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ABSTRACT. We are concerned with the computation of
spectra of highly oscillatory Fredholm problems, in particular
with the Foz-Li operator

1
/ f@)e @ de = A f(y), —1<y<1,
-1

where w > 1. Our main tool is the finite section method: an
eigenfunction is expanded in an orthonormal basis of the un-
derlying space, resulting in an algebraic eigenvalue problem.
We consider two competing bases: a basis of Legendre poly-
nomials and a basis consisting of modified Fourier functions
(cosines and shifted sines), and derive detailed asymptotic es-
timates of the rate of decay of the coefficients.

Although the Legendre basis enjoys in principle much faster
convergence, this does not lead to much smaller matrices.
Since the computation of Legendre coefficients is expensive,
while modified Fourier coefficients can be computed efficiently
with FFT, we deduce that modified Fourier expansions, imple-
mented in a manner that takes advantage of their structure,
present a considerably more effective tool for the computation
of highly oscillatory Fredholm spectra.

1. Introduction. Our understanding of highly oscillatory phe-
nomena and their computation has advanced in leaps and bounds in
the last decade. In particular, the subject matter of highly oscillatory
quadrature is, to all intents and purposes, satisfactorily understood,
and there exists a wealth of efficient and affordable numerical methods
for integrals of the form

/ F(z)e“IDdg,
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where Q is a multivariate domain and w > 1 [22, 24, 29]. This
has led to a wealth of applications in rapid approximation of functions
[3, 20, 21, 25, 26] and in the numerical analysis of highly oscillatory
differential equations [2, 14, 23, 27]. In this paper we attempt to apply
similar methodology to the computation of spectra of highly oscillatory
Fredholm operators, of a form ubiquitous in laser theory.

An excellent early reference to spectral problems occurring in the
modeling of laser resonators is [13]. The underlying problem is to
compute the spectrum o(F,) of a complex-valued integral operator

1 .
(1.1) Folf] = /_lf(:v)el“’g(””’y)da:, w1,

where the oscillator g is a real function: important examples of
oscillators, which run throughout this paper, are g(z,y) = (z —y)? (the
Fox-Li operator) and g(z,y) = (z —y)*, while the case g(z,y) = |z — |
was the subject of [11]. The spectrum in the case g(z,y) = zy was
completely determined in [13].

It follows readily from standard theory of Fredholm operators (cf.,
for example, [5]) that F, is compact, hence o(F,) is a point spec-
trum with a single accumulation point at the origin. However, be-
ing complex-symmetric, the operator is not self-adjoint and standard
Hilbert-Schmidt theory is not applicable.

Bearing in mind the importance of equations (1.1) in laser engineer-
ing, the state of the theory and computation of their spectra is deeply
disappointing. The pseudo-spectrum of the Fox-Li operator has been
determined by Henry (1977/78), and its physical features discussed at
great detail by Sir Michael Berry and his co-workers in [7, 8, 9]. How-
ever, both mathematical analysis and effective computational methods
for the Fox-Li operator, to say nothing of more general problems (1.1),
is woefully inadequate. This, we should perhaps add, is not for a lack
of structure. Figure 1.1 displays the spectra for the Fox-Li oscillator
g(z,y) = (z — y)? and for g(z,y) = (z — y)* and frequency w = 100.
In both cases it is clear that, consistently with theory, eigenvalues ac-
cumulate at the origin, but evidently the structure of the spectrum is
considerably richer. In both cases eigenvalues appear to lie on spiral
curves which approach the origin fairly rapidly, yet a formula for these
spirals, even in an asymptotic form, is unknown.
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FIGURE 1.1. The spectra for g(z,y) = (z—y)? and g(z,y) = (z—y)* with w = 100.

Other oscillators, e.g., g(z,y) = |z — y| or g(z,y) = zy, do not
produce spirals but their spectra are structured as well, cf., [11, 13],
respectively. In particular, the spectrum for g(z,y) = |z — y|, as
displayed in Figure 1.2, lies asymptotically for w > 1 on the segment
of the complex circle |z — | = 3: the eigenvalues {A,,}5_; commence
in the upper complex half plane, at a distance Ow™! from the origin,
continue within Ow~! from the circle until, within the intermediate
asymptotic regime, they meander away, only to return to within Qm —©
from the circle for m > w and approach the origin in the lower half
plane.

The general picture is complicated and fairly sensitive to the choice
of the oscillator. This is demonstrated in Figure 1.3, where the
oscillator g(z,y) = cos[im(z — y)] results in a ‘drunken spiral,” while
the eigenvalues corresponding to g(x,y) = cos[m(z — y)] (more on
these soon) lie on real and imaginary axes. For some oscillators it is
difficult to discern a pattern: cf. Figure 1.4, where we have let g(z,y) =
sin[(z —y)?]. Another example is provided by g(z,y) = sin[x(z —y)] for
k # 0: once the spectral problem for the operator F, is approximated
by an algebraic eigenvalue problem A{ = A{ (as explained in Section 2),
we have A, = Zm’n, m,n € Z,, the system is Hermitian and all
eigenvalues are real. By this stage it is too early to venture even a
conjecture on more general patterns of behavior of the spectra of (1.1).

Although this is tangential to the narrative of this paper, it is interest-
ing (and fairly easy) to explain the cross-like structure in Figure 1.3 and,
indeed, identify the spectrum for the oscillator g(z) = cos[r(z—y)]: our
claim is that the eigenvalues are \,, = 2i"J, (w) with the corresponding
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FIGURE 1.2. The spectrum for g(z,y) = |z — y| with w = 100.

015 3
. * A * 025
- «
0.4 * 02 %
* 015
“ *
* X *
01 *
005 * « * i
* % *
* * * » 0% 4
0 * R . Of 4 A b ———
St *
+ oy ¥
% *
« + % * 005
*
005 N * * 01 %
# z
* -0.15 §
*
< * *
01 . Kk 02 i
o *
i 025 .
-0.15 Ykl
015 01 ~0.05 [ 005 01 015 02 01 o 01 02

FIGURE 1.3. The spectra for g(z,y) = cos[(1/2)m(z—y)] and g(z,y) = cos[m(z—y)]
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eigenfunctions f,(z) = e!"®, n € Z. Here J, is the nth Bessel function.
To prove this assertion we use identities 9.1.44-45 in [1, page 361] to
argue that

elweoslm@=v)l — Ji(w) +2 Z i"J (w) cos[rm(z — y)].

m=1
Therefore, for every n € Z,

(oo}

1
F., [ei‘rrny] — / eiﬁnz{JO(w) + Z ime(w)[eiwm(zfy)
-1 m=1

+ e—iwm(z—y)] } dz

1 st 1
:/ eiﬁnmdeO(w)+ Zime(w)efirrmy/ elm(ntm)z g
m=1

-1 —1
oo 1
+ Z ime(w)e‘"my/ elm(n=m)e qg — 21", (w)e!™™Y.
m=1 -1
Note that A2, € R, A2,+1 € iR and that A, tends to zero as n — oo
spectrally fast.

This paper is devoted to efficient computational algorithms for the
calculation of eigenvalues of the operator (1.1) in the generic case,
when the latter cannot be derived in a closed form. It is usual in
the computation of spectra of integral operators to employ the finite
section method [4, 18]. Thus, let ® = {¢ }mecz, be an orthonormal
basis of Ly[—1,1]. Expanding an eigenfunction f in this basis,

F@) =" fadn(2),

substitution into (1.1), multiplication by ¢,,(y) and integration in y €
[—1,1] result in the infinite-dimensional algebraic eigenvalue problem

ZAm,nfn:)\fma ’I’I’LEZ+,

n=0
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where

1 1
(1.2) Apn = / / On(@)Pm ()9 @V dzdy, m,n € Z,.
—-1J—-1

The standard procedure, justified by the compactness of the underly-
ing problem, is to truncate the matrix A and solve the resulting finite-
dimensional algebraic eigenvalue problem by the very efficient methods
of numerical linear algebra. The challenge is to choose a basis ® sat-
isfying two desiderata: rapid convergence of the truncated expansion
to an eigenfunction (since this means that the underlying finite matrix
need not be excessively large) and affordable computation of the double
integrals (1.2). An aggravating factor is the presence of two different
mechanisms that generate high oscillation in (1.2). Firstly, we are in-
terested in large values of w; secondly for large m (smooth) orthogonal
functions ¢,, are themselves highly oscillatory. This competition be-
tween two forms of high oscillation is an important organizing principle
underlying our work.

An obvious alternative to the finite section method is to discretize
the integral in (1.1) by quadrature. Thus, given 2N + 1 quadrature
points

—1<c_ny<ec_nyt1 < <en <1

and corresponding weights b_n,b_n41,...,bn, We can approximate
the spectral problem for (1.1) by the finite-dimensional algebraic eigen-
value problem

N
(1.3) bpfre@dlenem) — \f, m=—-N,-N+1,...,N,
N

n=—

where f, = f(cn). (In principle, we can bring (1.3) into the formalism
of the finite section approach, letting the orthogonal functions ¢, be
delta functions, but this helps little in understanding this method.)
Clearly, (1.3) belabors under three disadvantages. Firstly, the (m,n)
element of the matrix whose eigenvalues we seek is ON~!; hence we
need to choose very large values of IV to attain good accuracy. Secondly,
once w is large, we need to take truly huge values of NN, so that
integration occurs in a non-oscillatory regime. (The current approach
denies us the benefits of highly oscillatory quadrature.) Finally, once
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N is very large, although it is possible to rapidly compute nodes and
weights associated with nontrivial quadrature schemes [17], efficient
implementation of, say, Gaussian rules is impractical. Therefore, we
are compelled in practice to choose equally-spaced nodes ¢, = n/N,
with weights b, = 1/(N + (1/2)), thus denied the benefits of such
quadrature methods as Gauss-Legendre or Clenshaw-Curtis.

The plan of this paper is as follows. In Section 2 we address the
most natural approach to the choice of the basis ®, namely Legendre
polynomials. Although general considerations originating in the theory
of spectral methods indicate very rapid convergence as the size of a
section increases, it turns out that this approach has a number of
substantive disadvantages. This motivates our exploration in Section 3
of the alternative of using expansions in exponentials, focusing on
modified Fourier expansion. Finally, in Section 4 we show how the
idea of hyperbolic cross leads to substantial cost savings once we use
modified Fourier expansions.

2. Expansion in Legendre polynomials.

2.1. An explicit formula. Choosing the Legendre basis ¢,,(z) =
(m + (1/2))?P,,(z), m € Z,, we have
(2.1)

1\ /2 1\ /2
Amn: ™~ o
, <m+ 2) <n+ 2>

1
x/ / P, (z)P, (y)e*@) dz dy
-1

= <m+ %_>1/2 <n+ %)1/2 /11 /11 P (2)Pr(y)Ko(z,y) dzdy

for all m,n € Z,, where K,(z,y) = ewd(@v) Tt follows from the
standard theory of spectral methods (cf. [19] or any number of similar
references) that, provided g € C>([—1,1]2), the coefficients A,, ,, decay
at a spectral speed as m + n — oo, that is faster than a reciprocal of
any polynomial in m and n.

We let
1 1/2 1 1/2
Amn = = a Amn
7 <m+ 2) <n+ 2) ,

and work in the future with the somewhat simpler coefficients gmn
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It is convenient by this stage to generalize a univariate formula for
Legendre expansions to our setting. Given a function

Zf”" where f, = f™(0), ne€ Z.,

analytic in [—1, 1], it is true that

- = fn 2k
(2.2) flz) = n;(zn +1) kZ:O TEET k!(*?, ot

[31, page 181]. Here (z), is the Pochhammer symbol: (z)p = z and
(2)n = 2(24+1)--- (z+n—1) for n € N. Since f_ll P2(z)dx = n+(1/2),
it thus follows that

oo

(2.3) / F@)P(z)de =Y 7f"+2’“ nez,.

2 QTR (¢/32)p

Likewise, suppose that the kernel K, is an analytic function of (z,y) €

[_171]27
:ZZkL yl7 m,ye[—l,l],

01=0

k=
where ry,; = 950}, K.,(0,0). Generalizing (2.3) to this setting is straight-
forward,

~

~ e Tm+2k,n+2l
Apn = ’
(2.4) ; kzzog 2mn+2(k =D ENN3/2) ik (3/2) s
m,n € Z,.

An important special case is that of an Abel kernel K, (z, y) =
p(z —y), e.g., the Fox-Li operator. In that case, letting pp = p(*)(0),
we have

=0
oo l I

=3 ()
=0 " k=0

— ZZ ( k?!l/!)k+lwkyl‘
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Therefore 7 ; = (—1)'pg41, and (2.4) simplifies to

oo

e n - Pm+n+2(k+1)

Am n — -1 s

(2.5) n= 0y 1;) ; At 20 H=DRIN3/2) ok (3/2)n
m,n € Z,.

The explicit formulae (2.4) and (2.5) are of limited use. Even
if derivatives at the origin are freely and easily available, explicit
summation is expensive and likely to be ill-conditioned because, as
we soon see, it involves terms of radically different magnitude. The
situation is considerably worse if derivatives are computed numerically,
not just because of the very considerable additional expense but also
since computation of derivatives is itself a notoriously ill-conditioned
procedure.

The sobering truth is that no computational procedure is truly
effective in the computation of Legendre coefficients A, ,. Perhaps
the most effective is to discretize the integral at Chebyshev points
and use fast algorithms to compute the underlying quadrature: this is
essentially a combination of Clenshaw-Curtis quadrature with FFT [12,
30], but its origins can be traced to the work of Fejér [15, 16]. Yet, even
using such rapid algorithms we would require in a bivariate setting an
excessively large volume of computations. This is precisely the reason
why Legendre expansions are typically avoided in spectral methods,
although arguably the uniform Legendre measure is the natural one in
defining the underlying inner product. Instead, it is usual to employ
either Chebyshev expansions (which can be computed very effectively
with FFT) or Legendre collocation. In the current setting, though, we
cannot impose by fiat the Chebyshev measure and are compelled (at
least in this setting) to expand in Legendre polynomials.

In special cases we can further massage explicit formulae (2.4) or
(2.5) to render them suitable for computation. An important example
is provided by the Fox-Li operator.

2.2. The Fox-Li operator. Letting p(z) = ¢“*", z € [-2,2], we
have

(i)™, pam+41 =0, m € Zy.
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Therefore, substituting in (2.5),

i Z Z (2m + 2n + 2k + 21)!(iw)mHnthH
2m,2n = 4m+n+k+l K (m + 1+ k + 0)13/2)2mak(3/2)2mt

k=0 1=0
i (2m+2n+2r)! (iw)™ T
« S gmEn i1 (r— k) (mn)!(3/2) 2m 1 (3/2) 24—k

|F|ﬂ8

k
(2m + 2n + 2r)!
gmantr—l(m 4+ n 4+ r)lr!

) [Z () @)

_ Z 2m +2n + QT) o™ n(iw)m—i-n—i-r'
4m+”+” Ym+n+r)el "

I
<)

T

Since <Iz> _ (*l)k(_kr!)k’
().~ (), Grom),
<§> _ (=D B/2)2nr ,
2 2n+r—k (=(1/2) =2n —r)i
we have

1 —r,—1/2 —2n —r;
m,n __ ) ) 1
vr (3/2)2m(3/2) 2n 4+ 21 [ 3/2 + 2m; ]

_ 1 I'(3/2 + 2m)(2m + 2n + 2r + 1)!
" (3/2)2m(3/2) 204, T(3/2+ 2m + r)(2m + 2n + r + 1)!
B 1 (2m+2n+2r+1)!

T (3/2)2msr(3/2)2ner Cm 20+ 1)

where ,F, denotes a (p,q) generalized hypergeometric function [31,
page 73]. We deduce that

A2m 2n

72 (2m + 2n + 2r)!(2m + 2n + 2r + 1)!(iw)™ T rT
gmtntr—1(m 4+ n 4+ r)lrl(2m +2n + 7 + 1)1(3/2)2m++(3/2) 204+
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But

(2m+2n+2r)! 4(1)

gmantr—1(m + n 4 r)! 2) minir
(2m+2n+2r+1)!  4"(m+n+1).(m+n+(3/2)),
2m+2n+r+1)! (2m + 2n + 2), ’

consequently, after some elementary algebra,

2m,2n (3/2)2m(3/2)2n
X 3F: m+mn+(1/2),m+n+1,m+n+(3/2); 4iw
33 2m +2n +2,2m + (3/2),2n + (3/2); ‘
Likewise,
A. o Aw)™ N (1/2)mnt
2m+41,2n+1 (3/2)2m+1(3/2)2n41
x 3F: m+n+(3/2),m+n+2,m+n+(5/2) diw
3773 2m +2n +4,2m + (5/2),2n + (5/2) .

Therefore, for every m,n € Z;, m + n even,

C A 0) Y 2(1/2) 2

Amn = (3/2m3/2)n
(m+mn)/24+(1/2),[(m+mn)/2]+1,[(m+n)/2] +3/2 .
X373 [ m4n+2,m+ (3/2),n+ (3/2) 41“’] :

Since, trivially, Ay, , = 0 for all m,n € Z,, m + n odd, we have all
the coefficients of the matrix A in an explicit form—except that the
calculation of generalized hypergeometric functions is neither trivial
nor fast even with modern software.

2.3. Asymptotics of Fox-Li coefficients. It is central to the
subject matter of this paper that coefficients A,, , possess two kinds
of asymptotics which are germane to the understanding of the finite
section method: w — oo for fixed m,n (large-w asymptotics) and
m+n — oo for fixed w (large-(m, n) asymptotics). In this subsection we
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address the issue of large-(m, n) asymptotics for Legendre coeflicients.
Our starting point is the explicit representation (2.6).

Theorem 1. For every n € Z, it is true that

(2.7)
- (71)ninﬂ.1/2 elwe
App = — i | TJnHl/?) (wz) de,
(2.8)
~ ( n+1 n 1/2
An—snts = 2w1/2 / 0s( “Jn+ayz)(wz)dz, 0<s<n,
where

—-s+1,s—1;, =z
2; 2|

e

Proof. We commence from (2.7). Letting m = n in (2.6) and using
the second Kummer formula for confluent hypergeometric functions
[31, page 126], we have

~ A" (iw)"(1/2)n n+(1/2),n+1; .
Ann = [(3/2)n]2 2F2 [ 2n+2,n+ (3/2); 41w]
_ 2= (w)" i (n+1)r (4iw)"
(3/2)n ~ rl(2n+2), n+r+(1/2)
_ (_1)n e & (n + l) n+r—(1/2
4n(3/2),(iw)/2 J, TZ 20+ 2), +r=(1/2) 4
(="

4iw ( / ) TL+ 1:
n—(1/2 9 d
= 3/, <1w>1/2/o A {2n+2s ] v
2

_ (EDm2MA((1/2)iw) [P )2 n+1;
= G/2). /0 a2 | rF [2 P 21w:v] dz
—1)"2Y2((1/2)iw)™ (%, _1/2) e o 2,2
= ( ) (3/(2()n/ ) )/Oil,'n_( e 0f1 ["+(3/2)§ - ] dz.
Since ) I+ 1)
Al -

[31, page 108], we confirm (2.7).
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Next, we choose s € N, whence for every n > s (2.6) yields

o AEDTw) (1/2),
n—s,n+s (3/2)n—s(3/2)n+s
o [ n+(1/2),n+1,n+ (3/2);
P 4 2,n— s+ (3/2),n+ s+ (3/2);
(=)™ (1w)"(1/2)n o= (n+ 1)k
(1/2)n s+1(1/2)n+s+1 k'(2n+2)
(n+ (1/2))n+ B/2e 4y
(n—s+(3/2))k(n+s+(1/2)

(— 1 s (iw)n > n+ 1)k . \k
= k)(4

4iw

where

k) = U2al/2un (04 (1/2)eln + (3/2)
o (1/2)n-s41(1/2)nqs41 (n — s+ (1/2))(n + s + (3/2))x
_ (n+k+(3/2) —5)s1
 (n+k+(3/2)s

Our claim is that xs(n, k) = @s(n + k), where

s—1
_ _1\s—1-— Qs k
‘ps(m)_kzzo( 1) kx+k+(3/2)’
(s+k)!
Kl(k+1)(s— k— 1)

Qs k=

This follows at once by representing the rational function ¢ in the
form

o @B/ —8)en S ek sk
e N CTC) M S M = 7}

where the o, s are the residues at z = —k — (3/2).
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We conclude that

_ (1 n+s n e ’I’L+l .k
An—sn s = Ps k)(4
o (1/2)n41 kZ:Ok' 2n + 2)g s(n + k) (4iw)
_ )M W) R auy

(1/2)n41 - (4iw)"+l+(3/2)

n+1), (diw)rteH+E/2)
Zk' 2n+2)yn+k+1+(3/2)

—1
(=)™ (iw)™ Qs

(1/2)ns1 o (diw)nHi+(3/2)

4iw
n+l+(1/2) n+1;
X/o T 1}-1[2714—2; z | dx

_ U §

(1/2) 41 — on+1+(3/2)

2
X a2 n+l; 2iwz | dz
0 2n + 2;

:(71V+%mo”§f 0

(1/2) 11 — on+i+(3/2)

2 2,.2
X n+l+(1/2 iwe f |: ) _(U T d
A ;s e [

where we have used the second Kummer formula to convert the {F;
function to ¢F;. Thus, we deduce (2.8) from

- wla? m/2(1/2),2n+(1/2)
o7 [ n+(3/2) 4 ] = ot g Inta/2) (W)
and the explicit form of a, ;. u|

Note that 6 can be written as a Jacobi polynomial [31, page 254],
6(x) = P17 (1~ ),

although this plays no further role in our analysis.
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The integral expressions (2.7) and (2.8) need to be further massaged
to reveal their asymptotic behavior for n — oco. To this end we need
the following simple result.

Proposition 2. Let

1 .
L,|f] = W/o 2"tV f(z)dz, n€Zy,

where f € C*[0,2]. Then

) 2@ +1e)

n+(1/2) " (n+ (1/2)7

L W) +6F(2)+ )
(n+ (1/2)°

In[f] ~

+0n7% n>1.

Proof. Similarly to [24], we integrate by parts,

1 2 n og T
Lif] = W/o F(@)elm+1/2) o8 g

_ 1 1 / ’ 2 f (@)L emH1/2)og g,
- B/ n 4 (1/2) J, dx

A C) NPT ECy S
nt (1/2) n+ (1/2)

2
X / [zf'(z) + f(x)]e(""‘(l/?))bgz dz.
0

Two further integrations by part yield (2.9). o

Theorem 3. For any fixed w and s € N, and for n — oo it is true
that
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A’nn N (_iw)nen—l—(l/Z)eZiw
, 21/2(n + (1/2))n+(1/2)
1 1+ 2iw 1+ 6iw—4w? _4]
X - + + On
[n—(1/2) (n—(1/2))* * (n—(1/2))*
- _ i \nan+(1/2) 2iw
Ao amie o — (—iw)™e e
, 20/2)(n + (1/2))n+2
[ s2+iw  (1/2)s%(s2+1)+2iw(2s% +1) —4w? _]
1 +On™°|.
n+(1/2) (n+(1/2))?

Proof. Follows by easy algebra from Theorem 1, the asymptotic

estimate y
1 ex
1)~ Gy (5

[1, page 365] and the asymptotic expansion (2.9). o

Theorem 3 quantifies something that we already know: as n grows,
the size of the coefficients decays at spectral speed. However, it
highlights a fact which is crucial to the understanding of the finite-
section method for highly oscillatory Fredholm operators: the behavior
of the coefficients is determined by the competition between large-(m+n)
and large-w asymptotics. This is illustrated in Figure 2.1, where we
have plotted — log; | A, | for w = 100, growing n and the cases m = n,
m =n—2 and m = 0 (in the latter case only even values of n have been
displayed, since g072n+1 = 0). Evidently, the size of |gmn| drops quite
sedately for a long while and then, having reached a threshold when
large-(m, n) asymptotics take over, suddenly |A, »| drops literally like
a stone. For example, ‘;4\’2007200‘ = 6.30_05, while |A'2507250| = 1.25_15.
This process is faster when descending along diagonals and somewhat
slower along rows and columns of A: thus, [Ag 75| = 2.47_o6 and

|Zo,325| = 8.59_15.

This phenomenon is consistent for different values of w and also for
other oscillators, not just Fox-Li. Its operative implication is as follows.
For the finite section method to compute eigenvalues of the infinite-
dimensional operator well, we must truncate the infinite matrix A by
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FIGURE 2.1. —log;q |A2m,2n| for n =0,1,...,250 and (a) m = n; (b) m = n — 2;
(¢) m =0, n even. In all cases w = 100.

discarding sufficiently small entries. The entries become small (very
rapidly!) only once large-(m, n) asymptotics take over, and this imposes
a fairly large lower bound on the size of truncated matrix A: for Fox-
Li, the one instance where the large-(m,n) asymptotics are known,
computational experience indicates that a good choice of dimension of
Ais ~ 2v/2w. (This actually is slightly better, because for Fox-Li, and
for other symmetric oscillators g(z,y) = g(y, z), gm,n = 0 when m and
n are of opposite parity and the matrix A can be partitioned into two
matrices of half the size.)

The lesson from our analysis of Legendre expansions applied to the
Fox-Li operator is twofold. Firstly, the frequency w imposes a lower
bound on the size of A which is immune to the spectral decay in the size
of the coeflicients. Secondly, even if the A,, ,s are available explicitly,
their computation is time-consuming. Of course, in the general case the
coefficients are not available in an explicit form and their approximate
calculation is a formidable challenge to which there are currently no
easy answers.

2.4. Other oscillators. It is interesting to examine Legendre
coefficients A,, ,, in special cases when they can be computed explicitly,
since this provides us with useful data toward an understanding of the
general problem. This is the case even if the spectrum is explicitly
known, as it is in the following two examples.

We commence by considering

(2.10) Flif] = /_1 f(z) cosw(x —y) de.
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This does not fit into pattern (1.1): we have the real kernel of Abel
type Ko (z,y) = cosw(z—y). Yet, the logic underlying the finite section
method is still valid, as is formula (2.4). The spectrum of (2.10) can
easily be evaluated since the kernel is of rank 2 and just two eigenvalues
can differ from zero: they are

2

A =1-— 51121 w, with the eigenfunction f(y) = sinwy,
w
in 2

Ap=1+ 51121 w, with the eigenfunction f(y) = coswy,
w

while the invariant subspace of eigenfunctions corresponding to the
infinite-multiplicity zero eigenvalue is spanned by sin a,,y and cos (3, y,
n € Z, where au,, B, # w are solutions of the transcendental equations

acota =wcotw, Ftanf = wtanw.

Symmetry implies that Avm,n = 0 for odd m + n, while

- oo o (_1)m+n+k+lw2(m+n+k+l)
A m,2n —
oman = D) 4rAn R H=1E11(3/2) 9 4 £ (3/2) 241

k=0 1=0
i i (—1)mtntry2(mtndtn)
- =t e qmAn Ll (r — k)Y(3/2)2mtk (3/2) 2ntr—k

(_w2)m+n+r T rl
gmtntr—1lp| P El(r — k)(3/2)omak(3/2)onsr &

ﬁ
Il
o

Since
1 B 1
(3/2)2m+r  (3/2)2m(2m + (3/2))8
r!
(’f‘ — k)' = (_1)k(_r)k7
1 (—=1)F(=2n —r — (1/2))

(3/2)2n+r7k B (3/2)2n+r ’
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we obtain, summing up 2F; at = 1 with a familiar formula [31, page
49],

- o (_w2)m+n+r
A =
2m,2n ; 4m+n+7‘71r!(3/2)2m(3/2)2n+r
X oF1—1,—2n — 71 — (1/2)2m + (3/2)1

e (_w2)m+n+r
N ; gmAntr—1p1(3/2)9,,(3/2)2n4r

(3/2)am(2m + 2n + 2r + 1)!
(3/2)2m4r(2m +2n + 7+ 1)!

4w (3/2) ()]
(3/2)2m(3/2)2n(2m + 2n + 1)!
m+n+1,m+n+(3/2) 9
2m + (3/2),2n + (3/2).2m +2n +2

x oF3

Likewise,

A(=w?)™ " (3/2)mantr(m+n+1)!
(3/2)2m+1(3/2)2n41(2m + 2n + 3)!

m+n+(5/2),m+n+2; 9

2m+(5/2),2n + (5/2), 2m + 2n + 4;

A2m+1,2n+1 = -

x oF3

and we deduce that for all m and n of the same parity

T ARG (32) o () /2)
e (3/2)m(3/2)n(m +n +1)!

[(m+mn)/2]+1,[(m+n)/2]+3/2; 2
m+(3/2),n+ (3/2),m+n +2;

(2.11)
X 9F3

The explicit representation (2.11) is quite interesting for an unrelated

reason. Adopting an altogether different approach, we can express Emm
in a completely different manner. Thus, let m and n be of the same
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parity. Then

1,1
Apon = / / P, (z)P,(y)(coswz cos wy + sinwz sinwy) dz dy
1/
1

1
*/ Pm(:v)coswwdx/ P,(z) coswz rdz
-1

1

1 1
+/ P, (x) sinwxdx/ P,(z)sinwz dz

-1 —1

fjl P,,(x) coswz dx fil P,(z)coswrdr m,n even,

fjl P, (z)sinwz dz fjl P,(z)sinwzdz m,n odd.

Since

1 0 _,2\n+k
/ Py, (z) coswz dz = Z )
1

P 22n+2k_1k!(3/2)2n+k
B (_w2)n _

21(3/2), [2n+<;3/2>; ‘%]

om\ M2
=(-1) (w> Jont1/2) (W),

oo

1 n+k, 2n+2k+1
. (—1)"trw
Py i1 (2) sinwzdz =
[1 " kzzo AnTREN3/2)2n 4 k41
_ (_1)nw2n+1 Ofl |: — _i2:|
4"(3/2)n+1 2n +5/2; 4

o 1/2
=(-1) (U) Jont3/2) (W),

we deduce that

2w
UJ2m+(1/2) (w)J2n+(1/2)(w),

~ 2
Agpmi12ng1 = (=1)™H

» Jom+(3/2) (@) J2n(3/2) (W)

;{2m,2n = (_1)m+n

Comparing this with (2.11) results in a duplication formula for spherical
Bessel functions.
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Theorem 4. For every m,n € Z of the same parity and all z € C
1t 1s true that

(2.12)  Jmp1/2)(2)Tnt1/2)(2)
22 N(3/2) (2 (M + 1) /2)!
 71(3/2)m(3/2)n(m +n 4+ 1)!
[(m +n)/2| + 1, [(m +-n)/2] + (3/2); _ »
m+ (3/2),n+(3/2),m +n+2;

X o3

We have not found (2.12) in any of the usual texts on Bessel functions
and believe that it might be new—a familiar situation in mathematics,
when you set out to prove one thing and discover something different
altogether. Note further that computer experimentation indicates that
the duplication formula (2.12) is probably true for all m,n € N,
regardless of parity. This being marginal to the theme of this paper,
we did not consider this conjecture further.

Our last example in this section is problem (1.1) with the kernel
g(z,y) = xy, whose eigenfunctions have been identified in [13] with
angular prolate spheroidal functions. Again, van = 0 for m and n of
opposite parity. Otherwise, we commence by using (2.3) to argue that
for every A € C

1 \ o )\n+2k
= vp = E
9n(Y) /,1 ¢*Puly) dy P 2n+2k—1£1(3/2) sk

B i b @)UZI"*““’(A)’

where I, is a modified Bessel function. It follows by easy algebra on
the well-known Taylor expansion of modified Bessel functions that

d?* gom (iwy) 0 k=0,1,...,m— 1,
oA | { 2% o

e ) ’ m=0,1,...,m—1,
dy?* y=0 - { 21% o
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and all other derivatives of g, vanish. Therefore, using (2.3) again and
assuming without loss of generality that m < n,

1
Ao 2n =/ Pangom (iwy) dy

-1

B0 SN VT CROUEY i
L g tR g (B +n— m)!N(3/2) ktmtn (3/2) 204k
(=) (2w

4= — m)N(3/2)m+n(3/2)2n

% o F n+(1/2),n+1; 7w_2
B ln—m+1,m+n+(3/2),2n+ (3/2) 4

k=0

A similar calculation can be performed for Asy,11,2,+1 and, in general,
for all m < n, m + n even, we have

i [n/2]1(1/2) |(n+1)/2) (Iw)"
e 2n (= m)/2)1(3/2) (npm) /2(3/2)m
w o Fs L(n+1)/2] +(1/2), [n/2] +1; w?

[(n—m)/2] + 1,(n+m)/2+(3/2),n+(3/2); 4
We will return to these examples in Section 4.

3. Expansion in trigonometric functions. A familiar alternative
to expansions in orthogonal polynomials is Fourier expansions. In the
current section we paint on a broader canvas, allowing more general
expansions in trigonometric functions. The reasons are twofold. Firstly,
Fourier expansions implicitly assume periodic boundary conditions and,
in their absence, result in the Gibbs effect. Secondly, they converge
much too slowly and represent a poor choice on this score as well.

Let a = {am}mecz, and b = {by}men be two sequences of non-
negative, monotonically increasing numbers. We seek to express f €
Ly[—1,1] in the form

o0

(3.1) f(z) = Z o cos(amx) + Z Afn sin(b,, ).

m=0 m=1
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Density of this expansion in Lo[—1, 1] is associated with the extension
of the classical Miintz theorem [10, page 187] to the unit circle and is
immediately satisfied in all cases of interest to this paper.

Expansion (3.1), in tandem with the finite section method, requires
orthogonality, thereby imposing further conditions on the coefficients a
and b. It is trivial to prove that this is tantamount to

sin(am + an) | sin(am —an) _ sin(bm +b,)  sin(bn —ba) 0

Am + ap, m — G by + by, b — by,

for all m # n. We obtain the matrix entries

1 1
Aomon = / / cos(amz) cos(any) Ky (z,y)dedy, m,n € Z,,
“1J-1

1 1
Moot = / / cos(am) sin(buy) Ko (2, y) de dy,
~1J-1

méeZy, neN,

1 1
Aot am = / / si (b z) cos(any) Ko (2, y) de dy,
~1J-1

méeN, neZ;,

1 1
A2m—1,2n—1 = / / Sin(bmx) Sin(bny)Kw (:E, y) dz dya m,n e N.
—-1J-1

3.1. Large-(m,n) asymptotics. Similarly to Section 2, we need
to work out the large-(m,n) asymptotics of the A, ,s. The starting
point of our analysis is the asymptotic expansions

1
(3.2) /71 f(z) cos(ax) dx

~sina’yS GUL1e0(1) 4 509 (1)
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(3.3) /_ fla)sin(be) ds

— (=¥ on) (2k)
~ —cosby T [ (1) = (1))
k=0

R e
+sinb Y E)QkJEQ [FEFFD 1) 4 fEHD ()], > 1,
k=0

which can be easily obtained from the asymptotic expansion of [ _11 f(z)
el dz (cf., for example, [24]), taking real and imaginary parts, respec-
tively.

Letting e; € {—1,1}, ¢ = 2, 3,4, we denote

+ 62Kw(xa y)

S][:?’E3764] akal |: (m,y)

r=1y=-1

+64Kw(mvy) :|
r=y=-—1

r=—1,y=1
Note in passing that in the important case of Abel-type kernels
Ko (z,y) = p(z — y) we have

r=y=1

+ €3Kw($, y)

[1,1,1] = (- 1)l[2p(k+l (0) + p(k+l)(2) + p(k+l)(_2)]’
S5 = (1) (2) - p (-2))
S[l -1,-1] _ (— 1)l+1[ (k+1) (2) — p(k+l)(f2)],
S[ 1,—-1,1] :( l)l[ (k+1) (0) 7p(k+l)(2) *p(k+l)(*2)].

Using (3.2) twice,

Ao an ~ sin amz (2k21/ (02X K., (1,y)+02F K., (-1, )| cos(any)dy
—0 @ -1

o (=1)*
—i—cosamz %12
k=0 4m

1
x / O K (1, y) — 85 K (<1, y)] cos(any) dy
-1
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oo (_1)]€+IS[17171]

. . 2k,21
~ S0 G S0 D
ki—0 9m Gn
o ([ 1\k+lgl-1,1,-1]
. (-1) Szk,21+1
-+ sin a,,, CoS a,, g 2hr1 2002
k,1=0 m  Qn
oo (_ 1\k+l gll,—1,-1]
. (—1)" S5 1o
-+ COS 4y, S1N Gy 262 211
ki—o Gm an
oo [ 1\k+lcl-1,-1,1]
(-1) 52k+1,2l+1
-+ Cos @y, COS a, g %12 2042
a an

k,1=0 m

Likewise,

0o k+l gl—1,1,-1]
. (=1) S2k,2!
Ao 2n ~ —sinay, cos by, E

2k+1721+1
ki=0 9m bn
0o (__1\k+lgll,1,1]
. . ( 1) S2k,21+1
-+ sin a,, sin bn E Tbm“
k=0 @m On
oo (_1\k+lcl-1,-1,1]
_ b ( 1) Szk+1,2l
COS Ay, COS by, E 2RI
k,I=0 m n
oo (_1\k+l [17717711
. ( 1) S2k+1,2l+1 .
+ cos a,, sin a, 2%T2,2012 ;
am ' “bn

k,l=0

e <] k+1 [17717711
. (=1)" "S5 o
Aomti 2n ~ — cos by, sina, Z

2k+1_20+1
kico Om ' an
oo (_1\k+lcl-1,-1,1]
(-1) Szk,2l+1
— ¢cos b, cos a, E 2T 2
ki=0 Im dn
[e’e] _1\k+! [11171]
. . (=1) S5 1
+ sin b, sin a, E 172’“”—2”1
ki=0 m On
0o (_ 1\k+lgl-1,1,-1]
. (=1) 52k+1,2l+1 .
+ sin b, cos a,, g 52 32 ;
m  On

k,l=0
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oo (_1)]€+ls[_17_171]

A 2k,21
2mA1,2n41 ~ COS by, cos by, E ST o0 T
k= bin™" b
=0
0 ([ 1\k+lgll,—1,-1]
. (-1) Sok 2141
— cos by, sin b, g PR PTES
k,1=0 m  Un
oo (_1\k+lgl-1,1,-1]
. ()" S5 1o
— sin b, cos b, g LR
k,1=0 m  Un
o (_1\k+lgll1,1]
. . (-1) Sokt1,2041
+ sin b,, sin b,, E PR
k,1=0 m  Un

Were we to make the simplest possible choice, the Fourier expansion
a = {™n}mez,, b = {mn}ncn, matrix elements would have behaved
asymptotically as

(=1)™" g1,
aim2n2 C11 J
_1)m+n+1

A2m,2n ~

Ao omg1 ~ ————

m,2n+ mmn2 ,
_1)m+n+1
Aomyion ~ —5——5—

m+1,2n m3mn?2
=)™ 1,
,0 ’

Azmt1,2n41 ~ 0

m2mn

Note in particular the disappointingly slow rate of asymptotic decay of
A2m+1,2n+1-

It makes sense to choose a and b so that the rate of decay of all the
coefficients is as rapid as possible. It is easy to see that this goal is
attained for all K,, € C*([—1,1]?) if and only if sina,, = 0, cosb,, = 0,
for m € Z;, n € N. This results in modified Fourier expansions [18],
with a,, = mm, b, = m(n — (1/2)). We note that this choice indeed
results in an orthogonal system. Another advantage of modified Fourier
expansions is that, unlike classical Fourier expansions, they converge

uniformly for analytic functions, regardless of periodicity [18].
We therefore restrict ourselves in the sequel to the modified Fourier

base. The large-(m, n) asymptotics are
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FIGURE 3.1. On the left, absolute values of Az, 2, (boxes, the straight decreasing
line), A2n,2n+2 (discs, the line with a single maximum) and A2n 2n+4 (points, the
line with two maxima) and, on the right, absolute values of Ag 2, (boxes) and

Ao,2n+1 (discs), all for Ky, (z,y) = eiw@=9? and w = 100.

(—1)k+t [—1,-1,1]

o0 oo
~ m+n
(3-4)  Agm 2n Z Z 7T2(k+l+2 m2k+2p2142 S2k+1 20+1>
k=0 1=0

(3.5) Az 2n+1

~ m+n+ ZZ (—1)k+l gl
k+l+2)m2k+2( (1/2))2l+2 2k+1,214+1°
—o0

(3.6) Aamt1,2n

I+l
+n+1 (-1) [-1,1,-1]
~ ) ZZ m2(k+142) (1 — (1/2))2k+2n20+2 SZk+1,2l+1a
k=0 [=0

(3.7) A2m+1 ans1 ~ (=1)"F"

(=1)kH [1,1,1]
XZZ 2(k+1+2 2k+2 21 25219’+71,2l+1‘
= w2 ) (m — (1/2))2k42(n — (1/2))%1F

Note that (3.4)—(3.7) could have been alternatively obtained from the
multivariate modified Fourier asymptotics in a cube, described in [20].



494 H. BRUNNER, A. ISERLES AND S.P. NORSETT
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FIGURE 3.2. —log;o|A2m,2n| for the Fox-Li kernel, growing n and (a) m = n;
(b) m =n —2; (¢c) m =0, n even. In all cases w = 100.

TABLE 1. Absolute values of some A ns for the Fox-Li kernel K (z,y) =
ei“"(c”’y)2 and w = 100.

n 100 200 400 1000
Asnon | 3.80_02 | 5.80_0 | 1.59_o7 | 3.39_00
Aopanya | 347 02 | 5.71_6 | 1.58_o7 | 3.38_go
Aononia | 273 02 | 5.61 o6 | 1.57 o7 | 3.37 0o
Agon | 5.50_04 | 1.20_05 | 2.34_0s | 3.57_o7

)

Ason | 5.49_ 04 | 1.18_05 | 2.31_06 | 3.52_¢7

In Figure 3.1 we display absolute values of different matrix entries
Ap, n for w = 100. As is clear from (3.4)—(3.7), the coeflicients decay
like On~* when descending along diagonals, but only like On~2 when
descending along columns (or moving rightwards along rows) of A, and
this is fully reflected in the figure and in Table 1. This different rate
of decay has important implications, which we discuss in Section 4, to
the design of an effective finite section method based upon modified
Fourier expansions.

Note further from Figure 3.1 and even more from Figure 3.2 (which
should be compared with Figure 2.1) that asymptotic large-(m,n) be-
havior commences fairly rapidly, once it takes over from large-w asymp-
totics. Once it happens, modified Fourier expansion converges much
slower than an expansion in Legendre polynomials: sooner or later spec-
tral convergence will beat a polynomial one. Having said so, generating
the data for Figure 3.2 was substantially faster than the correspond-
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ing task in Figure 2.1, although the former requires considerably more
coefficients. In both instances we have used exact formulae (which, for
modified Fourier, will be introduced in the next subsection). However,
an important advantage of modified Fourier becomes apparent once
exact expressions for A, , are not available. In the case of Legendre
expansions we must resort to numerical integration, of a cost already
substantial for small m and n (because of high oscillation induced by
w) and escalating rapidly when m and n grow. Modified Fourier expan-
sions, however, can be calculated cheaply for large m and n using the
asymptotic expansions (3.4)—(3.7) or their generalization to Filon-type
methods in [20].

Before we consider in detail the Fox-Li oscillator, we note briefly that
it is possible to speed up the rate of decay of the A,, , by using poly-
harmonic bases in place of modified Fourier [3]. In other words, we
expand eigenfunctions in the eigenfunctions of the polyharmonic op-
erator V" in the square [—1,1]%, with Neumann boundary conditions:
modified Fourier expansion corresponds to » = 1. In that case it is pos-
sible to show that A, , ~ O(mn) "!. Note that such polyharmonic
orthogonal systems can be represented explicitly as linear combinations
of exponentials and trigonometric functions [3].

3.2. The Fox-Li operator. Similarly to Section 2, we analyze
in great detail the case K, (z,y) = e@(@=9)* the Fox-Li kernel. By
virtue of symmetry we have Asy, ont+1 = Aamy1,2n = 0, but an explicit
calculation of Asp, 25, and Aapy41,2n+1 is not straightforward.

Lemma 5. Let

1 pl1
0(a,b) = /1 / 1 ellertn e dg dy,

where a,b € C, a+b# 0 and z € C\ {0} is a parameter. Then

xl/2

(3.8) 0(a,b) = G )

[F(a,b) + F(b,a)],
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where

F(a,b) = cos(a + b) exp < - :—22>
o (2 122) wene (2 -22) e (12)]
st 0 (- ) (2 +22) e (2 23]

Proof. Since
1,1
99 _, / / reiar )= @=0)? 4 4y
da —1J-1

o0 e 2 2
T i(az+by)—2"(2-v)* 4.4
ab /71 /71 ve v

we deduce, integrating by parts, that

00 0 —ey)?
_ _ 1(az+by
2z <8a (9b> 1/ / - dz dz dy

= —iaf(a,b)
1
" / [ei(a by —=2(1-0)? _ gi(=atby)==2(149)%) g

-1

Y.

Likewise, changing the order of integration,

o0 09 gilaatoy) de™ 7V (z—v)®
> <8a 8b> // @ e

= ibb(a, b)
1
— / [ei(az+b)—z2(z_y)2 _ ei(az—b)—z2(1+z)2] de.

-1
We subtract the two last displayed equations from each other, whereby

1
i(a + b)0(a, b) :/ [ei(a b0 =22 (1=0)" _ gi(=atbt)==*(140)°

-1
+ ei(at+b)—z2(1—t)2 - ei(at—b)—z2(1+t)2] dt.
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This is an elementary integral, which we evaluate explicitly, deriving
(3.8) after elementary algebra. O

Corollary 1. For any m # n it is true that
(3.9)
F(mm,nm) + F(nwr,mn) F(mm,—n7)+ F(—nm, mmr)
4iml/2z(m + n) 4irl/2z(m — n)

A2m,2n = ’

(310) A2m+1,2n+1

_ _F(m=(1/2))m, (n—(1/2))7) +F((n—(1/2))7, (m—(1/2))7)
4irl/2z(m+n—1)

F((m=(1/2))7,—(m = (1/2))m)+ F(=(n—(1/2)), (m—(1/2))7)

4iml/2z(m—n) ’

+

where z = (—iw)'/2.

Proof. Follows at once from (3.8), because

Ao 2n = 2[0(mm,nm) + 0(—mm, nw) + 0(mm, —nw) + 6(—mm, —nm)),

A2m+1,2n+1 = *%[9((7"
_ 9((m _

(—(m — 3)m, (n — 3)m)

_ % 0
r,—(n—1)m) +6 2)7)]-

Since the error function is even, we have F(a,b) + F(b,a) = 0 and the
calculation simplifies. O

Note that

2,2 :
F(mm,nn) = (—1)"*"exp (W4.m > [erf <2(W7m1/2 + 2(—iw)1/2>
1W

—iw)

irm

+erf (m - 2(—iw)1/2> —2erf <%>} ’
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P(r(m—(1/2)), x(n—(1/2))) = (~1)™ " exp (T
w Nere (Tm = (/2) o s v
(P )

(Wz(m - (1/2))2>

2(—iw)1/2
et (T — 2
+ ( 2(:IW)/ ”T(”’L(l/?))>
2erf< ) ﬂ

somewhat simplifying the calculations.

It remains to derive the diagonal elements A,, .

Lemma 6. It is true that

Proof. Changing variables and exchanging order of integration,

1 .1 1 pl-y
/ / eia(avfy)fzz(avfy)2 dz dy _ / / eiatfzzt2 dt dy
1/ “1J 1y
2 : 2
— [ @-uemra
-2

an elementary integral. O

It is now trivial to express the diagonal coefficients in the form

[0(mn,mn) + 0(7n, —mn)]

A2n,2n =
[6((n — 3)m,—(n— 3)m) — 8((n — 3)m, (n — 3)m)],

1
2
A2n+1,2n+1 = %
both with z = (—iw)l/ 2, Explicit expressions are long, although easy
to derive, and they add little to our comprehension.
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—T T T T T 1
20 40 60 80 100 120 140 160 180 200

FIGURE 3.3. The number of significant digits in approximating one of the two
nonzero eigenvalues for K, (z,y) = cosw(z — y), w = 100, with an N X N matrix:
squares denote modified Fourier and discs the Legendre expansion.

3.3. Other oscillators. The modified Fourier coefficients for the
rank-2 kernel K, (x,y) = cosw(xz —y) can be evaluated with great ease,

1 4(=1)"mu? sin® w
2m,2n — (7r2m2 _ wz)(7r2n2 _ w2)7
4 B 4(—1)m*t"y? cos? w
22 = 2 (= (1/2))2 — 22 (n — (1/2))% — w?]’
m,n € Z,,

while A, , = 0 for odd m + n. As in subsection 2.4, the matrix A
is of rank 2. Moreover, once we let Ag = (A2m2n)mmez,, 4o =
(A2m+1,2n+1)m.,nez, » We obtain two rank-1 matrices, and in each case
the nonzero eigenvalue is the sum of squares of diagonal elements.
Consistently with our intention from subsection 2.4 to use this simple
example as a proving ground of the finite section method, we display
in Figure 3.3 the number of significant digits once the eigenvalue
1+ (2w)~!sin 2w is approximated by Zr]:i:l A}, for modified Fourier
and Legendre expansions and w = 100.
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As expected, eventually Legendre must win and, once it has overcome
the influence of w-induced oscillations, it does so with style. However,
two observations demonstrate that modified Fourier expansion is not
necessarily uniformly inferior. Firstly, the initial error, in the regime
dominated by large-w asymptotics, is significantly smaller with mod-
ified Fourier: we will see in subsection 3.4 that this corresponds to a
more general pattern. Secondly, even if modified Fourier expansions
converge significantly slower, we can attain fairly good accuracy with
small V. This is important because the cost of generating the truncated
matrix A is typically much cheaper with modified Fourier expansions
and, as will see in Section 4, the size of the effective matrix that we
need consider can be reduced.

Like earlier in subsection 2.3, we next consider the kernel K, (z,y) =
e“?¥_ The integral

1,1
6(a,d) :/1/1ei(‘”+by+“’zy) dz dy

can be computed, e.g., using symbolic software, in terms of exponential
integrals:

o) = Lo (£=0 )Y |y (et )0=0)

iw i

iw iw
_Ei1<(a+w')(b+w)> _Ei1<(a—w')(b—w)>]
iw iw
2m iab
el _la b <
[ Zew (<) lali <,
0 otherwise,

where Ei; is the exponential integral [1, page 227]. Since 0(a,b) =
6(—a, —b), we deduce that
A2m,2n = %[e(mﬂ-’ 7’L’7l') + 0(m7r, 7””)])
Azmt1,2nt1 = 5[0((m(1/2))m, —(n — (1/2))7)
= 0((m — (1/2))m, (n — (1/2))m)],

again, A, , = 0 when m 4 n is odd.

In Figure 3.4 we display the number of significant digits in Aap on
using modified Fourier and Legendre expansions. Evidently, up to
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Bogg,

I e e L e e e e e R
0 50 100 150 200 250

FIGURE 3.4. —logyq |A2n,2n| for the kernel Ko, (z,y) = e/“*¥ and w = 100: squares
stand for modified Fourier and discs for Legendre expansions.

about n = 30 both expansions produce largish coefficients and then
large-(m, n) asymptotics win, Legendre coefficients decay very rapidly
and modified Fourier coeflicients much more sedately.

3.4. Large-w asymptotics. Let us assume for simplicity an Abel
kernel of the form K, (z,y) = e*“9= %) where g € C*[-2,2]. We
further assume that g is an even function, ¢’(0) = 0, ¢”(0) # 0 and
that otherwise g’ # 0O-this definitely represents loss of generality but
the Fox-Li operator survives. Our present concern is to estimate the
size of the coefficients when m and n are sufficiently small and the
w-generated oscillation prevails. To this end we need to investigate
integrals of the form

1 1
(3.11) 1= [ [ et aay.

Note that in our case f(z,y) = ¢m(z)dn(y), but it is more convenient
by this stage to work in a more general setting.



502 H. BRUNNER, A. ISERLES AND S.P. NORSETT

Equation (3.11) is a bivariate highly oscillatory integral, of a kind
considered in [33] and elsewhere. Within the framework of asymptotic
analysis it is exceptional, because the entire line x = y consists of
stationary points: viewing g as a function of two variables, & la
Section 1, Vg(z,z) = 0.

Letting t = x — y, we trivially obtain
0 2
11f] = / B (1)e9® gy / B ()ew9® dt,
-2 0
where
1 1-t
RI(t) = / ft+y,y)dy,  RF(E) = / f(t+y,y)dy.
—1-t —1

Therefore the problem reduces to two univariate integrals, of a kind
that can be readily expanded for w > 1 using the theory in [24],

2
/ B ()9 g
0
00 !
oy L ) = hall0) g _ ot () g0
L= (—iw)m g9'(2) g9"(0)
2 oy [+]
i (0)

+ elwg(t) dt ' ,

0 mz::() (—iw)™

O3 [l = bl (0) gy o (0) g
2 G T [T g (2) g"(0)
0 o 7 [-]
, hin (0
+ / ewa(®) gy 3 M O)
i mZ:O(—lw)m

where
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Let us now consider in greater detail the case g(z) = 22 of the Fox-Li
operator, since it is indicative of a more general pattern of behavior.
Insofar as the modified Fourier basis is concerned, commencing from
the cosine terms, we have for all m and n,

msin(wmt) — nsin(rnt)

m#n: A(t) = (1™

7(m? — n?) ’

plt] (t) = _pl-l (),

i t
m=n: hl@t)=01+ 1t) cos(mnt) + %M

)
™n

RIFI(#) = (1 — Lt) cos(mnt) — %M.
™

We examine first the off-diagonal case m # n. Easy induction confirms
that

RN (t) = (1)t i DAkt D

P (2 + 27)!

2(k+r+1) _ 2(k+r+1)
m n
% 7T2(k+r)t2k+1’

m2 — n2

T'EZ+;

therefore, hL_](O) = pLf] (0) = 0 and

(T‘ + 1)! m2(r+2) _ n2(r+2)
(2r + 2)! m2 — n?2 ’
(r + 1)1 m20+2) — p20r+2)
(2r + 2)! m2 — n?

h[_}/(o) _ (_1)m+n+r+17r2(r+1)

r

h?[:HI(O) _ (71)m+n+7‘ﬂ,2(7‘+1)
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Moreover,
-1 m-+n+r, 2r X -1 k
4r(1/2), 2 K+ (1/2))
y m2k+r+1) _ n2(k+r+1)t2k+1
m2 _ ’I’L2
_ (™t m2H) = ~ (rme)?
47(1/2),.(m?—n?) r+(1/2); 4

Sl |

(7l)m+n+rﬂ.r+1
= ort(1/2) (m2 — n2)tr—(/2)

% |:mr+(3/2)JT_(1/2) (rmt) — nT+(3/2)JT_(1/2) (ﬂ'nt)]
(_1)m+n+17r7‘+1

= m[mr+ij,1(7rmt) — nT+2j7-71(’/Tnt)],

where j,, is the nth spherical Bessel function [1, page 437]. Since

Ls/2] o o .
N s (—1)727202720 1 (5 + 25)!
i) =sin (= 7 ) 2 @ie-u)

[(s—1)/2] i9g—2j—2_—2j—2 .
—1)7274 J 1+ 25)!
+cos<z_”> (=1) 27 (s + 1 4 2j)

2) %= (2j + 1)l(s — 25 — 1)!

(cf. http://functions.wolfram.com/03.21.03.0036.01), we obtain

L(r=1)/2] .
. B . ; (r+25—1)! 1
jroa(—27m) =2(-1)" ! ;0 CU @i =25 = 1)) Gy

and a similar expression for j._1(27m). We observe that both values
grow like OM?" as r > 1, where M = max{m,n}.

This provides explicitly the values of h[r_] at 0 and —2 and, similarly,
of h{rﬂ at 0 and +2. Substitution into the asymptotic expansion yields
(3.12)

- 1 — iw — iw —
A2m,2n ~ Z W |:%h7[ﬂ ](2)94 - %hL 1(—2)64 — h; ] (0):| .
r=0
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It follows at once from our analysis that the asymptotic expansion
(3.12) converges when m,n < w!/2, Thus, in this regime we can use it
as an effective means to calculate the entries of A.

In the remaining case, m = n, we have

1) — oo( ) 2k 2k 2k ,2k+1
h=l(t) Z( - (n)*t +Z 2k+1 (n)t ,

— (2k)!
© k ©
Bt (t) = I;) ((2]3' ()2 ¢k — kz_o %(ﬂn)%t%ﬂ‘

Therefore (restricting our attention to hl~] but noting that identical
analysis applies to hlt])

- k(k+(1/2)),
[— ] _ r 2(k+r) 42k
h Z 2k T GO
k=0
— (k+1)rt1 2(k+r) ,2k+1
N ol Uaa IS VEMETRRIEERY
— (2k +2r + 1)!
and we deduce that
2
_ " _ +1)!
W) = (0 T gy = gy T DE o
Ho =G i 0 = oG )
To identify hk](—2) we compute, after much algebra,
T 2r 2
(1) 4yl 172 (1/2),r + 1; 4
LCDeTE e [ een (e
22r41(1/2) 41 r+ 1,7+ (3/2); 4 )

We obtain two Bessel-like functions. (It is possible to represent the sec-
ond function as a linear combination of two spherical Bessel functions,

but this adds little to the narrative of this paper.)
Similar analysis extends to the odd coeflicients Agy,41,2n+1, Whence

(~pyme
wl(m — (1/2))2 — (n — (1/2))
[(m—(1/2)) sinw(m—(1/2))t ~ (n—(1/2)) sin(n—(1/2))1],

except that the formulae become (even more) complicated.

hl(t) =
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Asymptotic expansions and algorithms based upon them (e.g., Filon-
type quadrature) are often used as a very effective means to compute
highly oscillatory integrals [24]. This is the moment to emphasize
that this is not the case in the computation of the A,,,. The
overwhelming reason is that, while large-w asymptotics are valid when
w is substantially smaller than m and n and we can use large-(m,n)
asymptotics when m and n are very large in comparison to w, neither
formula is of much use in the intermediate asymptotics regime. Thus,
in subsection 3.6 we recommend using FFT for an efficient computation
of the A, ,s.

3.5. Large-n asymptotics. For completeness we are also interested
in estimating the size of A, , when n is large (that is, Ow or larger),
while m is relatively small. In other words, 0 < m < M, while
M+1<n<M+1+ N for some (large) N.

Letting
1
Om(y) = / cos(rma) K., (2, y) da,

-1

and employing the asymptotic expansion (3.2), we have

1
Ao on = / om(y) cos(mny) dy
(3.13) o

Y (;;)—lzlﬁ[a%“”(l) k()]

In the case of an Abel kernel K, (z,y) = K,(z — y) we can easily
demonstrate, integrating by parts, that

o (y) = —[Ku(l —y) = (=1)" Ky (1 +y)]
—7mm /_1 sinmmz K, (z — y) dz,
om(y) = KL(1—y) + (1)KL (L +y) — (1m)*om(y).

In particular, if K, (y) = €9 then o’ (y) scales like m, o' (y) like

max{w, m?} and it is easy to prove that, in general, a,(,,f) scales like
max{w*~!, m*}. Given that, within our regime n > m,w, it thus
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follows from (3.13) that the asymptotic expansion is convergent at a
geometric speed.

3.6. Computation of the modified Fourier matrix. Given
suitably large s € N, we wish to compute 4, ,, form,n =0,1,... ,s—1
and the modified Fourier basis. The simplest approach is also probably
the most effective for a general kernel K, namely, to compute

Ao on = / / cos(mmax) cos(mny) K, (z,y) dz dy,

Asmst,on = / 1 / sinr(m = (1/2))2) cos(mny) K. (z,5) do dy

A= [ [ costmma) sin(a(n - (1/2)5) K. (2. 9) do dy
Aomstomss = / 1 / sin(r(m — (1/2))z) sin(z(n — (1/2))y)

1
x K,(z,y)dzdy

for myn = 0,1,...,]s/2| — 1 using bivariate Fast Fourier Transform
(FFT). Of course, s must be large enough, at least Ow, so that
oscillation due to w is not a problem, and it helps FFT if it is a
highly composite integer. The computational expense consists thus
of two components. Firstly, we need to compute K, at 2s% points to
implement the requisite fast cosine and sine transforms, secondly we
incur Os?log s flops in the computation of the transforms.

Matters are considerably simpler for the Abel kernel K, (z,y) =
ew9(@=Y) " which we have already encountered in subsection 3.4, and
as there, subject to the additional conditions that g be even (hence
Aopmt1,2n = A2 2n+1 = 0 and need not be computed), ¢’(0) = 0 is the
only stationary point of g in [-1,1] and ¢''(0) # 0. We have proved
there that

(3.14)
0 9 .
Aomon = / C,:l] elwa(t) q¢ +/ hLC{’-;](t)elwg(t) dt,
0

A2m41,2n+1 / S’_] )es® dg
2
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2
(3.15) + / R (1)ei9® gy,
0

where

1+ L) cos(mnt) + L8l —

( 2 2
Al (1) = , in(an
) (_1)m+nmsm(;rrznni)z—::;l)n(wnt) m 7& n;
in(mwnt
ety — | (7 20 costmnt) = 358 =n,
) (_1)m+n+1msm(‘;rr?nn:)zi’r:;l)n(ﬂnt) m 7& n;
(14 4¢) cos(m(n — 1)t) + SO0y — i,
(

1 ymtn (m—(1/2)) sin(x(m—(1/2))t)
1) w[(m—(1/2))2—(n—(1/2))?] m# n,

—(n=(1/2)) sin(w(n—(1/2))?)
w[(m—(1/2))*—(n—(1/2))?]

(1 —L1t)cos(m(n— 3)t) — sin(rin (12D -y — py,

2 7(2n—1)
s, _ m4n m—(1/2))sin(w(m—(1/2))t
hgn;} (t) - (_1) Al (ﬂ[(n’Ef/(l)/)Zs))Z(fgnf((1//2))))2}) m 7& n,
~(n—(1/2) sin(r(n—(1/2))1) m % n.

w[(m—(1/2))?—(n—(1/2))?]

Therefore, changing variables in a completely transparent manner, both
(3.14) and (3.15) reduce to the calculation of integrals of the form

2 2
. : 1
/ w9 sin(nnt) dt, / elws(®) (1 - §t> cos(mnt) dt,
0 0

2 1
/ eI gin <7r <n — —>t> dt,
0 2
2
. 1 1
/ ew9(t) <1 — —t) cos (71' (n — —>t> dt,
0 2 2
and this can be accomplished with univariate FFTs. Thus, the cost

reduces to 2s calculations of g and Oslog s flops to evaluate the discrete
sine and cosine transforms.

4. The hyperbolic cross. The modified Fourier basis comes into
its own as a mean to compute spectra of highly oscillatory Fourier
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\ \

FIGURE 4.1. The hyperbolic cross associated with modified Fourier expansions for
the Fox-Li equation, with w = 100. m = n = 0 corresponds to top right corner.

operators once we take into account the specific rate of decay of the
coefficients A,, ,, for large m and n. This is demonstrated in Figure 4.1,
where we display the values of |Asy, 25| (on the left) and |Aom41,2n41]
(on the right) for the Fox-Li equation, m,n < 800 and w = 100.
The meaning of the differently-shaded regions is as follows. The
white area on the bottom right corresponds to terms which are less
than 10~7 in modulus, the adjoining light-shaded area corresponds to
1077 < |Ap,n| < 1079, the next one to 107°% < |4, | < 107°, and
so on. Finally, the thin diagonal sliver at top left consists of all (m,n)
such that |Ay, | > 1072

The pattern discernable in Figure 4.1 is the familiar hyperbolic cross,
originally introduced by [6] in the context of multivariate Fourier
expansions. As we already know from subsection 3.1, using a modified
Fourier basis results in

A ~O(mn) "%, m,n>1.
This implies that the coefficients decay at a different rate along different
directions in the matrix: fastest along diagonals and considerably
slower along rows and columns (cf. also Figure 3.1). This is precisely
the phenomenon visible in Figure 4.1. Formally, let A = (Ag1)k,icz,
be the matrix whose eigenvalues we seek. It follows that A partitions
into

AL A
(4.1) A_[ e A}
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where A;; is an r x 7 matrix, with sufficiently large r (in practice
r = Ow), while the elements of the infinite matrix A, » are adequately
small.!

Let us replace the ‘small’ matrix As o by zero,

T [ AL A
A_{AM " }

The main idea is to replace the computation of o(.A) by that of o(A):
as it turns out, the latter is a considerably simpler problem. We do
not consider here the question of the distance between the two sets,
while remarking that computational experience is that it is very small
indeed, provided that r is large enough. Intuitively speaking, provided
that max; j>,41|Am,n| is small, so should be the Hausdorff distance
dist [0(A) — o(A)], but the veracity of this statement depends on the
structure of the pseudoeigenvalues of A [32].2

Theorem 7. The matriz A is of rank 2r. Moreover, let G =
Ai2A21, and let Gi and G2 be any r X r matrices such that G1G, = G.
Then the nonzero eigenvalues of A coincide with those of the (2r) x (2r)

matriz " p
- 1,1 1
B [ o O] .

Proof. Let A € 6(A), and assume that A # 0. Further, suppose that
Uy
is a corresponding nonzero eigenvector, where v; € C”. Therefore,

Aj 1 4+ Ag a1 = A, Az 101 = Avy.

We substitute v, = )ﬁlAz,l v1 into the first equation and multiply by
A # 0. The outcome is

(4.2) (A172A271 + )\A171 — /\21)1)1 =0.
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We therefore deduce that nonzero eigenvalues of A coincide with the
solutions of (4.2), hence with the quadratic eigenvalue problem with
the pencil (G, Ay1,1,—I). Since the underlying matrices are r x r, the
quadratic eigenvalue problem has 27 solutions, and we deduce that
rank A = 2r.

To prove the second part of the theorem, we let u € o(B), u # 0,
with a nonzero eigenvector

U
u = [ 1} , u,up € C.
(]
Therefore,
Aiur 4+ Grug = pug, Gaur = prup.

As before, we substitute us = ,u’lggul into the first equation. The
outcome is

(G1Go + pAr 1 — P Iuy = (G + pAry — p’T)uy =0,

and we obtain ezactly the same quadratic eigenvalue problem (4.2) as
before. (Indeed, even the eigenvectors are the same!) It is trivial to
prove that this argument works in reverse, i.e., that every solution of
the quadratic eigenvalue problem yields an eigenvalue/eigenvector pair
for B, simply repeating the argument in reverse. This completes the
proof of the theorem. a

The significance of the last theorem to the computation of eigenvalues
of the Fredholm problem (1.1) is clear: it suffices to choose suitably
large r, form the matrix A; i, approximate the matrix G by suitably
truncating the matrices A; 2 and Az (i-e., calculating A,, ,, for 0 <
m,n < s— 1, min{m,n} < r — 1 for sufficiently large s) and compute
the 2r eigenvalues of B. Recall that, the operator (1.1) being compact,
the eigenvalues of A accumulate at the origin. In effect, what we are
doing here is to set all the eigenvalues, except for the first 2r, to zero.
Given that these eigenvalues are likely to be tiny, well underneath the
machine epsilon of any practical computer, this procedure incurs very
small error.

There are several obvious choices of G; and G, such that G = G1Gs.
The most obvious is G; = G, Go = I. Another is letting G,G> be the
QR factorization of G. An intriguing possibility in the symmetric case
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w=100

FIGURE 4.2. The size of the elements of Ay, » in the Legendre expansion for the
Fox-Li operator with w = 100.

Gy = QIT is to take g; G- as the Cholesky factorization of G, whereby
G1 = G, . This has the advantage of replacing a complex symmetric
infinite matrix by a complex symmetric finite one. A word of warning,
however: since G is complex, the existence of Cholesky factorization is
not guaranteed.

Two questions remain. Firstly, does similar behavior, namely that
enough entries of A become rapidly small, in a manner that can be
exploited in practical computation, extend to Legendre expansions.
Figure 4.2, where we display the size of terms in a 250 x 250 matrix,
demonstrates that this is not so. The white shading in the bottom-right
corner corresponds to |A,, | < 1072% and subsequent bands of color
to an increase in modulus by a factor of 103.

A reasonable choice of r for a modified Fourier basis with w = 100 is
125 and the size of B is (2r) x (2r). On the face of it, whether we use
modified Fourier expansions or Legendre expansions, we end up with
a matrix of similar size. This, however, disregards the computation
of the matrix in question! According to Section 3, for general kernels
the cost of computing A for modified Fourier is Os?log s operations,
to which we need to add Or2s operations to compute G = Ai oAz 1.
In the case of an Abel kernel the cost of computing A is just Oslog s
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———— |

FIGURE 4.3. The size of the elements Az 2n and Aomy1,2nt+1 for Ko (z,y) =
el“lz=yl and w = 100 using modified Fourier basis and m,n =0,1,... ,800.

originating in FFT and ON to form N terms. Since we need to form
just r2+2rs nonzero terms of A and s > r, this means that in that case
the total cost is O(r + log s)s. Additional savings, which we disregard
here, occur in the complex-symmetric case.

For Legendre expansion, however, there is no good way of computing
the A, ,s. Even in special cases (e.g., the Fox-Li kernel) when we can
represent the A,, ,s explicitly as generalized hypergeometric functions,
their computation is fairly expensive. Thus, while the ultimate size of
matrices is similar, the cost of forming their entries is greatly smaller
for the modified Fourier expansion.

The second question is whether the state of affairs demonstrated
in Figure 4.1 remains valid for other kernels. Clearly, this is so as
long as K, is sufficiently smooth, so that the asymptotic estimate
A = O(mn)~2 holds. It breaks down for kernels with derivative
discontinuities.

As an example of such breakdown, we consider in Figure 4.3 the kernel
K, (z,y) = e«*=¥ It is easy to evaluate the coefficients in a modified
Fourier expansion explicitly. Thus, A,, , =0 for m+n =1 mod 2 and
(assuming that w is not an integer multiple of 7)

2iw[w? —iw(1—e*¥)—7?m?]

(w?—nZm2)? m=mn,
A2m,2n = 5 o
2(—1)™ w2 (1—e?v) .
(w?P—n2m?)(w? —n2n2) m £ n;
2iw[w? —iw(1+e?¥)— 72 (m—(1/2))?
A _ [ [w2(—w2<m1<1/2())212( 2 m=n
2m+1,2n+1 — .
) 2(— 1) W% (14e3%)
P e vy P e v L
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In Figure 4.3 we display the size of the ‘even’ and ‘odd’ coefficients
Ap,n for the modified Fourier basis. Evidently, the entries exhibit a
hyperbolic cross, except for diagonal elements, which decay like On~2, a
consequence of derivative discontinuity in K. Note that the spectrum
in this case has been derived (as an asymptotic expansion in w™!) in
[11]; hence, we do not require the finite section method to this end.

5. Conclusions. Spectral problems for highly oscillatory Fredholm
kernels are important, not least because of their relevance to laser
dynamics, and they are exceedingly challenging from mathematical and
numerical points of view. In this paper we continue the project on which
we have embarked in [11], to shed light on such problems. Specifically,
we have considered the method of finite section, a natural approach
toward the evaluation of the spectrum.

The obvious choice of basis in the finite section method is Legendre
polynomials, because of their very rapid convergence. However, the
onset of this rapid convergence is only after oscillations due to the kernel
have been resolved; hence, the outcome is a matrix which is not small.
Worse, there is simply no good method to evaluate matrix coefficients,
double integrals involving Legendre polynomials, efficiently.

An alternative to Legendre polynomials is to use a modified Fourier
basis. On the face of it, the convergence rate is considerably slower,
O(mn)~2 compared to spectral. Yet, implemented by exploiting the
hyperbolic cross structure, they result in matrices not much greater
than those originating in the Legendre basis, but whose coeflicients
can be calculated very rapidly with FFT.

Is modified Fourier expansion more efficient than Legendre? This in
large measure depends on the values of w: the higher the oscillation,
the greater the likelihood of modified Fourier prevailing. However,
a resolution of this question calls for fine-tuning of a wide range of
parameters and implementation options, as well as a great deal of
numerical experimentation for different kernels and values of w, beyond
the scope of the current paper.

Numerous challenges remain in the understanding of highly oscilla-
tory Fredholm spectral problems. The most fascinating to our mind
is the mathematical structure of the Fox-Li spectrum. We have plotted
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FIGURE 5.1. The eigenvalues of the Fox-Li operator for w = 100. The diamonds

correspond to ‘even’ eigenvalues (that is, following from expansion in cosines) and
stars to ‘odd’ eigenvalues.
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FIGURE 5.2. The same as Figure 5.1, except for w = 200 (on the left) and w = 500.

the spectrum for w = 100 (as obtained with the finite section method,
using modified Fourier basis with » = 127 and s = 800) in Figure 5.1.
Similar information is presented in Figure 5.2 for w = 200 and w = 500.

Evidently, the eigenvalues lie on a spiral. What is this spiral? How does
it vary with w?

Of course, even understanding of the structure of the Fox-Li spectrum
is but a first step on a longer journey into the unknown: understanding
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FIGURE 5.3. Real and imaginary parts of the eigenfunctions corresponding to the
first, second, twentieth and fortieth ‘even’ and ‘odd’ eigenvalues, respectively, for
w = 100.

the spectra of general Fredholm problems with high oscillation. The
work of this paper, as well as [11], need be seen as first and hesitant
steps toward this goal.

We have plotted the eigenfunctions corresponding to some eigenvalues
in Figure 5.3, and again it is striking how much structure can be
observed. Clearly, for small values of n (that is, for eigenvalues near the
outer arm of the spiral) the eigenfunctions are perturbed trigonometric
functions, while for large n they are (perturbed?) wave packets. Note
that changing variables * — z/y/w, y = y/v/w, A = A/y/w results in
the spectral problem

e
/ F@)e ™ de = Mf(y), —vw <y < Ve
—Vw

Now, were we to replace the interval of integration by the real line, i.e.,
consider the problem

/ f(:;z:)ei(”:_?”)2 de =Af(y), —oo0<y< oo,

we would have recovered a spectrum of a Schrodinger operator which,
indeed, possesses the above features: ‘low’ eigenfunctions resemble
trigonometric functions, ‘high’ eigenfunctions are wave packets.® Yet,
what is the discrepancy between the two problems? Can we infer the
first from the second?

Much remains to be done to understand highly oscillatory Fredholm
problems. We hope that this paper contributes in some measure toward
this goal.
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ENDNOTES

1. In the important case when A,,, = 0 for m + n = 1 mod 2,
we can split A into two infinite matrices, A = (A2m 2n)m nez, and
A0 = (A2m+1,2n+1)m,nez, , say: the Fox-Li equation is an important
example. In that case both A° and A° can be subjected to partition
(4.1) and an identical argument applies.

2. The pseudospectrum of A for the Fox-Li operator has been already
considered in [28].

3. We are grateful to Olof Runborg for this observation.
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