−1(F ′(x)− F ′(φ))].

Since

∥F ′(φ)−1(F ′(x)− F ′(φ))∥ ≤ ∥F ′(φ)−1∥ ∥F ′(x)− F ′(φ)∥ ≤ µℓrα ≤ 1

2
,

we conclude that F ′(x) is invertible and that its inverse is uniformly
bounded on Br(φ):

F ′(x)−1 =
[
I + F ′(φ)−1(F ′(x)− F ′(φ))

]−1
F ′(φ)−1,

so

∥F ′(x)−1∥ ≤ µ
∞∑
k=0

∥F ′(φ)−1(F ′(x)− F ′(φ))∥k ≤ 2µ.

Concerning Σn(x), we remark that, for all x ∈ Br(φ),

Σn(x) = F ′(x)−1 − (I − Σn(x)F
′(x)))F ′(x)−1;

hence,

∥Σn(x)∥ ≤ 2µ(1 + γn).

Since

φ(k+1)
n − φ = φ(k)

n − φ− Σn(φ
(k)
n )

(
F (φ(k)

n )− F (φ)
)
,

and
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F (φ(k)
n )− F (φ) =

∫ 1

0

F ′
(
(1− t)φ(k)

n + tφ
)
(φ(k)

n − φ) dt,

then

φ(k+1)
n − φ =

∫ 1

0

[
I − Σn(φ

(k)
n )F ′((1− t)φ(k)

n + tφ)
]
(φ(k)

n − φ) dt.

Let F ′(φ
(k)
n ) be added to and subtracted from F ′((1− t)φ(k)

n + tφ). We
get

φ(k+1)
n − φ

=

∫ 1

0

[
I − Σn(φ

(k)
n )F ′(φ(k)

n )
]
(φ(k)

n − φ) dt

+

∫ 1

0

Σn(φ
(k)
n )

(
F ′((1−t)φ(k)

n +tφ)−F ′(φ(k)
n )

)
(φ−φ(k)

n )dt,

and

∥φ(k+1)
n − φ∥ ≤ ∥I − Σn(φ

(k)
n )F ′(φ(k)

n )∥ ∥φ(k)
n − φ∥

+ ∥Σn(φ
(k)
n )∥ ∥φ(k)

n − φ∥

×
∫ 1

0

∥F ′((1− t)φ(k)
n + tφ)− F ′(φ(k)

n )∥ dt.

Let φ
(k)
n ∈ Bρn(φ). Then ∥I−Σn(φ

(k)
n )F ′(φ

(k)
n )∥ ≤ γn, and since Br(φ)

is convex, for t ∈ [0, 1], (1− t)φ
(k)
n + tφ ∈ Br(φ) and

∥F ′((1− t)φ(k)
n + tφ)− F ′(φ(k)

n )∥ ≤ ℓ∥φ(k)
n − φ∥α.

Hence,

∥φ(k+1)
n − φ∥ ≤ ∥φ(k)

n − φ∥
(
γn + 2µℓ(1 + γn)∥φ(k)

n − φ∥α
)

≤ 1 + γn
2

∥φ(k)
n − φ∥.

Since 1 + γn < 2, the previous inequality implies that φ
(k+1)
n ∈ Bρn(φ)

and that

∥φ(k)
n − φ∥ ≤ ρn

(
1 + γn

2

)k

→ 0 as k → ∞.

The proof is complete. �
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Remark 2.2. Notice that the sequence (φ
(k)
n )k≥0 tends to φ which

does not depend on n. This means that we are not constrained by
the value of n, provided the assumptions are satisfied. We will see in

Section 3 that the numerical computation of φ
(k)
n may be required to

solve an n×n linear system. That is, by solving k linear systems of

order n, we get an approximation φ
(k)
n of any desired accuracy, if k is

large enough.

In [11], option (A) is applied to a Fredholm equation of the second
kind φ − K(φ) = f , involving an integral operator K, with the
Nyström method as the discretization process. In Section 3, we propose
to discretize with a projection method–the Kantorovich projection
method–fulfilling the assumptions of the theorem.

If the classical Galerkin method or collocation method, built upon
the finite rank projection πn, is applied to equation (3), then option (A)

leads to a sequence (φ
(k)
n )k≥0 in Xn, the range of πn, satisfying

(I − πnK
′(φ(k)

n ))(φ(k+1)
n − φ(k)

n ) = −πnF (φ(k)), φ(0) ∈ O.

Then Σn(φ
(k)
n ) := (I − πnK

′(φ
(k)
n ))−1πn is not invertible so that the

condition ∥I − Σn(x)F
′(x)∥ ≤ γn will not be satisfied.

2.2. Option (B). There is no possible general analysis of option (B).
We can only state that, starting with some discretization scheme in
an n-dimensional subspace of X applied to problem (1), we are led at
some stage of computations to solve a nonlinear system of equations

Find x(∞)
n ∈ Cn×1 : Fn(x

(∞)
n ) = 0.

This problem will be linearized and become a sequence of linear updated
systems. For instance, under suitable conditions, the Newton method

can be applied. With such a method, a sequence (x
(k)
n )k≥0 in Cn×1 is

built with the recursion formula

F′
n(x

(k)
n )(x(k+1)

n − x(k)n ) = −Fn(x
(k)
n ).

Sufficient conditions on the starting point x
(0)
n for the convergence of

this sequence may be found, for instance, in [1]. Next, the vector

x
(k)
n should allow us to compute a function ψn which will be called an
n-order approximation of φ.
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3. Kantorovich projection approximation for equations of
the second kind. Let K : O → X be a Fréchet-differentiable non-
linear compact operator and T := K ′ denote the Fréchet dérivative of
K.

Remark 3.1. We have chosen T to denote K ′ because the methods
presented in this paper involve an approximation of K ′ built through
an operator of finite rank n. A symbol such as K ′

n is ambiguous: it
may denote both the derivative of some operator Kn or an n-order
approximation of K ′. The advantage of writing T for K ′ is that Tn
will always denote some n-order approximation of T .

The problem is:

(5) Given f ∈ X , find φ ∈ O : φ−K(φ) = f.

Problem (5) will be handled as: Find φ ∈ O : F (φ) = 0, where, for all
x ∈ O, F (x) := x−K(x)− f , and hence F ′(x) = I − T (x).

Let πn be a projection onto an n-dimensional subspace of X
spanned by an ordered basis en := [en,1, . . . , en,n] ∈ X 1×n. Let
e∗n := [e∗n,1, . . . , e

∗
n,n] ∈ (X ∗)1×n be an ordered basis of the annihila-

tor of the null space of πn which is adjoint to [en,1, . . . , en,n]. Each e
∗
n,j

is a bounded semi-linear functional and πn is characterized by:

πnx =
n∑

j=1

⟨x, e∗n,j⟩en,j , x ∈ X ,

where
⟨x, e∗n,j⟩ := e∗n,j(x).

We remark that, for all j ∈ [[1, n]],

πnen,j = en,j , π∗
ne

∗
n,j = e∗n,j .

We shall use the following notation which allows us to simplify the
description of matrices and linear combinations:

enx :=
n∑

j=1

x(j)en,j
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for all x ∈ Cn×1,

h, e∗n (i, j) := ⟨hj , e∗n,i⟩

for all h := [h1, . . . , hp] ∈ X 1×p,

Lx := [Lx1, . . . , Lxm]

for all x := [x1, . . . , xm] ∈ X 1×m and all L : X → X . For example,
with such notation,

πnx = en x, e∗n , x ∈ X .

3.1. Option (A). With option (A), we apply the Kantorovich pro-
jection discretization to the linear operator equation issued from the
Newton scheme:

(6) Find φ(k+1)
n ∈ X : φ(k+1)

n − πnT (φ
(k)
n )φ(k+1)

n = g(k)n ,

where
g(k)n := K(φ(k)

n )− πnT (φ
(k)
n )φ(k)

n + f.

We suppose that

(7)

 (i) Equation (5) has a unique solution φ ∈ O,
(ii) I − T (φ) is invertible,
(iii) T : O → L(X ) is ℓ-Lipschitz.

In the following, we prove that the assumptions of Theorem 2.1 are
fulfilled.

Let µ > 0 and R > 0 be such that

∥(I − T (φ))−1∥ ≤ µ, BR(φ) ⊂ O.

Concerning the constants of Theorem 2.1, fix

α = 1, r = min

{
R,

1

2µℓ

}
.
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The discretization process is based upon the approximation

Tn(x) := πnT (x), x ∈ BR(φ).

As in Theorem 2.1, we can prove that, for all x ∈ Br(φ), I − T (x)
is invertible and

∥(I − T (x))−1∥ ≤ 2µ.

Proposition 3.2. Suppose that (7) holds, and also that

(i) For all x ∈ X , πnx→ x as n→ ∞.
(ii) The set

W := {T (x)h : x ∈ BR(φ), h ∈ X , ∥h∥ = 1}

is relatively compact.

Then
lim
n→∞

sup
x∈BR(φ)

∥Tn(x)− T (x)∥ = 0.

Proof.

W := {T (x)h : x ∈ BR(φ), h ∈ X , ∥h∥ = 1}

is relatively compact, πn tends to I pointwise and pointwise conver-
gence is uniform on relatively compact sets. �

Proposition 3.3. Under the assumptions of Proposition 3.2, for n
large enough, the approximate inverse defined by

(8) Σn(x) := (I − Tn(x))
−1,

exists and is uniformly bounded for x ∈ Br(φ).

Proof. Set

(9) δn := sup
x∈Br(φ)

∥Tn(x)− T (x)∥.
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Since δn → 0 as n→ ∞, for all n large enough,

δn <
1

2µ
.

As

I − Tn(x) = (I − T (x))[I − (I − T (x))−1(Tn(x)− T (x))]

and by the Neumann series theorem, I − Tn(x) is invertible for all x in
Br(φ), and the following uniform bound holds for all x ∈ Br(φ):

(10) ∥Σn(x)∥ ≤ 2µ

1− 2µδn
.

Hence, for all n large enough, and all x ∈ Br(φ), the operator Σn(x)
defined by (8) is well defined, belongs to L(X ) and is uniformly bounded
over Br(φ). �

Proposition 3.4. Under the assumptions of Proposition 3.2, there
exists γn < 1 such that

sup
x∈Br(φ)

∥I − Σn(x)(I − T (x))∥ ≤ γn.

Proof. For all x ∈ Br(φ),

I−Σn(x)F
′(x) = I−(I−Tn(x))−1(I−T (x))=(I−Tn(x))−1(T (x)−Tn(x)).

Hence,

∥I −Σn(x)(I − T (x))∥ ≤ ∥(I − Tn(x))
−1∥ ∥T (x)− Tn(x)∥ ≤ 2µδn

1− 2µδn
.

Define

γn :=
2µδn

1− 2µδn
,

and choose n large enough to have γn < 1. �

Then, assuming the conditions of Proposition 3.2, we proved that
the hypotheses of Theorem 2.1 are satisfied and Theorem 2.1 can be
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applied. We can state that

φ(k)
n → φ as k → +∞.

Let us focus on the implementation of option (A): for computational

purposes, we remark that, as g
(k)
n := K(φ

(k)
n )− πnT (φ

(k)
n )φ

(k)
n + f ,

(I − πn)φ
(k+1)
n = (I − πn)g

(k)
n = (I − πn)(K(φ(k)

n ) + f),

and hence,

(11) φ(k+1)
n = (I − πn)(K(φ(k)

n ) + f) + enx
(k+1)
n

for a column vector x
(k+1)
n ∈ Cn×1 solving the linear system

(In − A(k)
n )x(k+1)

n = b(k)n ,

where

A(k)
n := T (φ(k)

n )en, e
∗
n ,

b(k)n := K(φ(k)
n ), e∗n − T (φ(k)

n )φ(k)
n , e∗n

+ f, e∗n + T (φ(k)
n )(I − πn)(K(φ(k)

n ) + f), e∗n .

3.2. Option (B). With option (B), we define the Kantorovich pro-
jection approximation ψn ∈ X to be such that

(12) ψn − πnK(ψn) = f.

Hence,
(I − πn)ψn = (I − πn)f,

and setting

x(∞)
n := ψn, e

∗
n ,

we see that the function ψn is of the form

ψn = (I − πn)f + enx
(∞)
n .

Equation (12) is equivalent to

Fn(x
(∞)
n ) = 0,
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where Fn is the nonlinear operator defined from some open subset On

of Cn×1 into Cn×1, by

Fn(x) := x− K
(
(I − πn)f + enx

)
, e∗n − f, e∗n .

The properties of K imply that Fn is Fréchet-differentiable, and its
Jacobian matrix at x is

F′
n(x) = In − T ((I − πn)f + enx)en, e

∗
n .

Suppose we approximate the vector x
(∞)
n through the Newton sequence

(x
(k)
n )k≥0. Then

(13) ψ(k+1)
n := (I − πn)f + enx

(k+1)
n ,

and the linear system to be solved for x
(k+1)
n reads as

(In − C(k)
n )x(k+1)

n = d(k)n ,

where

C(k)
n := T (ψ(k)

n )en, e
∗
n ,

d(k)n := K(ψ(k)
n ), e∗n − T (ψ(k)

n )en, e
∗
n x(k)n + f, e∗n .

Comparing option (A) with option (B) through the linear systems
to be solved, we notice that the right hand side of option (A) is richer
than the one of option (B). Also the reconstruction formula (11) for
option (A) is richer than (13) for option (B).

3.3. Numerical example. The aim of this section is to give an
academic example illustrating the behavior of option (A) and option
(B) in the case of Kantorovich projection approximations with an
interpolatory projection. It corresponds to a particular choice of the
sequence of projections and reads as follows:

We consider the Banach space X := C0([0, 1],R) of all continuous
real-valued functions defined on [0, 1]. We have chosen the integral
operator

K(φ)(s) :=

∫ 1

0

κ(s, t, φ(t))t, φ ∈ X , s ∈ [0, 1],
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defined by the kernel κ given by

κ(s, t, u) := sin(4π s) t u2, (s, t) ∈ [0, 1]× [0, 1], u ∈ R,

and the function f is defined by

f(s) :=
3

4
sin(4π s), s ∈ [0, 1],

so that the exact solution φ is given by

φ(s) := sin(4π s), s ∈ [0, 1].

The projection πn is built upon a uniform grid in [0, 1]. Let tn,i :=
(i− 1)/(n− 1) for all i ∈ [[1, n]]. Associated with this grid, we define
the approximating space to be the subspace of all piecewise linear
continuous functions. The canonical basis of this subspace is formed by
the so-called hat functions [en,1, . . . , en,n] ∈ X 1×n . For j =∈ [[2, n−1]],

en,j(t) :=


t−tn,j−1

tn,j−tn,j−1
for t ∈ [tn,j−1, tn,j ],

tn,j+1−t
tn,j+1−tn,j

for t ∈ [tn,j , tn,j+1],

0 otherwise.

en,1(t) :=

{
tn,2−t

tn,2−tn,1
for t ∈ [tn,1, tn,2],

0 otherwise,

en,n(t) :=

{
t−tn,n−1

tn,n−tn,n−1
for t ∈ [tn,n−1, tn,n],

0 otherwise.

Let e∗n := [e∗n,1, . . . , e
∗
n,n] ∈ (X ∗)1×n be the adjoint basis given by:

⟨x, e∗n,j⟩ = x(tn,j) for all x ∈ X . The corresponding projection
πn corresponds to the piecewise linear interpolation and is given by
πnx =

∑n
j=1 x(tn,j)en,j for all x ∈ X .

It is easy to check that the assumptions of Proposition 3.2 are
satisfied so that the convergence result of option (A) can be applied.
Concerning computations, the integrals needed for building matrices
involved can be calculated by hand in this example.

Table 1 illustrates in practice that option (B) does not converge to
the exact solution. On the contrary, independently of the value of n,
option (A) converges to the exact solution. Although the rate of conver-
gence of option (B) is quadratic, its limit is the discretized solution ψn.
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n option (A) option (B)

10 0.999874127673875 0.984807753012208
0.249968531918469 0.21809485857788

0.049592000737629 0.087702839415384
0.007542157161705 0.081124614006456
0.001026726630759 0.081107606627030

0.000136287926264 0.081107606513346
0.000018020624652 0.081107606513346
0.000002381507787 0.081107606513346
0.000000314704968 0.081107606513346

0.000000041586383 0.081107606513346
0.000000005495385 0.081107606513346
0.000000000726182 0.081107606513346
0.000000000095961 0.081107606513346

1000 0.999999987660527 0.999998262219395
0.249999996915132 0.249996289179079
0.025002302500949 0.025005485898316

0.000305308116624 0.000313039885821
0.000000051593932 0.000008284241186
0.000000000000836 0.000008237803859

0.000008237803860

0.000008237803861
0.000008237803861
0.000008237803861
0.000008237803861

Table 1. Norm of the error relative to the exact solution.

Although theory predicts a linear convergence for option (A), practice
shows that, as n increases, this rate may become superlinear and almost
quadratric. The reason for this behavior is obviously the fact that the
greater is n, the better the Fréchet derivative of F is approximated by
the discretization of each linear step of Newton method. These aspects
are also illustrated in Figures 1, 2 and 3.

4. Discrete version of option (A). If F (φ
(k)
n ), in (4), cannot be

computed exactly, then the proposed algorithm issued from option (A)
needs further discretization. It is not compulsory to apply the dis-
cretization process used to discretize Newton iterations, nor the same
level n which gives the order of the system to be solved. Let FN be
a numerical evaluation of F , with N ≫ n. If F involves an integral
operator, FN can be built from F , replacing the integrals by numerical
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Figure 1. Logarithm of the errors of option (A) and option (B) for n = 10.
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Figure 2. Logarithm of the errors of option (A) and option (B) for
n = 1000.

quadratures. Then a discrete version of Theorem 2.1 can be written
replacing the operator F by FN .

Let us define the sequence of discrete Newton iterates as

(14) φ
(0)
N,n ∈ ON , φ

(k+1)
N,n = φ

(k)
N,n − ΣN,n(φ

(k)
N,n)FN (φ

(k)
N,n).
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Figure 3. Logarithm of the errors of option (A).

Theorem 4.1. A priori convergence of the discrete version. Suppose
that FN , ON , φN ∈ O, µN > 0, RN > 0, ℓN > 0 and αN ∈ ]0, 1] are
such that:

(i) FN (φN ) = 0, F ′
N (φN ) is invertible and ∥F ′

N (φN )−1∥ ≤ µN ,
(ii) The closed ball BRN (φN ) is included in the open set ON , and

F ′
N : ON → L(X ) is (ℓN , αN )-Hölder continuous on BRN

(φN ),
(iii) For

rN := min

{
RN ,

1

(2µN ℓN )1/αN

}
,

there exists γN,n ∈]0, 1[ such that

sup
x∈BrN

(φN )

∥I − ΣN,n(x)F
′
N (x)∥ ≤ γN,n,

(iv) The starting approximation φ
(0)
n is chosen in the closed ball

BρN,n(φN ), where

ρN,n := min

{
rN ,

(
1− γN,n

4ℓNµN (1 + γN,n)

)1/αN
}
.
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Then, for all k, φ
(k)
N,n ∈ BρN,n

(φN ), and

∥φ(k)
N,n − φN∥ ≤ ρn

(
1 + γN,n

2

)k

−→ 0 as k → ∞.

Proof. This is the same proof as for Theorem 2.1, replacing F by
FN . �

Remark 4.2. The discrete version of option A is not equivalent to
the application of option B, except in the case where n := N and

ΣN,N (φ
(k)
N ) := (F ′

N (φN ))−1. The philosophy of the discrete version of
option A is to have the solution φN of FN (x) = 0 at a cheaper cost.

The application of option B leads to linear systems of size N whose

solutions ψ
(k)
N tend to φN whereas the discrete version of option A leads

to the resolution of linear systems of size n≪ N whose solutions φ
(k)
N,n

tend also to φN but at a cheaper computational cost.

This discrete version seems close to Axelsson [8]. Given a coarse
grid (mesh size H) and a fine grid (mesh size h) Axelsson’s idea is to
compute a coarse approximation ϕH of the exact solution, then correct
it once using one Newton iteration on the fine grid, obtaining in this way
an approximation ϕ0h. Next, the author properly relates the parameters
H and h so that the error on ϕ0h be the same as the error on the fine
approximation ϕh.

Our philosophy is different. We intend to solve several Newton
iterations on a coarse grid (for a computational cost reason). While
Axelsson performs his Newton iteration on the fine grid, we perform
our Newton iterations on the coarse grid. Our Newton sequence tends
to the fine approximation φN and we need to solve several small
systems. If the parameters H and h are chosen properly, the Axelsson
approximation has the same order as the fine approximation and he
needs to solve only one system but with high dimension.

Let us apply Theorem 4.1 to a particular application belonging to
the case considered in Section 3, F (x) = x − K(x) − f where K is a
Urysohn integral operator defined by

K(φ)(s) :=

∫ 1

0

κ(s, t, φ(t)) dt, φ ∈ X , s ∈ [0, 1],
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whose kernel κ is smooth. As Atkinson and Flores in [6], FN and F ′
N

are obtained by replacing all the integrals by numerical integrals. Then

FN (x) := x−KN (x)− f, and hence F ′
N (x) = I − TN (x),

where the Nyström approximation KN of order N of the nonlinear
operator K is given by

KN (x)(s) =
N∑
j=1

ωN,jκ(s, tN,j , x(tN,j)), x ∈ O, s ∈ [0, 1].

and the Nyström approximation of order N of the linear operator
T (x) = K ′(x) is denoted by TN (x) and is given by

TN (x)h(s) =
N∑
j=1

ωN,j
∂κ

∂u
(s, tN,j , x(tN,j))h(tN,j),

x ∈ O, h ∈ X , s ∈ [0, 1].

Then φN is the Nyström approximation of φ and if the kernel κ is
smooth enough, then the properties (i) and (ii) of Theorem 4.1 are
fulfilled.

In the discrete version, we have

ΣN,n(x) := (I − πnTN (x))−1,

where πn is a projection such that for all x ∈ X , πnx→ x as n→ ∞.

As in Theorem 2.1, we can prove that, for all x ∈ BrN (φN ), I−TN (x)
is invertible and

∥(I − TN (x))−1∥ ≤ 2µN .

The set

WN := {TN (x)h : x ∈ BRN
(φN ), h ∈ X , ∥h∥ = 1}

is relatively compact by Arzela-Ascoli, so that

lim
n→∞

sup
x∈BRN

(φN )

∥πnTN (x)− TN (x)∥ = 0.

As in Section 3, we prove that, for all x ∈ BrN (φN ),

(15) ∥ΣN,n(x)∥ ≤ 2µN

1− 2µNδN,n
,
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where
δN,n := sup

x∈BrN
(φN )

∥πnTN (x)− TN (x)∥.

As in Proposition 3.4, we prove that γN,n < 1 exists such that

sup
x∈BrN

(φN )

∥I − ΣN,n(x)(I − TN (x))∥ ≤ γN,n.

Hence, we proved that assumption (iii) of Theorem 4.1 is fulfilled.

5. Final comments and conclusions.

(1) In what concerns option (B), the starting vector x
(0)
n ∈ Cn×1

should be chosen such that, for instance, the following Newton

assumptions are satisfied: In−C
(0)
n is invertible, and there exists

mn such that

∥(In − C(0)
n )−1∥ ≤ mn, νn := m2

nLn∥Fn(x
(0)
n )∥ ≤ 1

2
,

Ln being a Lispchitz constant for the Jacobian matrix x 7→
F′
n(x) in some closed ball centered at x

(0)
n . In that case, the

convergence of option (B) is quadratic:

∥x(k+1)
n − x(∞)

n ∥ ≤ mnLn

2(1− 2νn)
∥x(k)n − x(∞)

n ∥2,

but the limit of the process, as k → ∞, leads to the n-order
approximate solution ψn and not to the exact solution φ.

(2) Option (A) has a linear convergence but its limit function is φ,
the exact solution.

(3) Since the convergence of option (A) is linear, why not conceive
a cheaper fixed slope style iteration:

ξ(k+1)
n = ξ(k)n − Σn(ξ

(0)
n )F (ξ(k)n ), ξ(0)n ∈ Bϱn(φ),

for some conveniently chosen radius ϱn? The following result
goes in that direction.

Theorem 5.1. Suppose that F , O, φ ∈ O, ξ
(0)
n ∈ O µn > 0,

r > 0, ℓ > 0 and α ∈ ]0, 1] are such that:
(a) F (φ) = 0.

(b) ∥Σn(ξ
(0)
n )∥ ≤ µn.
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(c) The closed ball Br(φ) is included in the open set O, and
F ′ : O → L(X ) is (ℓ, α)-Hölder continuous on Br(φ).

(d) The starting approximation ξ
(0)
n and γn ∈ ]0, 1[ satisfy

ξ(0)n ∈ Bϱn(φ), ∥I − Σn(ξ
(0)
n )F ′(ξ(0)n )∥ ≤ γn,

where

ϱn := min

{
r,

(
1− γn
3ℓµn

)1/α}
.

Then, for all k, ξ
(k)
n ∈ Bϱn(φ), and

∥ξ(k)n − φ∥ ≤ (3µnℓϱ
α
n + γn)

k −→ 0 as k → ∞.

Proof. The keys are the identity

ξ(k+1)
n − φ = [I − Σn(ξ

(0)
n )F ′(ξ(0)n )](ξ(k)n − φ)

+ Σn(ξ
(0)
n )[F ′(ξ(0)n )− F ′(ξ(k)n )](ξ(k)n − φ)

− Σn(ξ
(0)
n )

∫ 1

0

[F ′(φ+ t(ξ(k)n − φ))

− F ′(ξ(k)n )](ξ(k)n − φ) dt,

and the fact that 3µnℓϱ
α
n + γn < 1. �

(4) To conclude, let us remark that the classical Galerkin approxi-
mation to the equation (I − T (x))v = g built upon the projec-
tion πn does not enter the framework of this paper. Indeed, this
approximation is defined as the solution of the zero projected
residual:

πn((I − T (x))vn − g) = 0.

This means that, for n large enough and provided I−πnT (x)πn
is invertible, the Galerkin solution is given by

vn = (I − πnT (x)πn)
−1πng.

In other words, in the context of this paper, the role of the
operator Σn(x) is played by (I − πnT (x)πn)

−1πn which is
certainly not invertible. Hence, hypothesis (iii) of Theorem 2.1
and (d) of Theorem 5.1 will never be satisfied.
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