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ABSTRACT. Volterra observation systems with scalar ker-
nels are studied. New sufficient conditions for admissibility of
observation operators are developed. The results obtained are
applied to time-fractional diffusion equations of distributed
order.

1. Introduction. Consider the following scalar abstract Volterra
system

(1) 2(8) = 20 +/0ta(t—s)Ax(s)ds, £> 0.

Here, the operator A is supposed to be a closed operator with dense
domain on a Banach space X, zy € X, the kernel function a € L} _ is
supposed to be of sub-exponential growth so that its Laplace transform
a (M) exists for all A with positive real part, and it is assumed that (1)
is parabolic in the sense of Priiss [26], that is,

(P1) @(\) # 0 and Zﬁ € o(A) for all A with positive real part,

(P2) there exists a constant M > 0 such that ||(1 —a(\)A)7|| < M
for all A with positive real part.

In addition, we always assume that the kernel function a is 1-regular,
that is, there is a constant K > 0 such that

(2) IAa'(N)] < Kla (M)
for all A with positive real part.

In Priiss [26, Theorem I.3.1] it is shown that under these assumptions,
equation (1) admits a unique solution family, i.e., a family of bounded
linear operators (S(t)):>o on X, such that
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(a) S
(b) S(t) commutes with A, which means S(¢)(D(A)) C D(A) for all
t >0, and AS(t)z = S(t)Az for all z € D(A) and ¢ > 0.

)

(c) For all z € D(A) and all ¢ > 0 the resolvent equations hold:

(0) = I and S(*) is strongly continuous on R.

(3) Sty =z + /0 a(t — s)AS(s)xz ds.

Moreover, S € C((0,00),B(X)) and ||S(¢)|| < K.

For some results we need in addition that — A be a sectorial operator
of type w € (0,7) or that the kernel a is sectorial of angle 6 € (0, ).
Recall that —A is called a sectorial operator of type w € (0, ), if the
operator A is a closed operator with dense domain on X having its
spectrum contained in some open sectorial region of the complex plane,
symmetric to the real axis and open to the left:

o(A) C -3, where X, ={z€C:|arg(z)| <w}

for some w € (0, 7). Moreover, the resolvent of A is supposed to satisfy
a growth condition of the type ||AR(A, A)|| < M uniformly on each
sector X, .. Typical examples of such operators are generators of
bounded strongly continuous semigroups, where w < /2. We mention
that ‘sectoriality’ may have different meanings for different authors in
the literature.

The kernel a is called sectorial of angle 6 € (0, ) if
a (M) €3y for all A with positive real part.

In particular, when —A and a are both sectorial in the respective sense
with angles that sum up to a constant strictly inferior to 7, the Volterra
equation is parabolic.

The purpose of this article is to present conditions for the admissi-
bility of observation operators to parabolic Volterra equations, that is,
we consider the ‘observed’ system
V) { z(t) = o + f; a(t—s) Az(s)ds t >0,

y(t) = Cx(t).
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The operator C' in the second line is supposed to be an operator from
X into another Banach space Y that acts as a bounded operator from
X; — Y where X; = D(A) is endowed by the graph norm of A. In
order to guarantee that the output function lies locally in Ly, we are
interested in the following property.

Definition 1.1. A bounded linear operator C' : X; — Y is called
finite-time admissible for the Volterra equation (1) if there are constants
1, K > 0 such that

t 1/2
([ testeliar) < gl
0

for all t > 0 and all z € D(A).

The notion of admissible observation operators is well studied in the
literature for Cauchy systems, that is, a = 1, see for example [17, 27,
28]. Admissible observation operators for Volterra systems are studied
in [12, 18, 19, 22].

The Laplace transform of S, denoted by H, is given by

H\Nz = —(I —a(\)A) 'z, ReX>0.

>| =

The following necessary condition for admissibility was shown in [19].

Proposition 1.2. If C' is a finite-time admissible observation
operator for the Volterra equation (1), then there is a constant M > 0
such that

(4) [VReACH(N)|| < M, ReX>0.

In [19] it is shown that (4) is also sufficient for admissibility if X is
a Hilbert space, Y is finite-dimensional and A generates a contraction
semigroup. However, in general this condition is not sufficient (see,

e.g., [17]).
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We show that the slightly stronger growth condition on the resolvent

sup H (1 +1log™ 7")0‘7"1/2C’H(7")H < 00,
r>0
is sufficient for admissibility if & > 1/2 (see Theorem 3.6). This result
generalizes the sufficient condition of [29] for Cauchy systems to general
Volterra systems (1).

Our second main result, Theorem 3.1 provides a subordination argu-
ment to obtain admissibility for the observed Volterra equation from
the admissibility of the observation operator for the underlying Cauchy
problem. In the particular case of diagonal semigroups and one-
dimensional output spaces Y, this improves a direct Carleson measure
criterion from [12].

We proceed as follows. In Section 2 we obtain an integral represen-
tation for the solution family (S(t)):>0 and several regularity results of
the corresponding kernel. Section 3 is devoted to sufficient conditions
for admissibility of observation operators. A subordination result as
well as a general sufficient condition are obtain. Several examples are
included as well.

To enhance readability of the calculations, for the rest of this article,
K denotes some positive constant that may change from one line to the
other unless explicitly quantified.

2. Regularity transfer. The main result of this section is
formulated in the following proposition. Let s(t, 1) denote the solution
of the scalar equation

¢
s(typ) + ,u/ a(t—r)s(r,u)dr=1, t>0,u€C.
0

We denote by Lu or u the Laplace transform of the function wu.

Proposition 2.1. In addition to the general assumptions, we sup-
pose that A generates a bounded Co-semigroup (T'(t))¢>0 and that the
kernel a is sectorial of angle < w/2. Then there exists a family of
functions (vi)t>o such that

L)) = s(t,p) and S(t) = /0 " w(s)T(s) ds

satisfying
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a)s o < o0
(a) uPt>0||UtHL1(R+) o0

() llvellLemyy < K(t= 97 4 tt0/™) where K depends only on 6 and
the constant in (2).

(C) ||Ut||W1’1(R+) < K(l =+ t_29/7r + t+29/7r).
Moreover, for vy € [0,1], |u7s(t, p)| < Kt=270/7.

For the proof of this proposition the following two lemmas are needed.

Lemma 2.2. In addition to the general assumption on the kernel a,
we suppose that a is sectorial of angle § < mw. Let py := 20/n. Then
there exists a constant ¢ > 0 such that

_ NS
)| >
A= {cwo A<t

for all X\ € C with Re A > 0.

Proof. We borrow the argument from the proof of [25, Proposition
1]: we start with the analytic completion of the Poisson formula for the
harmonic function H(\) = arga (), that is,

N i [ [1—1ipX . dp
1 = —_
0g @ () “°+7r/oo[>\—ip]h(w)1+p2’

where kg € R is a constant. An easy calculation shows
|Re log@ ()| < ko + po|log Al

for real A > 0, and thus

1@ (2)] = eoslla) — Rloga(A) > {CAPO A>1
“lexe 0<A<1,

where ¢ := e > (0. This estimate, together with [26, Lemma
8.1] stating the existence of a constant ¢ > 0 such that ¢c7! <
[@(|A[)/@(N)| < cfor all A € C with Re A > 0 completes the proof. O
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>

FIGURE 1. Illustration of (5).

Lemma 2.3. Let 6 € (0,7). Then there exists a cg > 0 such that
(5) L+ A < Ch |14 A

forall X € X p.

Proof. Clearly, o > @, see Figure 1. Since a = g, the assertion then
follows from the fact that % = % > sin(a) > sin(0/2). o

Proof of Proposition 2.1. (a) is [26, Proposition 1.3.5]. This latter
result is also the principal inspiration of the next part:
_ . . _ 1 .
(b) Let o(A, 1) = (Ls(, 1)) (N), e, o(A,p) = FYEEWATEY Fixt>0
and € > 0. Then
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Then, by partial integration
A=e+iR

R—oo 271 | t

1 E+ZR1 N d
- — A, 1) dA
el A A

1 E+iool N d
= — —eM—o(A dA.
9mi ¢ e n)

s(t) = Jim 5 [ "(A’“)Lg_m

£—100
An elementary calculation gives

o1 e (52)

dAM1+pa()) XA +pa(N)?

By 1-regularity of the kernel, Xa' ()‘

for any § > 0,

</_O:o‘s(t,(5+ zy)‘z dy> v
<G+ O </ ) (/Z TR dw) 2dy> :
o 00/ poo 2\ 1/2
2t (/ (/oo TR d”“’) dy)
et [ oo 1/2
<V205(1+0) 2t /_Oo (/0 (e2+22)2(1 +l|y||a (e+iz)|)2

dy) dx
)

et [0 1 © ] 1/2

=v20Cs(1 +C)— d d

V20,1 + O /oo<ez+w2)|a(s+m>1/2 </ T+ w2 “> g

st o0 1
= V20(1+C)5, t/oo @ra)a(e+ i 2

‘ < C, and so Lemma 2.3 yields,

< V20y(1+C)

Now we split the integral into two parts, by considering the cases
g2 + 22 > 1 and €2 + 22 < 1 to apply Lemma 2.2 which is controlling
|1/a]. Substituting & = et in both parts easily gives
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_ pEt
[s(t, Mm= < 0967(5_1_(9/”) + 5—1+(9/7r)),

which yields the assertion by letting € = 1/¢.

(c) We argue in the same spirit as above: by partial integration

d 1o, &2
@(“s(t’ “)> = omi /H-oo t dpdr (“"(’\ “)) dA-
An elementary calculation gives
e gay _trm0(+2(E))
dndp A +pa(N))? ~ N(L+pa(n)°®

By 1-regularity of the kernel, )‘a (’\

any ¢ > 0,

‘ < C and so Lemma 2.3 yields for

/Z ‘%(us(t,é + Zy)) ‘ dy

< Cp(1

) / / 1 dz d

27t ) oo ) oo (E+22)(1+ [5+iyla (e+iz)])2 Y
e > 1

< Cy(1 +20)— dzd

< Go(l+20)50 /,m/,w @)1+ [ylfa (e ria))? © Y

et

e ° 1 1 ° 1
=2 1+2
Coll +2C)5 5 /,Oo 24 a(erin) J, (Ot

et [ 1 1
Coll +2C)5 53 /, (@) o (erin)

<K@ % +17%)
by choosing € = 1/t. This shows that f;(u) = % (us(t,u)) € HY(C,).

Note that C, := X/, is the open right half plane. We may apply
Hardy’s inequality (see, e.g., [8, page 198], [14, Theorem 4.2]),

/0°° A}l 4, 3| It d,
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so that @ € L'(R) is Laplace transformable for every ¢ > 0. Since

(ft(> /f )dp = os(t, o),

we find that g — ps(t,u) € H*®(C4) with a norm controlled by
a multiple of (¢+(29)/™ 4 ¢=(20)/™) This implies that v, € L'(R,).
Together with (a) the claim follows.

Finally, the same technique gives an estimate for the growth of s(¢, p):

ws(t,p) < K‘M’yed /00 ! dr
T t o Jooo (247214 |plfale +ir)])

/ 1 lp|"a (e +ir)|”
< K— — - — -
- (e? +7“2)|a(€+”‘)|7 (L + |plla(e +1r)])
< K / dr

2 4 p2 |a (e +ir)|

E_Sl/ K(t,(zye)/ﬁ+t+(270)/7r)_ O

3. Sufficient conditions for finite-time admissibility. In this
section we present the two main results of this paper.

Theorem 3.1. Let A generate an exponentially stable strongly
continuous semigroup (I'(t))i>0, and let C : X1 — Y be bounded.
Further, we assume that the kernel a € L{, .(R4) is of sub-ezponential
growth, 1-regular and sectorial of angle 8 < w/2. Then finite-time
admissibility of C for the semigroup (T'(t))s>o tmplies that of C for the
solution family (S(t))t>o0.

Proof. We first note that the assumptions of the theorem apply that
equation (1) is parabolic. By Proposition 2.1 there exists a family of
functions v; such that ||v¢][z2(r, ) < K (t~9/7 4+9/7) for some constant
K > 0 independent of ¢ > 0 and
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For z € D(A) we thus have
CS(t)x = / ve(r) CT(r)z dr.
0

Note that finite-time admissibility of C for (1'(t)):>0 implies the exis-
tence of a constant M > 0 such that

ICT()a|| 2w, < Mllzll, =€ D(A),

thanks to the exponential stability of (7'(¢)):>0. Thus the result follows
from Cauchy-Schwarz inequality. ]

By replacing the Cauchy-Schwarz inequality by Holder’s inequality,
similar arguments can be used to obtain sufficient conditions for LP-
admissibility.

Corollary 3.2. Assume in addition to the hypotheses of the theorem
that one of the following conditions is satisfied:

(a) Y is finite-dimensional, X is a Hilbert space and A generates a
contraction semigroup;

(b) X is a Hilbert space and A generates a normal, analytic semi-
group;

(c) A generates an analytic semigroup and (—A)
admissible observation operator for (T (t))¢>o-

If there exists a constant M > 0 such that

1/2 is an finite-time

(6) I —A)7H <

M
, ReA>0,
vReA

then C is a finite-time admissible observation operator for (S(t))¢>o.
Proof. Under the assumption of the corollary, the inequality (6)

implies that C is a finite-time admissible observation operator for
(S(t))¢>0, see [13, 16, 23]. Thus the result follows from Theorem 3.1. O

The following corollary is an immediate consequence of the Carleson
measure criterion of [15].
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Corollary 3.3. Assume in addition to the hypotheses of the theorem
that A admits a Riesz basis of eigenfunctions (e,) on a Hilbert space
X with corresponding eigenvalues \,,. If Y = C and if

= Z |C€n|26—>\n

is a Carleson measure on C., then C is finite-time admissible for the
solution family (S(t))¢>o0.

A nice sufficient condition for admissibility for Cauchy problems is
given by [29]. For the convenience of the reader we reproduce it here:

Theorem 3.4 [29]. Let A be the infinitesimal generator of an
exponentially stable Cy-semigroup (T'(t))i>o on the Hilbert space H,
and let C': X1 — Y be bounded, where Y is another Hilbert space. If
for some o > 1/2,

(7) sw H (1 + log* Re\)®(Re(\)Y2CR(\, A)H < o0,

then C is a finite-time admissible observation operator.

Notice that the condition (7) can be reformulated by saying that in
the sense of Evans, Opic and Pick (see [9, 10, 11])

forallz € X : ||CR(-, A)z|/(1/2),00.a < 0

where A = (0,a), see also [7] for logarithmic type interpolation
functors.

Combining Theorem 3.1 and Theorem 3.4 we receive the following
corollary.

Corollary 3.5. Let, in addition to the assumptions of Theorem 3.4,
the kernel a be of sub-exponential growth, l-regular and sectorial of
type < w/2. Then C is finite-time admissible for the solution family

(S(t))tzo'

In some situations, the condition of sectoriality of angle < 7/2 in the
above corollary may be inconvenient. Under much weaker assumptions
one can also obtain admissibility by the following direct argument.
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Theorem 3.6. Assume that A is a closed operator with dense

domain on X, the kernel function a € LllOC 1s of sub-exponential growth,

1-regular, and (1) is parabolic. Let C' : X1 — Y be bounded and assume
that for some a > 1/2,

(8) sup H (1+1og™ r)o‘rl/ZC’H(r)H < 00.
r>0

Then C is finite-time admissible for (S(t))i>o0-
Note that the exponent o > 1/2 is optimal in the sense that for

a < 1/2 it is even wrong in the case a = 1, see [20]. About the case
a = 1/2 nothing is known at the moment.

Proof. Let A € C,, and let ¢ be such that A = |\|e?**. Then, by
resolvent identity,

1+ (log™ (Re \))*AY2CH(N)
:1+(1og+(Re/\))C*/\*l/ZOA1 R<A1 ,A)
a(A) \a(})
= (1+1log* [A)*AM2CH(|A)

Sl (a wo) " ey 4)]
— (1+log* [A)=]\Y2CH()

x e ' {I+ <:((|i)) - 1) (I —&(A)A)l}.

By [26, Lemma 8.1], ¢! < |@(|A])/@ ()| < c for some ¢ > 0. This,
together with the parabolicity of (1) yields uniform boundedness of
expression in brackets and so the assumed estimate (8) gives

Q)

s}

) A +— CH(r+\)|| g (c,) < K(1+1logr) or 12,
Since (S(t))¢>0 is bounded,

A — H(r+A)z||g2(c.)
= [le™"*S()z || m2(c,) < Kr=Y2||z|| forallr >0
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and together with (9), we infer

K
2
(10) H)‘ = CH(T"")\) 17HH2(C+) < W ||1!H for all » > 0.

Moreover, the estimate

1

H2(C,)

< H)\ — C’H(r—i—)\)xH

— _‘
H>(Cy) r+AllE2(Cy)
implies
(11)

HAI—) H%CH(T‘F)\):E‘ K

<——  |lzl| forallr>O0.
m2(Cy) — (1 +1log™ r)”‘r“ |

Since LH()) = (%‘%)H(A)Z -1+ %‘f(’i—;‘))H()\), we infer from

(10) and (11) that

K

S for all » > 0.
H2(Cs) (1+10g+7")“7"‘|x” FE

H,u — %C’H(T + p)x

Finally, (inverse) Laplace transform yields

K
—rt
||t — rte CS(t)l‘||L2(R+) < m”l‘“ forall >0

and that is the estimate we need in the following dyadic decomposition
argument: notice that ze=® > 2e~2 for z € [1,2]. Fix some to > 0.
Then,

/0 ICS(t)al? dt = Z / T oSl dt

to2~ ntl 1
/ l2nts 16215 CS (t)al | dt
t

02~ "

lz]l* < Kfll*. o
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4. Example. In this section we apply the results obtained to time-
fractional diffusion equations of distributed order.

Let A generate an exponentially stable strongly continuous semigroup
(T(t))s>0. For w>0and 0 < o < f < 1, we study a time-fractional
diffusion equation of distributed order of the form

wDfz(t) + DPz(t) = Az(t), t>0,

(12 2(0) = a0,

where Dfz = (—%)ax denotes the Caputo derivative of x, given by

the Phillips functional calculus of the right shift semigroup, that is,

1

DIa(t) = 7 /0 (t — $)~72/(5) ds.

for v € (0,1). Time-fractional diffusion equations of distributed or-
der have attracted attention as a possible tool for the description of
anomalous diffusion and relaxation phenomena in many areas such as
turbulence, disordered medium, intermittent chaotic systems, mathe-
matical finance and stochastic mechanics. For further information on
time-fractional diffusion equations of distributed order, we refer the
reader to [1-6, 21, 24].

Using the Laplace transform equation (12) is equivalent to

z(t) = zo + /0 a(t—s) Az(s) ds,
where
a(t) = a(t) = t°P7 B4 5(—wt? =)

Here E, 5, where 4,6 > 0, denotes the Mittag-Leffler function

e k
z
E’Yv(s(z) = Z *
P L(vk + 6)

The Laplace transformation of the kernel a is given by

~ ATE
N = e

Thus the kernel a satisfies the assumption of Theorem 3.1.



OBSERVATION OF VOLTERRA SYSTEMS 435

We note that this example does, e.g., not satisfy the assumption of
[12, Theorem 3.10] due to the ‘mixed’ growth conditions near infinity
and the origin, such that, even when A is the Dirichlet Laplacian
on a bounded domain, the latter result cannot be used to guarantee
admissibility whereas a ‘standard’ Carleson measure criterion and the
subordination result of Corollary 3.3 still applies.
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