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ABSTRACT. This paper investigates a class of stochas-
tic functional differential equations with Markovian switch-
ing. Under the local Lipschitz condition but not the lin-
ear growth condition, this paper establishes existence-and-
uniqueness theorems for the global solutions of these equa-
tions. This paper also examines asymptotic boundedness
of the global solution, including boundedness in moment,
stochastically ultimate boundedness and the moment average
boundedness in time. To illustrate our idea more clearly, we
consider a scalar stochastic polynomial equation and a special
n-dimensional equation in detail.

1. Introduction. Stochastic differential equations with Markovian
switching appear in many branches of science and have therefore
received a great deal of attention since they may experience abrupt
changes in their structure and parameters caused by phenomena such as
component failures or repairs, changing subsystem interconnections and
abrupt environmental disturbances. There is an extensive literature
concerned with these equations (cf. [5, 6, 8, 9, 12-14, 16, 18, 19, 22,
24]), in which the coefficients are required to satisfies the local Lipschitz
condition and the linear growth condition to guarantee existence and
uniqueness of the global solution.

However, coefficients of many well-known systems such as the stochas-
tic Lotka-Volterra model under regime switching (cf. [9]) do not satisfy
the linear growth condition, so it is necessary to investigate existence

2010 AMS Mathematics subject classification. Primary 60H10, 34A34, 34D40,
34K50.
Keywords and phrases. 1t6 formula, Markovian chain, global solution, stochas-

ticallﬁ/ ultimate boundedness, moment average boundedness in time.
The financial support from the National Natural Science Foundation of China

(Grant No. 11001091) is gratefully acknowledged.
The second author is the corresponding author.
Received by the editors on July 24, 2008, and in revised form on March 14, 2009.

DOI:10.1216/JIE-2011-23-2-223 Copyright ©2011 Rocky Mountain Mathematics Consortium

223



224 YANGZI HU AND FUKE WU

and uniqueness of global solutions for stochastic differential equations
with Markovian switching without the linear growth condition. By the
recent technique (cf. [28]), this paper examines a class of nonlinear
stochastic functional differential equations with Markovian switching
whose coefficients do not satisfy the linear growth condition and estab-
lishes the existence-and-uniqueness theorems of global solutions. This
paper also examines asymptotic boundedness of this global solution, in-
cluding boundedness in moment, stochastically ultimate boundedness
and moment average boundedness in time.

Consider the n-dimensional stochastic functional differential equation
with Markovian switching
(1.1)
dx(t) = f(ze, v(t) dt + g(ze,7(t)) dw(t), zo =£(0) € C([-7,05R"),

where z; € C([—7,0; R") is defined by z,(8) = z(t + 0),6 € [-7,0],
r(t) is a Markov chain taking values S = {1,2,...,N}, f,g :
C([-7,0];R™) x S — R"™ and w(¢) is a scalar Brownian motion. This
equation can be regarded as the following IV equations

dx(t) = f(xe, 1) dt + gz, 1) dw(t), €S

switching from one to the other according to the movement of the
Markov chain.

As direct applications, this paper also examines the following two
special cases of equation (1.1):

(1.2)
da(t) = f(xe, (b)) dt + g(z(t), 7(t)) dw(t), zo = £(0) € C([-7,0;R"),
(1.3)

da(t) = f(2(t),r(t)) dt + g(we,r(t)) dw(t), o =§(6) € C([-7,0];R").

In this paper, we will show that equation (1.1), as well as (1.2) and
(1.3), has the following properties:

e This equation almost surely admits a global solution.

e The solution of this equation is bounded in the pth moment and
stochastically ultimately bounded in the sense that for any ¢ > 0 and
p > 0, there exist positive constants H = H(e) and K, such that the
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solution of this equation has the properties that

(1.4) limsup E|z(t)|? < K,,,
t— o0
(1.5) tllm P{lz(t)| <H}>1-c¢.

e The average in time of the (o + p)th moment of the solution is
bounded, namely there is a K, such that the solution of this equation
obeys

l t
(1.6) lim sup Z/ Elo(s)|**7ds < K,
0

t— o0

where « is a parameter defined later.

In the next section, we give some necessary notations, definitions
and lemmas. In order to illustrate our idea clearly, Section 3 gives
a general result, which includes the existence-and-uniqueness theorem
and asymptotic boundedness for the solution of equation (1.1). In
Section 4, we examine two classes of conditions on coefficients f and
g, under which there exists a unique global solution for equation
(1.1). This global solution is asymptotic bounded by the previous
general result. Section 5 examines a scalar system whose coefficients
are polynomial in detail. In the last section, a special n-dimensional
example is discussed.

2. Preliminaries. Throughout this paper, unless otherwise speci-
fied, we use the following notations. Let (2, F,P) be a complete prob-
ability space with a filtration {F;}:>( satisfying the usual conditions,
that is, it is right continuous and increasing while F, contains all P-null
sets. Let w(t) be a scalar Brownian motion defined on this probability
space. Let | - | be the Euclidean norm in R"™. If A is a vector or ma-
trix, its transpose is denoted by AT. If A is a matrix, its trace norm
is denoted by |A| = 4/trace (AT A) and operator norm is denoted by
lA]|. Let 7 > 0, and denote by C([—,0]; R") the family of continuous

functions from [—7,0] to R™ with the norm [|¢|| = sup_,4<( [¢(0)]
(without any confusion with the operator norm), which forms a Ba-
nach space. For any a = (ai,...,a,)" € R", let @ = minj<;<,{a;}

and @ = max;<;<,{a;}.
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Let () (t > 0) be a right-continuous Markov chain (see [1]) on this
probability space taking values in a finite state space S = {1,2,... ,N}
with generator I = [7;;]nxn satisfying

N

(2.1) % 20 #35), Y v =0

j=1

We assume that Markov chain 7(t) is independent of Brownian motion
w(t). For any symmetric matrix Q; € R™"*"(i € S), let ¢; = Amin(Q:)
represent its smallest eigenvalue, and let ¢ = min;cs{q;}.

The following lemma establishes the boundedness of polynomial func-
tions.

Lemma 2.1. For any h(z) € C(R™;R), a,b > 0, if h(z) = o(|z|%)
as |xz| — oo, then
(2.2) sup [h(z) — blz|¥] < 0.

zeR"™

Proof. Define ¢(z) = h(z) — blz|*. Choose r > 0 such that
|h(z)| < blz|* when x € R™ and |z| > r, which implies p(z) < 0.
We therefore have

sup ¢(z) = sup p(r) < oo,

zeR"™ z€R™
lz|<r
which implies the desired assertion. ]

The following simple lemma is the link between the ultimate bound-
edness and boundedness in moment.

Lemma 2.2. For any p > 0, if stochastic process x(t) is bounded
in the pth moment, i.e., limsup, ., Elz(t)|P < K,, where K, is a
constant dependent on p, then x(t) is ultimately bounded, namely, for
any € € (0,1), there ezists a constant M = M (e) such that

(2.3) limsup P{|z(¢)| < M} >1—e
t—o0
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Proof. For any € € (0,1), let M = K;/p/el/p. Then by the Markov
inequality,

El|z(t)P
P{lz(t)] > M} < TR
Hence
limsup P{|z(t)| < M} > 11—,
t—o0
as desired. a

Throughout this paper, const represents a positive constant, whose
precise value is not important. For © € R"™, I(z) < const implies that
I(x) satisfies the super boundedness property. Hence Lemma 2.1 can
be rewritten as

(2.4) =blz|* + o(|z|¥) < const.

In this paper, the notation o(|z|%) implies that h(z) = o(|z|*) is
continuous.
Let C%2(R™ x S;R4) denote the family of all nonnegative functions

on R™ x S which are continuously twice differentiable in z. If V €
C?*(R"™ x S; R ), define an operator LV : C([-7,0; R") x S — R by

LV (p,8) = Val0(0), ) (0,) + 387 (,)Veal(0), ()

(2.5) N
+ 3V (p(0),4)

for any ¢ € C([—7,0]; R™), where

N[OV (x,i) OV(x,i) OV (z,1)
Vz(:c,z)—< oz, = Omzy 7 Oz, )]
) 0%V (x,1)
Vael8) = { Oy 0y Lm'

3. The elementary lemma. In this paper the following assumption
is imposed as a standing hypothesis.
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Assumption 3.1. Both f and g are locally Lipschitz continuous,
namely, for any k > 0, there exists a constant cj such that

£ (,8) = F(&, )] V [9(0,8) = 9(¢, )] < crlle — 4]
for all p,¢ € C([—7,0[; R™) with ||¢|| V||4]| < k and any i € S.

In order for a stochastic differential equation to have a unique global
solution for any given initial value, the coefficients of this equation
are generally required to satisfy the linear growth condition and the
local Lipschitz condition (see [2, 11]). These two standard conditions
exclude many well-known equations such as the stochastic Lotka-
Volterra model under regime switching (cf. [9]). The aim of this paper
is to establish existence-and-unique theorems and asymptotic results for
the global solution of equation (1.1) under the local Lipschitz condition
but not the linear growth condition.

It is well known for stochastic differential equations that the linear
growth condition for global solutions may be replaced by use of the Lya-
punov functions (see [7, 17, 21]). This paper investigates this method
with Markovian switching to discuss the solution of equation (1.1). To
show this idea, we need the concept of local solutions (see [10]).

Definition 3.1. Set F; = Fy for —7 < t < 0 and let z(t),
—7 <t < p. be a continuous R™-valued F;-adapted process. It
is called a local strong solution of equation (1.1) with initial data
e C([-7,0;R™) if x(t) = &(t) on —7 <t < 0 and

z(t A pr) = £(0) —I—/O " f(zs,r(s)) ds

—}-/0 " g(zs,7r(s)) dw(s), Vt>0

for each k > 1, {pr}r>1 is a nondecreasing sequence of finite stopping
times such that py — pe almost surely as k& — oco. If, moreover,
limsup,_,,_ |z(t)] = oo is satisfied almost everywhere when p. < oo, it
is called a maximal local strong solution and p, is called the explosion
time. A maximal local strong solution z(t), —7 < ¢ < p. is said to be
unique if for any other maximal local strong solution Z(t), —7 < t < p,,
we have p. = p, and z(t) = Z(¢) for —7 < t < p. almost surely.
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Applying the standing truncation technique (see [10, Theorem 3.2.2,
page 95] and [19, Theorem 8.3, page 303]) to equation (1.1) yields the
following result.

Theorem 3.1. Under Assumption 3.1, equation (1.1) almost surely
has a unique maximal local strong solution for any initial data £ €

C([=r,0; R™).
Then the following general result follows.

Lemma 3.2. Under Assumption 3.1, if there exist constants o > 0,
bi, €, p, Ko, Kij, aj >0 (i € S,1 < j < m) for any given integer m,
probability measures p;; on [—7,0] and function V € C*(R™ x S;R)
such that

(3.1) lim V(z,i) =00, (z,i)€R" xS,

|z|—o00

(3.2) LV(p,i) +eV(p(0),1)
< =bilp(0)[*FP + K

m 0
+Y K, [ [ o@ s 0) — i,
=1 -
¢ € C([-7,0; R™),

then for any initial data § € C([—1,0]; R™), there exists a unique global
solution z(t,€) to equation (1.1) and this solution has properties (1.6)
and

(3.3) limsup EV (z(t),r(t)) < K,

t—o0

where K is a constant independent of initial data €.

Proof. Clearly, condition (3.2) includes the following three inequali-
ties:

m 0
(3.4) EV(sa,i)gKinKU[ [ 16 dus(0) - o)1 .

=1 -7
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(3.5)
LV (p,i) +eV(p(0),1) < Kio

m 0
e YKy | [ 1@ 0) - o0y
i=1 -
bilp(0)|*TP < —LV (p,1) + Kio

(3.6) . ? ()| o
+y K |0(6)1%7 dpi; (6) — |£(0)%7 |
=1 -
For any given initial data £ € C'([-7,0]; R™), we divide the proof into
three steps.

Step 1. Existence and uniqueness of the global solution. For any initial
data oy = £ € C([—7,0;R™), under Assumption 3.1, Theorem 3.1
shows that there exists a unique maximal local solution z(t) on t €
[-7,0), where o is the explosive time. To show that z(t) is actually
global, we need to show ¢ = oo, almost surely. To prove this statement,
for sufficiently large integer k (namely, & > max_,<p<o{V(£(0),1)}
almost surely), define stopping time

(3.7) op =inf{—7 <t <o:V(z(t),r(t)) >k},
where, as usual, inf @ = oo (as usual & denotes the empty set). Clearly,
0k is nondecreasing and limy_,o, 0 = 0o < 0. This proof can be

completed if oo, = 00, almost surely. This is equivalent to proving that
for any t > 0, P(or, <t) — 0 as k — oco. To prove this result, noting
the right continuity of r(¢) and V(z (o), r(o)) = k, by condition (3.2),
applying the generalized It6 formula (see [19]) to V(z) yields
kP(or <t) =V(xz(ok),r(ok))P(or < t)
< EV(z(t Aog),r(t A o))

( ))+E/0 o LV (zs,7(s))ds

< EV(£(0),r(0
0))

(0),r
< EV(£(0), (
+E/0Wk [KTO+§KM(/_OT 2 (t + 6)| djars ()

~a(o)p )|
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where r € S represents the initial value of the process r(t). By the
Fubini theorem, it follows that

tATE 0 tATE
/ /|x(s+9)|a1durj(0)ds—/ 1o (s)[* ds
0 -7 0
0 tATE+6 tATE
= [ duy@ [ s — [ a(o)as
0
0 tATE tATE
<[ au®) [ lalds— [ la(e)ds
. 0

-7

Hence,

FP(ok < ) < BV(E(0),r(0) + Kot + 3 &, / " Je@)1de = Ko,

-7

j=1
where K; is independent of k. For any t > 0, letting &k — oo,

K,
lim P <t)< 1 =
Jim P(oy <t) < lim == =0,

which shows that z(t) is the global solution of equation (1.1).

Step 2. Proof of (3.3). Inequality (3.5) together with the generalized
It6 formula applied etV (z(t),r(t)) gives

eS"EV (z(t), r(t))
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By the Fubini theorem, we have the following estimate

/ / s+e|1dﬂm<>ds—/ (47 (5) [ ds

t+6 t
:/ dpar; (6) /0 e 0a(s)|"ds / e [(5)|* ds

0 t t
g/ () / et z(s)| " ds — / 1z (s)|* ds
—r 0

—T

0
- / ¢0+7)|¢(6) [ do.

-7

It therefore follows that
eEtEV(w(t),r(t)) <V (&(0),7(0)) + 871]30(6575 -1

m 0
+3 K / &0+ £(0)] B,
i=1 -

which implies that
limsup BV (z(t)) < e ' K.

t— o0

The desired assertion (3.3) follows by setting K = e ' K.

Step 3. Boundedness of the moment average in time. Inequality (3.6)
together with the generalized It6 formula applied V (z(¢),r(t)) yields

b [ Ble(o)* s < BV(a(0),r(0) +b [ (o) s
< V(€(0),7(0))
‘B / £V (o) b [ B)elo)| s
< V(€(0),7(0))

/[ mzfcw(/ (s +0)|* dr (0

 la(e) ) as

0

< VIEO,rO) + Kot K, [l

j=1 T
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which implies that

1 [ ~
limsupg/ E|z(s)|*"Pds < b ' K.
0

t— o0

The desired assertion (1.6) follows by setting K = b 1K,. o

4. Main results. To continue our discussion, we place additional
assumptions on f and g. For any ¢ € C([—,0]; R") satisfying ©(0) # 0
and i € S, we impose the following polynomial conditions on f and g.

(H1) There exist positive definite matrix Q; € R™*"™, constants a,
Ki, R; > 0 and a probability measure p; on [—7,0] such that

0
0(0)[ 729" (0)Qif (10,7) < Hi|¢(0)|a+ﬁi/ |0(0)|%dps () + o(|0(0)[)-

(H2) There exist 3 > 0, A\;, A\; > 0 and a probability measure v; on
[—7,0] such that

9(0)| M lg(p, )] < Aile(0)]° +X~/ |0(8)7dvi(9) + o(|(0)17).

-7

(H3) For positive definite matrix Q; € R™*", there exist constants
b;, o; > 0 and a probability measure 7; on [—7, 0] such that

0(0)| (" (0)Qig (¢, 1))

> bleOF = o [ 6@ d:(6) + olloO)*).

—T

(F1) There exist positive definite matrix @; € R™*", constants
b; > 0, a,0; > 0 and a probability measure u; on [—7,0] such that

¢! (0)Qif(#,7) < —bi\w(o)\“”Jrai/ |(0)1*dpi (9) +o(Ip(0)[**2).

-7

(F2) There exist constants 3 > 0, A;,A\; > 0 and a probability
measure v; on [—T, 0] such that

19(,9)] < Ail(0)]° +Xi/ |0(8)|7dvi(8) + o(|(0)]7).

-7
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If f(p,i) and g(p,i) are replaced by f(z,i) and g(z,i), the above
conditions may be rewritten as

(H1") There exist a positive definite matrix @; € R™*™ and constants
a, K; > 0 such that

2T Qi f(2,1) < wile|**? + o(|a|**2).
(H2') There exist 8 > 0, A\; > 0 such that
l9(z,9)] < Xzl + o(|z]7H).

(H3') For the positive definite matrix @; € R™*™, there exist con-
stants b;, 8 > 0 such that
[ Qig(a,)]* = biz|*** + o(jx|**+4).
(F1’) There exist a positive definite matrix @; € R"*™ and constants
b; > 0, a > 0 such that
2T Qif (x,i) < —b;|z|*2 + o(|z|*T2).

(F2') There exist constants 8 > 0, A\; > 0 such that
l9(,9)| < Ailz)? + o(Jz|).

For any x € R® and 7 € S, if

(4.1) V(z,i) = (" Qiz)"/?,
where p > 0 and Q; € R™*" is a positive definite matrix, we have
(4.2) glz|P < V(z,i) < [|Ql",

where Q]| = max Q|- By (2:5)

(4.3) LV (p,i)+eV(p(0),9)

= (" (0)Qip(0))"* " (0)Qi f (. 7)

+ 5 (" (00Qup(0)"*7 g (0,)Qig 1)

P2 =2 (o (0)Qup(0))"/2 21 (0)Qua(i. i)
+ Z%’j(%T(O)Qw(O))p/Z

+e(9" (0)Qi(0)) %/
=L +L+ I3+ 14+ Is.
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Lemma 4.1. Let [ = Z;V:o 7ij (zTQ;x)P/%. Then

(4.4) I < M|z,

where

(4.5) M, = max <%'iqi +)° %jHQjH) > 0.
i

Proof. Inequality (4.4) is obtained from (2.1) directly. We only need
to prove M, > 0. Without loss of generality, assume ||@1] < [|Q2] <
- < [|@Qn]|- Thus,

My, > yuq + Z’YUHQJ‘H
i>1

(4.6) 2 71q1 + Z’Ylj“QlH

j>1
>q1 ) mj=0,
J

as desired. O

We can now state one of our main results in this paper.

Theorem 4.2. Let Assumption (3.1) hold. Under conditions
(H1)-(H3), if o < 28 and
(4.7) 2b;R; % > 205 + q;|Qill (N + Ni)?,
where R; = ||Qill/q, then for any initial data £ € C(]—7,0];R"™),

equation (1.1) almost surely admits a unique global solution and this
solution is ultimately bounded. For any p € (0,2) satisfying
(4.8) (2 - P)BR T~ 01) > Gl Qill (N + X%,

this global solution has property (1.4) and there ezists a constant K35,
such that

. 1 [ X
(4.9) lim sup E/o E|z(s)|**tPds < K30

t— o0
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Proof. Choosing V (z,i) = (zTQ;z)?/?, to apply Lemma 3.2, we need
to estimate I;—I5 appearing in (4.3). For p € (0,2), by condition (H1)
and the Young inequality, we have

I < p(9" (0)Qip(0) /D~ p(0) [

< [sle@ +5i [ lo@)dui(6) + o))

—T
0

<9 o) P (siloO) + 7 [ [o(6)

-7

“dpis(8) ) +0(1(0)| ")

—pa 7 (sl @7+ [ O lel6)dui(6)
+ o(l(0)|**7)

(P/Z) 1( a+p KiP a+p
< q: Ki|® 0 + — %2 0

- aafip /_T |¢(9)|a+pd#i(9)> + 0(|(0)|*F7).

Recall the elementary inequality: for any z,y > 0 and u € (0,1),

2 2
€z Yy
u +1—u'

(4.10) (z+y)? <

For any u, d; € (0,1), by condition (H2), the Holder inequality and the
Young inequality, it follows that

p - _ .

I < 2 ]1Qillg” ™ o (0) P29l DI
p _

< 21Qilla "7 e ) [ Ml (01

+% [ 1e@Pan0) + op )]

—T

< - 11Qilla: 7 o (0) [ Ailp(0) F + X, /_ \np(@)\ﬂdui(e)r
+ o(|p(0)[**7)

—9 0 2
p (/21 [ Ale(0)PTP X/ lp(0)P / 8
= 2u||QzH% [ 5 3 5, . lo(0)|F dv;(6)
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+o(|p(0)[7)

21 [A2p(0)28+7  X|p(0)7 [°
< 2 gulqpt [ RO MO [ joypsano)]

0 1-6;

-7

+olp(0)2+7)
NP X
5 -8
0
< (oo 425 [ 1oy wano)]

-7

p (p/2)—1
< = N \P
< 5 11Qilla [

+o(|p(0)[>7FP).
By condition (H3), the Holder inequality and the Young inequality,

P =2) (7(0)Q1p(0)) /) 2(0)

I3 < 5

< [Bo@F" ~ i [ lo(@)F2am:(6) + o(10(0))]
)
- 2

=7 [ O Ple®)ani(6)) + o007 7)

(Bill@al®/=2 (o) 2+

< P22 [y i o2 ()2

(p/2)-2 0
9gi ( 28+p 26+p g3 )}
—-—— 0 +2 0 dv,; (6
251, PPl B _T\w( )| (6)
+o(|p(0)[*7*7).
Noting that I + Is = o(](0)|?*P) by Lemma 4.1, substituting these
estimates into (4.3) yields

(4.11) LV (p,i) + eV (e(0),1)

_ 0
apkq - @ eT «a
< H(eo) + g ([l o) - o))

,BXqu,-(P/”‘lllQiII( ’ 2640 4y, () — &5 2,8+>
=028+ p) /_T|<P(9)| Pdv; () — e |p(0)]* 7

oiBp(2 — p)g; P/ 2 /0 2640 757 (0) _ 5T 28+p
+ B+ p _T\so(G)\ dv;(8) — e |¢(0)] ;




238 YANGZI HU AND FUKE WU

where
_ _’L €T+p)
Hi() = pg;'? l(m+"“(L) atp
(z) = pq e |1
2 32 eT
P oo faw-1( X L A28 4p) gy
+ 5 IQillas o n@ip)

PP —2) 1 1(p/2)-2 2 (p/2) 20T + P\ | 25+
— 5 I&i bi —oiR; ey P
+ =@l oiR; 26 1P |z|
+ o(|2|*1P) + o(||**P).

Noting that a < 28, H;(z) may be rewritten as

p(2—p _ 2-2203eT +p
() = ~E Qi 02 by - o F T
2 )
2 |Qi||R; A A2 (2Be°™ + p) } 28+ 28
L L L I _Z+Z— P +p
G G T T m@r )|+ elel )

-2
= P20 01D ~2hy e, 6) P + o 47),

_P
2

where
_ Qﬁes'r +p
hi(e,u, 8;) = b; — oy RZ-WP/AZEE TP
(e,u,d;) o R; 25Ty
_ alQd (%4 (266" +p) )
oz-p) \& (186 +p)
Clearly,

i 2 (p/2) qz'||QiHR?7(p/2) T2
4.12) h;[ 0,1, —— ) =b;—o;R; "W/ 2E T (\4N)2
(4.12) ( Aﬁxi) oii 2 —p Nt

By condition (4.7),

_ allQil| B2

5 i+ Xi)2 > 0.

lim h; <0, 1, L_) =b; — o R?
p—0 Ai + A

Choosing sufficiently small p and € and letting v — 1 and §; =
Ai/(Ai + ;) such that h;(e,u,d;) > 0 (we assume A;, A; > 0). When
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X\; or A; = 0, the computation is direct. By Lemma 2.1, there
exists a constant H; such that H;(z) < H;, which implies that (4.3)
satisfies the condition (3.2). Lemma 3.2 shows that for any initial data
¢ € C([-7,0]; R™), equation (1.1) almost surely admits a unique global
solution and this solution has property (1.5).

For the given p € (0, 2) satisfying the condition (4.8) and h;(e, u, §;) >
0, Lemma 3.2 shows that for any initial data ¢ € C([—7,0];R"),
the solution has properties (3.3) and (4.9). Noting that g|z|? <
V(z(t),r(t)), inequality (3.3) implies inequality (1.4). By Lemma 2.2,
(1.4) gives stochastically ultimate boundedness, as desired. O

Applying Theorem 4.2 to equation (1.2), where conditions (H2) and
(H3) are replaced by (H2') and (H3’), we give the following result.

Corollary 4.3. Let Assumption 3.1 hold. Under conditions (H1),
(H2") and (H3'), if a < 28 and

(4.13) 26;R;% > qi| Q| A,

then for any initial data & € C([—7,0]; R™), equation (1.2) almost surely
admits a unique global solution, and this solution is ultimately bounded.
For all p € (0, 2) satisfying

(2 - p)bi R D72 > 4| Qil|A2,

this global solution has properties (1.4) and (4.9).

By Theorem 4.2, we can also obtain a similar result for equation (1.3).
We omit it since it has the same expression as Theorem 4.2.

Observing the proof of Theorem 4.2, we find that it is key for
boundedness of H;(z), which depends on the term

bip(2 —
(4.14) D)) 0,0~ ) a7
for p € (0,2). This term is from condition (H3), which shows that

stochastic perturbation intensity g plays an important role in guaran-
teeing existence of the global solution when this perturbation strongly
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depends on the solution z(t) in the sense a < 28. If we impose condi-
tions (F1) and (F2) on f, then f can also play a similar role. This idea
may be described as the following theorem.

Theorem 4.4. Let Assumption 3.1 hold. Under conditions (F1) and
(F2), ifa >28—2>0 and

then for any initial data & € C([—7,0]; R™), equation (1.1) almost surely
admits a global solution z(t), and this solution is ultimately bounded and

there exists a constant P > 2 such that for any p € (2,D), this solution
has properties (1.4) and (1.6).

Proof. We estimate I;—I5 appeared in (4.3) using conditions (F1) and
(F2). For p > 2, condition (F1) and the Young inequality yield

I < p(¢" (0)Qip(0) P/D7 |~ bifip(0)]*2

0
v [ 1O dus(6) + oflel™)

-7

IN

~bipa"” > (0)|°HP + po | Q]| /D

></ | 0(0) P2 |i0(0)|* 2 dpas(8) + o(l0(6)]*FP)

— )

—bipg® P 0(0 0‘+P+IM @71 ()| P
/o042 + P2 g rr 1o o)

Q7 [ @) () + ol O)**7),

IN

2)o;
+p(a+ Jo
a+p

Condition (F2), the Holder inequality and the Young inequality, for
any u,d; € (0,1), plus inequality (4.10) yield
p _ .
I+ 13 < §||Qi||(p/2)\<ﬂ(0)\p *lg(p, 8>

plp—2) _ - ,
PP =2 4 1u 2+ o 0l i)

pm; _ _ .
= TIIQi\I(”/Z) e (0)[P~21g(p, 4)|?

_l_
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pmz -
5 1Q:[[ P72~ p(0) P2

x [Ai|¢(o>|ﬂ 3 [ 16O an(®) + oo )]

-7

meHQ H (p/2)— )\22‘90(0)‘2‘34_17_2
d;

X0
s [ e OP e )
+ o(|<p(0)|2,3+p—2)
< B2 i) v/ P’%(O)'w*” 2 (p — 2)|p(0) PP+

5 TN a)eAir-2)

25X? 0 2 p—2
(1-6)(28+p-2) / P @F dww)}
+ O(|1‘|2'B+p*2),

where m; = ||Q;||[1 + Ri(p — 2)]. Noting that Iy + Is = o(]¢(0)|**?),
substituting these estimates into (4.3) gives

LV (p,1) + eV (p(0),7)

< H (p(0) + LD

Qa2

([ oo - e”|sa<o>|a“’)

—T

BN m,|Qq| /D1
w(1—6;)(28+p—2)

X (/DT lp(0)28+P2dw; (6) — esf|¢(0)|2ﬁ+p2>’

where

eT _
H:(x) = —pg; (p/2)—-1 |:b _ R(P/z) 1 (a + 2) +p 2:| |m|a+l)
a+p

<2
_’_pmiHQi”(p/z)il )‘_12 + Ai(28e" +p—2) |$|2ﬁ+p72
2u 6 (1-6)28+p-2)
+o(|z ) + o] * ).
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Noting that o > 28 — 2 > 0, H;(z) may be rewritten as

a+2)em+p—2
a+p

Hz*(x) — _pqi(p/Q)—l bi _ UiRZ(p/2)_1( |m‘a+p
+ of|z|**7)

=t —ph] (e)|z[*"™ + o(|z|*"P).

Letting p — 2%, by condition (4.15), h}(0) = b; — o; > 0. For
sufficiently small € > 0, there exists a constant p > 2 such that for
any p € (2,D), h¥(e) > 0, which implies that there exists a constant F:
such that H(z) < H, by Lemma 2.1. This shows that (4.3) satisfies
condition (3.2). Lemma 3.2 gives the desired result by the same process
as the proof of Theorem 4.2. a

When o; = 0, condition (F1) may be rewritten as condition (F1’).
Applying Theorem 4.4 to equation (1.3), in which condition (F1) is
replaced by condition (F1’), yields the following result.

Corollary 4.5. Let Assumption 3.1 hold. Under conditions (F1')
and (F2), ifa > 28—2 > 0, then for any initial data & € C([—7,0]; R"),
equation (1.3) almost surely admits a global solution x(t) and this
solution is ultimately bounded. Moreover, for any p > 2, this global
solution has properties (1.4) and (1.6).

Proof. In condition (F1’), b; > 0 implies condition (4.15) since o; = 0,
then Theorem 4.4 gives that there exists a unique global solution to
equation (1.3) and this solution is ultimately bounded. We employ
the proof of Theorem 4.4, for any p > 2, to conclude that this global
solution has properties (1.4) and (1.6). O

Comparing Theorem 4.2 with Theorem 4.4, we may find the following
interesting phenomena. In Theorem 4.2, stochastic perturbation inten-
sity g plays an important role in guaranteeing existence of the global
solution, which shows that the stochastic noise may suppress growth of
the solution when the intensity of this noise is strongly dependent on the
solution in the sense a < 2. The idea of suppression of the stochastic
noise recently attracts the increasing attention in population systems,
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which shows that the stochastic perturbation may has positive effect
on the population dynamics (cf. [3, 17]). If the intensity of this noise
is weakly dependent on the solution in the sense o > 23 — 2 > 0 (note
that notations of «, 8 in the conditions (H) and (F) may be different,
but a < 28 and a > 28 — 2 > 0 can still measure the intensity of envi-
ronmental noise), the deterministic coefficient f plays a crucial role to
determine existence of the global solution and its asymptotic properties,
which shows robustness of equation (1.1) for stochastic perturbation.
This idea also appears in some stochastic population dynamic models
(for example, [4, 20]).

5. One-dimensional case. In this section, we consider the
following scalar polynomial stochastic functional differential equation
with Markovian switching

(5.1) da(t) = f(ze,r(t)) dt + g(xe,7(t)) dw(t),

where

0
feiy= 3 ai, / o= (0)¢? (B)dyi,(6),
(5.2) whism 04
o) = 3 b, / *(0)6(8) dvy (6),

k+Il<n

and w, j, k, | are nonnegative integers, afﬂj and bfcl are constants, ufﬂj
and v}, are probability measures on [—7,0]. We establish the following
two results for functionals f and g.

Lemma 5.1. For functions f and g in (5.2), there exist probability
measures p; and v; on [—1,0] such that

(5.3)
|f(p, )| < const(l + |p(0)|™ +1

0

[ (6) " dp6) ),

G4) ool < const(1+ (o) + [

—T

[ (8)["dwi(6))
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Proof. Applying Lemma 2.1 and the Young inequality yields

0

1F(e, D) <labol + Y labal [ 10(0)1]0(8)|7dp (6)
0<j+w<m -7

< |a60|

0 . i+ i+
i Jle(0) 7= + @ |p(8)) ;
+ Z ‘ajw| ‘ ( )‘ | ( )| dujw(e)

0<j+w<m -7 J tw
m 0
<const Y[l + [ lo@Fa( Y ui)]
k=0 -7 0<j+w<m
0
< const(1+ 10"+ [ 16(6)"dus(0)),
—T
where p; = cZO<j+w<m ,u;-w and ¢ is a given positive constant to
guarantee that y; is a probability measure. By the same process, (5.4)
may also be obtained, as desired. ]

By the same technique, we can also obtain the following result.

Lemma 5.2. For functional f in (5.2), if m > 0 and afj_l)l =

a’('j_2)2 =...=aj,, =0, for any given ¢ > 0,

0

fwwsdmme+4w@w+/

—T

9(6)"dp(6) ) + const,

and

(@, )] < (lamol +)l(0)[™ + E/ |0(0)[" dpi (6) + const,

—T

where p; is a probability measure on [—T,0].

To apply Theorems 4.2 and 4.4 to equation (5.1), we need to verify
conditions (H1)-(H3) and (F1) and (F2). Since equation (5.1) is a
scalar equation, we choose @; = 1, which implies that ¢; = R; = 1,
M, =0.
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Let m > 1 and aj_ =0 (0 < @ < m). By Lemma 5.1, we have

0

(5:5) ¢ O1f (i) < const (14 1O+ [ [e(O)"dui(0)).

which implies that f satisfies condition (H1) with a =m —1 > 0.

Let n > 1, by, = 0 for (1 < < n). Equation (5.4) in Lemma 5.1
gives that g satisfies condition (H2). Here 8 = n — 1 when n > 1 and
B € (0,1) is arbitrary when n = 1.

Let n > 1, b, # 0, bfnfl)l = bén72)2 bl(n ) = =b, =0 and
by, =0 (0 <1< n). It follows that

0 0)[p(0)g(p, 1))
(om0 Y bt [ SOdie)
k+I1<n—1,k>1,1>0 -7

= o™ HO) ~ i, )
> (B0 26™ 2(0) — 2™ 2(0)

0
- s/ ©*"2(0) dv; () — const,

-7

where h(yp,7) is a polynomial function with order 2n — 3 and v; is a
probability measure on [—7,0], which implies that condition (H3) is
satisfied with b = (b,y)? — €, 0; =cand 8=n—1 > 0.

Let m be an odd integer. For any € > 0, by the Young inequality and
Lemma 2.1, we have the following estimate
(5.6) '
0(0)f(,1) = apmee™ " (0)

m 0
# 3t [ OO 0

£Y e [P0 O di,6)

wtji<m
< afno‘ﬁmJrl (0)

m

- m—+1
mHZ\am pil[m =5+ D™ (0)
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0
7 [ ) du 5]

+ 6(50’"“(0) + /0 ©™T(0) dl/,-(ﬁ)) + const

0
=: —bi™TH(0) + O'i/ ©™1(0) d; (6) + const,

—T

where 7, is a probability measure on [—7, 0] and

]_ m

—bi =az,0+e+ mrl ;(m =+ Dlagm
(5.7) - =
o=¢+ +1;J| szj)j‘

Now condition (4.15) may be rewritten as

m
—ar,0 > Z |a{m—j);| + 2e.
j=1

By the arbitrary property of €, we have
m

(5.8) — g > Z (@ m—j)sl-
j=1

Under this condition, b; > 0, which implies that condition (F1) is
satisfied with &« = m — 1 > 0. Note that it is necessary to require m
to be an odd number since we can not guarantee that the solution is
positive.

It is obvious that g satisfies condition (F2) with 8 = n when n > 1.

We employ Theorem 4.2 and Theorem 4.4 to establish the following
result.

Theorjem 53 (1) 'If 1 <m< 2n-1, bén—l)l = bé",_Q)Q =
c=bh, =ab, = b, =00 <7 <m0 <1l <n) by #0

and |b%,|(i € S,k +1 < n) is sufficiently small, then for any initial
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data € € C([—1,0];R™), there exists a unique global solution x(t,&) to
equation (5.1) and this solution is ultimately bounded. Moreover, for
sufficiently small p > 0, this solution x(t,£) satisfies (1.4) and

1t
limsupg/ Elz(t, €)™ P 2%ds < K,
0

t—o0

where K is a positive constant independent of &.

(ii) If m > 2n—1 s an odd number, p > 2 and condition (5.8) holds,
then for any initial data § € C([—1,0]; R™), there exists a unique global
solution z(t, &) to equation (5.1) and this solution is ultimately bounded.
Moreover, there exists a p > 2 such that for any p € (2,p), z(t,&) has
properties (1.4) and

1 t
limsup—/ Elz(t, &)™ P 1ds < K,
0

t—o00 t

where K is a positive constant independent of &.

Let us now discuss an example to show our result.

Example 5.1. Consider the scalar stochastic functional differential
equation

0

da(t) = [— 0 (t) + by (1) /

-1

x(t + 0)do + cr] dt

+ [k’rl'(t) + 1, /0 z(t + 6)do + mr] dw(t),

-1

where 7 € S and a;, b;, ¢;, ki, l;, m; are constants.

By case (ii) of Theorem 5.3, if a; > |b;| (¢ € S), which implies condi-
tion (5.8) holds, there exists a unique global solution to equation (5.9)
and this solution is ultimately bounded. Moreover, for all p > 2, this
solution has property (1.4) and there exists a constant K independent
of the initial data such that

1 t
limsupz/ E|z(s)|*™Pds < K.
0

t—o0
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6. A special stochastic functional differential equation. Let
us consider the n-dimensional stochastic functional equation

-7

dz(t) = |z(t)|” Ka,« + Apx(t) +/ B.(8)z(t + 0) dur(9)> dt
+wa@»T@»dw@ﬂ,

which is a special case of equation (1.2) and where a; € R", 4, € R"*",
B;(0) € C([—,0]; R"*™), u; is a probability measure on [—7,0] and
h(z,%) : R™ x S — R™ satisfies the local Lipschitz condition. Define

0

1) = 1O (s + Aup(0) + [

~ Bi(6)¢(6) dui(9)>,
g9(z, 1) = [z|"h(z, 1).

(6.1)

Letting m; = supge[_, o) [|Bi(0)|| and applying the Young inequality
give

(6.2) 1@(0)| 2" (0)f(p,1%)

< o) a: + Asp(0) + &wwwmm@\

—T

< IIAiII\SO(O)\7+mi/ [(0)"~ o (6)] dpes(8) + o(l(0)]7)

—T

—1 m; 0
s(MA+27mQW@W+7 o(O)]dyss(0)

T o)), _

which shows that f satisfies condition (H1) with Q; = I, =  when
~v > 1, where I represents the identity matrix. Applying Corollary 4.3
to (6.1) gives

Theorem 6.1. Let~y > 1. If there exist constants 8 > (y—1)V(y/2),
b; > 0 and X\; € [0, /2b;) such that

(6.3) [A(z,1)] < Aila?=7 ! + o(|ja|P ),
(6.4) (27 h(z,4)]? > bi|x2P~1F2) 4 o(|z[2B-712),
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then for any initial data & € C([—7,0]; R™), equation (6.1) almost surely
admits a unique global solution and this solution is ultimately bounded.
For any p € (0,min;cs{2 — A2/b}), this solution further has properties
(1.4) and (4.9).

Proof. Inequality (6.2) shows that f satisfies condition (H1). We
then test conditions (H2') and (H3'). By conditions (6.3) and (6.4), we
have

ol g, )] < Jal? el + offalf 4]
= Aile|” + o(|z)?)
2|~ 2" g(@, )] > |24 [bi |27 + o |22 )]

= bilz|* + o(|x|*?).
Note that condition 8 > (y — 1) V (v/2) implies condition 0 < a <
28 and )\; € [0,1/2b;) implies condition (4.13). By Corollary 4.3,
equation (6.1) almost surely admits a unique glgbal solution and this
solution is ultimately bounded. Noting that \; = 0, for any p €
(0, min;cs{2 — A?/b}), the solution of equation (6.1) has properties
(1.4) and (4.9), as desired. O

Let Q; € R™ ™ be a positive definite matrix. Let
(65) S; = )\max(QiAi + AzTQz)

denote the biggest eigenvalues of the symmetric matrix Q; A; + AT Q;.
For any ¢ > 0, applying the Young inequality yields

¢ (0)Qif (¢,9)

= [p(0)]"¢" (0)Q: (4ip(0) + Bi(0)(6) dui(6))
+ o(|(0)[+2)
PO (#7 (0)QiAi0(0)

IN

+millQill [ [£(0)lle ()] dﬂi(9)) +o(|p(0)]7*?)

-7

Si

o)+ + U [ 4 o)+

IN
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0
e [ 1o0) 2 2di(6)] + of0(0)" )

—T

=t —bilp(0)]"** + Uz'/ [p(0)**dpi (9) + o(l(0)"*?),

—T
where

i i 7 1 a
(6.6) —b; = 54 MillQIOFD o

_ mi||Qi\|€¢(a+1)(a+z)
2 v +2 é -

Tt e T

1/(a+2)?

Choosing £; = m; , condition biR;_p/Z > 0; may be rewritten as

i > 2my|| Q4| R TR0,

which implies that

. 1Q: |l (p—2)/2(v+2)
(67 ~AuaxlQui + 47Q) > 2 (12) .
This condition also implies b; > 0, which shows that f satisfies
condition (F1) with & = v. For any 8 € (0,1 + /2), which implies
that v > 28 — 2, by Theorem 4.4, it follows that

Theorem 6.2. Let v > 0. If there exist 8 € (0,1 +7/2) and \; > 0
such that

(6.8) |A(z,0)| < Ailz|” + o(2]?),

and a positive definite matriz Q; such that condition (6.7) holds, then
for any initial data &, equation (6.1) almost surely admits a unique
global solution and this solution is ultimately bounded. Moreover, there
exists a constant p > 2 such that for any p € (2,P), this solution has

property (1.4) and there exists a constant K7, such that

¢
limsup1 E|z(s)|""Pds < K*
tJo

y+p*
t—o0
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