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A N ALTERNATIVE APPROACH 
TO ILL-POSED PROBLEMS 

G.G. WALTER 

ABSTRACT. An approach to ill-posed problems is pre­
sented in which the domain of the operator is enlarged rather 
than the range restricted. A topology is then introduced which 
makes the inverse operator continuous. This leads to a reg-
ularization procedure based on analytic representations. A 
number of examples are presented as well. 

1. Introduction. In one standard kind of ill-posed problem a linear 
operator T with non-closed range must be inverted in order to solve an 
equation of the form 

(1-1) Tf = g. 

The difficulty arises when g belongs to the closure of the range but not 
to the range itself. Then (1.1) has no exact solution but has at best 
only an approximate solution. Even this approximate solution may not 
be adequate in that it may not be close to an exact solution because of 
the lack of continuity of the operator T _ 1 . 

In a number of problems important in applications, T is an integral 
operator and the problem (1.1) is one of solving an integral equation 
of the first kind. 

Many procedures have been proposed and used in resolving such 
problems. They are concisely summarized in the recent article by 
Nashed [3]; a more detailed exposition may be found in the book by 
Tikhonov and Arsenin [8]. 

We shall not review the current literature on the subject but merely 
remark that many of the standard approaches involve restricting the 
range of the operator. In particular, in Tikhonov's regularization 
method, the range is restricted to the image of a compact set. In 
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the reproducing kernel Hilbert space (RKHS) approach of Nashed and 
Wahba [4], the range is restricted to this RKHS. 

In this work we shall take a different approach. Rather than re­
stricting the range, we shall enlarge the domain. We shall introduce a 
topology on both the range and the domain such that the inverse exists 
and is continuous. This converts the ill-posed problem into a well-posed 
one but at the expense of difficulty in interpreting the "solution." We 
shall assume that the equation is an integral equation in L2(a, 6) whose 
kernel is Hilbert-Schmidt, i.e., that (1.1) has the form 
(1.2) 

,6 

g{x)= K(x,t)f(t)dt, x€(a,b), f,g€L2(a,b), KeL2(a,b)2. 
Ja 

We shall also assume that the operator is 1-1 and self-adjoint. 

The extension to the larger space is accomplished in two stages. We 
first restrict the problem to a subspace A of L2 on which it is well-posed 
(§2) and then extend the problem to the conjugate space (§3). In §4, 
we present a regularization procedure based on analytic representations 
which avoids calculation of the eigenfunctions and apply this to some 
examples. 

2. Construction of A, a linear topological space. We shall con­
struct a sequence {An} of Hilbert spaces associated with the operator 
T. and then take their intersection to obtain a linear topological space 
on which T _ 1 is continuous. 

DEFINITION 2.1. Let A0 = L2(a, b)\ then An, n = 1,2,... , is given 
by the set 

An = {Tnf\feL2(a,b)} 

and its topology determined by the inner product 

(4>,1>)n= f T-ncf>T^p. 
Ja 

We denote by || ||n the corresponding norm. 
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REMARK 2.1. An is merely Tn(L2) with the induced topology. 
Clearly we have Ao D A\ D • • • D An D An+i D • • •, and since T 
is a compact operator, the unit ball in An+i is compact in the topology 
of each of AQ, Ai,..., An. 

DEFINITION 2.2. Let A = n%L0An with the natural topology; i.e., 
a neighborhood of 0 in A is a finite intersection of sets Ue,n = {(/) G 
i 4 | | 0 | i < e , t = O , l , . . . , n } . 

PROPOSITION 2.1. A is a complete countably normed space and hence 
a Fréchet space. Its metric may be given by 

oo 

d(4>, V>) = £ 2-n-1\\4> - V»||n/(1 + \\<P - V'lln). 
n=0 

PROOF. Each An is complete with respect to | ||n. Since the norms 
are in concordance because T is 1-1, A is a countably normed space. 
See Friedman [1, p. 7] for the remaining statements. DO 

We now turn to the operator T and its spectrum. Since T is self 
adjoint and compact, it has a discrete real spectrum. We assume the 
eigenvalues {A&} are arranged in order of decreasing magnitude. Since 
T is 1-1 it has no zero eigenvalues, but of course SfcLo xì < °° s m c e 

T was a H — S operator on L2. 

REMARK 2.2. The expansion of an element <f> € An with respect to 
the eigenfunction {(j>k} is given by 

oo 

(2.1) S ^ 

= £ < / , r * 0 f c > o 0 * = Y, xk(f,<t>k)o<t>k-

PROPOSITION 2.2. Let (j) e An (resp. A); then the expansion 
coefficients satisfy 

(2.2) ] T « ^ f c ) o A f c B ) 2 < oo (resp. (<t>,4>k)o = 0(A£), n = l , 2 , . . . ) 
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and the expansion (2.1) converges to <f> in the sense of An (resp. A). 
Conversely, if {a^} satisfies (2.2), then ^2ak4>k converges to some 
(j) G An (resp. A). 

PROOF. The statement about the coefficients is clearly true. The 
convergence follows from (2.1) since 

The expansion of / converges in L2(= A0). Hence the convergence of 
the expansion of (j) to 0 also occurs. 

Convergence in A follows from convergence in the sense of each An. DO 

PROPOSITION 2.3. The problem Tf = g has a unique solution for 
g £ A which depends continuously on g. 

REMARK 2.3. On A the problem is well-posed. 

PROOF. If g = ^òfc^fc, then / = 2(6fc/Afc)<£fc is clearly a solution, 
at least formally. By Proposition 2.2, bk = 0(X%) for each integer n. 
Since the same is true of bk/\k, and since the series must therefore 
converge in A, f G A, and is unique since T is 1-1. 

In order to show continuity of the inverse we assume gm —• g in the 
sense of A and show that fm —» / in A where Tfm = gm. If gm —» g, 
then \\gm - g\\n —• 0 for each n > 1; i.e., \\T~ngm - T~ng\\0 —> 0. Hence 
| T - n + 1 / m » r - n + 1 / | o = | / m - / | n - i for n - 1 > 0, and hence fm - / 
in A. DO 

3. Dual spaces. The dual space of a Hilbert space is of course 
isomorphic to itself when linear functionals are taken to have values 
given by t i e inner product. This is true for our spaces An. However, 
each An C L2, and hence has an L2 inner product as well. For each 
pair / , (j) G An, (/, 0)o determines a linear functional / on i n . In fact, 
even if / G L2, this will be a linear functional on An. More generally 
still, any expression of the form 

(3.1) Fn{<t>) = {f,T-n4>)o, 
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where f £ L2, will be a continuous linear functional on An. We denote 
Fn symbolically as Fn = T~n f. 

REMARK 3.1. It is easy to show that any continuous linear functional 
F on An has a representation given by (3.1). Indeed, since An is dense 
in AQ = L2, and is first countable, F has a continuous extension to L2 

and hence F(g) = (f,g)o for some / and all g G L2. Since each g G L2 

has the form g = Tn(j) we obtain (3.1). 

DEFINITION 3.1. Let A_n denote A'n with inner product given by 

(F,G)-n = {T-nf,T-ng)„n = (f,g)0 

PROPOSITION 3.1. A-n is a Hilbert space and each F G A-n has an 
eigenfunction expansion 

oo 

satisfying 

REMARK 3.2. The dual space A' of the countably normed space A 
contains each of the spaces A-n. It itself is not a Hilbert space but 
is complete with respect to the weak topology. Moreover, since A is 
a perfect space (see [1, p. 15]), bounded sets in A' are (sequentially) 
compact in both the weak and strong topologies. Each element F G A' 
has an expansion coefficient given by 

dk = F((f)k) = 0(\lp) for some p > 0. 

REMARK 3.3. Under the additional assumption that the kernel 
K(x,y) is a continuous function, the space A-i contains the point 
measures 6X for each x G (a, b). Hence, the space A' is a space of gen­
eralized functions, (see [1, p. 28] or [2].) 
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We now return to our ill-posed problem Tf = g for g G L2. Since 
L2 C A' we can interpret this as a problem in A'. In this case it 
becomes well-posed since, for each G G Af, there is an F G A' which 
satisfied the equation and depends continuously on G. 

Indeed F(<f>) = G(T _ 10) satisfied the equation formally. But T has 
an inverse on A, and hence T~l(j> exists. Also, if Gn —• 0 in A1', then 
GniT'1^) = Fn(</>) -+ 0, and hence Fn -> 0 in A!. 

The solution to the problem with g G L2 is of course an element of 
A-\ but may not itself be a function. However it may be approximated 
by finite partial sums of its eigenfunction expansion. We have 

(3.2) F(<f>) = £ 

where ctk = (<t>,<t>k)' This series converges very rapidly since otk and 
hence bkOtk = 0(X%) for each integer n. For the same reason there is 
no difficulty in dividing by Afc. 

However, from a practical point of view, we are often interested in a 
solution which is itself a function. One approach is to choose the value 
in the unit ball of L2 closest to F. 

PROPOSITION 3.2. Let G G A_n for some n > 1, then there exists a 
unique f G L2 such that \\f\\ < 1 and 

\\Tf-G\\-n 

is minimized. 

The proof is clear when we observe that the unit ball in L2 is compact 
in the norm of A-n. This corresponds to a quasi-solution [6, p. 35]. 

This proposition may be applied when G is a point mass. For each 6X 

there exists an fx in the unit ball of L2 such that Tf is the best approxi­
mation to 6X in A-\. However, the best approximation to ^ oti6Xi is not 
necessarily given by T^2aifXi, since the best approximation operator 
is not linear. Nevertheless, this will still be a fairly good approximation 
since 

(3.3) | | 5> i«x , -TY,<*ifxt\\-i < E N \\6*t-Tf*i\\-i-
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Such linear combinations are used to represent the outcomes of 
experiments in which a quantity a« is measured at time (or location) 

The function Tfx may be considered to be an approximation in the 
sense of A_i to 6X. We can get a closer approximation by using a 
larger ball instead of the unit ball in L2, and in fact a sequence [6niX] 
of functions in A\ which converge to 6X in the sense of A-i. This is 
one example that satisfies 

DEFINITION 3.2. A sequence (family) {6n(x,y)}%L0({6a(x,y)},a G 
A) of functions in L2(a, 6) x (a, b) is a delta-sequence (delta-family) of 
level ra,ra = 0 , 1 , . . . , if 

(3.4) 

(i) Ja ön(x,y)(ß(y)dy G Am for each 0 G Am, 

(ii) Ja 6n(x,y)<f)(y)dy —• </>(x) in the sense of Am, as n —• oc, 

(iii) 6n(x,y) —» 6(x — y) = ^ ( y ) for x fixed in the sense of A_i, as 
n —• ex), (and similarly for a family as a —»• ao). 

Some examples of delta-sequences are: 

(i) The partial sums of the expansion of 6(x — y) constitute a delta 
sequence given by 

n 

(3.5) 6n(x, y) = ^2 Mtffaiy) 

which does belong to Am for each m > 0 and hence belongs to A. Here, 
{(pk} are the eigenfunctions of the operator T. 

(ii) A delta family may be obtained by minimizing 

II«-r / | | i 1 +a||/|ß, 
and then operating with T. This gives us 

(3.6) W*.») = E l S # W 
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(iii) Still another delta family may be obtained from the formula 

(3.7) Se(x,y) = -- | r — - j , e > 0. 

7T (x — y)z + £z 

This Äe is not necessarily in Am and may have to be modified to meet 
this requirement. It is related to the analytic representation of func­
tions which we shall explore in the next section. The following indicates 
how the delta-sequences may be used. 

PROPOSITION 3.2. Let {6n} be a delta sequence of level m > 1. Then 
the problem 

Th = g, 

where g = ^ai6{x — xi) has an approximate solution given by 

K = ^OLiT^SniXiiX) 

and T hn —• ^2ai^(x ~~ xi) in the sense of A-\. 

4. Analytic representations. In the previous sections the tech­
niques involved the eigenfunctions {<fik} of the operator T. However, 
finding the (/>& is often as difficult as solving the problem. Hence, in this 
section, we consider an approach to the problem which avoids eigen­
functions but does require some additional assumptions about the ker­
nel K(x,y). The approach uses an "analytic representation" of g, i.e., 
a pair of functions defined respectively in the upper and lower complex 
half plane whose "jump" across the real axis gives g. For simplicity we 
also assume our interval [a, b] to be [0,1]. 

ASSUMPTION 4.1. Associated with the continuous kernel K(x,y) is a 
degenerate kernel Km(x, z) continuous on [0,1] x X where S is a region 
of C containing (0,1) such that 

a) (x - z)'1 - Km{x,z) e Ai, Imz ^ 0. 

b) T(Km(x, - + ie)- Km(s, • - ie))(x) -> 0 in L2 as e - • 0. 

c) (x - z)-1 - Km(x, z) = J0 K(x, y)G(y - z)dy, Imz ^ 0. 
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where G(x ± is) is bounded in x for e > 0. 

DEFINITION 4.1. Let g G L2(0,1); then an analytic representation 
g{z) is given by 

*(*) = 5 ^ / ' — « i s , I m ^ O , 
Z7TZ J o X — 2 

and a modified representation gm(z) by 

£m(*0 = ^- r / 0(z)( i f m ( R e 2 : ; £ - i I m z ) W , I m z ^ O . 
Z7T2 , /Q \ X — Z / 

THEOREM 4.1. Let K(x,y) be an H — S kernel which satisfies 
Assumption 4.1 and let g G L2 : then, for each e > 0, there is an 
f£ G L2 such that 

(i) g(x + is) - g(x - is) = (Tf£(x) 
and an et G L2 such that 

(ii) if g G Ai, then g(x + is) — g(x — ie) — (Te£)(x) —• g(x) as e —• 0 
m £/ze sense of Ai and Te£ —• 0 in L2. 

Before we present the proof we consider an example which contains 
all the essential ideas. 

EXAMPLE l. Let 

{ x(l-y), x < y 
a:,!/e (0,1), 

y(l-x), y <x 

Then we may calculate that 

by using the fact that K(x,y) is a Green's functions of — D2. Hence 

x — 1 x 
K2{x, z) = + —— = ißi{x)(f)i(z) + ip2(x)(f)2{z), 
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and 

* , \ l f1 / sf 1 Rez-1 Rez \ 

We may interchange the role of x and Rez = s in (4.1) to obtain 
{lmz = t) 
(4.2) 

1 _ - 1 
x — s — it s — x + it 

= ~Jo K{x'y\x-it-yy
dy ~x~^ït~ î-x + it 

which we then substitute in the expression for g(z) to obtain 

iM = ûl 3{X)L KI-'-y\x-l-yfdvdx 

'TW!J~^^)- (— + (• + «»• 
Hence, by defining f£ by 

My) = -hl0
 9{x)({x-t-yf-{x + ie-yf)dXi 

we see that 
g2(x + is) - g2(x - is) = (Tfe)(x), 

thus illustrating part (i) of the theorem. 

To see that (ii) holds in this case, we note that, for g G Ai, we may 
obtain another expression for f£. 
(4.4) 

= T(_L /" / (r)(_l__l^L r—)dr)(>), 
\2m J0

 J XJ\r-y-it y + it 1-y-itJ / v " 
(z = s + it). 
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It remains to be shown that f£ converges to / in the sense of L2 as 
e —• 0. Rather than work out this special case, we shall show that the 
conclusion holds in general and hence in this case. 

PROOF OF THEOREM. The proof of part (i) is the same as in the 
example. It requires only that we obtain an expression similar to (4.3). 
Since the only operations needed involved the symmetry of x — z and 
interchange of order of integration, we may conclude that (4.3) in the 
form 

(4.5) gm(z) = — K(s,y) g(x)G(x - it - y)dx dy 

holds in general. 

LEMMA. Let g e L2(0,1), and P£(x) = ^xi\eiy Then 

(i) {g*P£) -+ g* in L2(-oo, oo) where g*(x) = j j j ^ ° - * - l j and 

(g*P£)(x) = tig(t)Pe(x-t)dt; 
(ii) (g*Pe)(x) —» g*(x) pointwise as each point of continuity of g*. 

This lemma is well known since Pe(x) is the Poisson kernel on 
(—oo, oo). A proof may be found in [5]. 

Returning to gm we see that, for g G A, we have, by calculations 
similar to (4.4), 
(4.6) 

gm{s+ie)= K(s,y)[— I f(r)( --Km(r,y+ie)dr)dy. 
Jo \ziri JQ \r — y — is / / 

Hence we have 

gm(s -h ie) - gm(s - ie) = I K(s, y) ((/*Pc)(y) 

1 f1 

(4.7) ~2ril / ( r ) ( ^m( r ,y + te) 

-Km(r,y-ie))dr)dr 

= T(f*P£)(s) + T(e£)(s). 

file:///ziri
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By the lemma, f*P£ —> f in L2 as e —> 0, while, by the assumption 6, 
Te£ —* 0 on L2. Hence conclusion (ii) follows. DO 

EXAMPLE 2. Let K(x, y) be the Green's function of an m-th order 
linear differential operator P{D) on (0,1) with boundary operator 
Bi(f) = 0, i = 1,2, . . . , m . Then the procedure of Example 1 may 
be followed by setting 

(4.8) — = / K(x,y)P{D)—dy + Km(x,z), 
x- z J0 y- z 

where ifm(x, z) is chosen such that 

(4.9) Bi( )=Bi(Km{x,z)), * = l , 2 , . . . , m . 
\x — z/ 

This may be accomplished by setting tpi(z) to 

Mz) = Bi(—) 
\x — z) 

and then choosing <fii(x) to be polynomials of degree < m such that 

Bj((/)i) = 6ij. 

The degenerate kernel Km(x, z) is then taken to be 
771 

Km(x,z) = Y2Mx)^i(z)' 
2 = 1 

A modification of this method may be used in other cases as well. 
One such is the following example. 

EXAMPLE 3. A problem arising in antenna theory leads to the 
equation (see [3, p. 221]) 

(4.10) g{u) = J eicxuf(x)dx, - 1 < u < 1, c ^ 0, 
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whose kernel is not self-adjoint but is in L2(—1,1)2. We can find an 
analytic representation by first assuming that g has been extended to 
the entire real axis. Indeed, if g is in the range of this operator it can 
be extended to an entire function which is in L2 on the real axis. The 
one sided Fourier transform can then be applied to both sides of (4.10) 
to obtain 

(4.11) 

/»OO /»I /»OO 

g(z) = / eiuzg(u)du = / / éuzeicxuf{x)dudx 
Jo J-iJo 

f1 (-1) , , x , 2?r p/ z\ T 

The interchange of integration implicitly done is valid since, for 
Imz > 0, the double integral is absolutely integrable. Here / is the 
analytic representation of / . For Imz < 0 we use, in place of (4.11), 

(4.12) g(z)= [ eiuzg(u)du=- — / ( - - ) , Im* < 0. 

These two equations give us an analytic representation of the solution 
when g is in the range of T. Even if g £ range (T), then procedures 
may be followed formally to obtain an analytic representation of an 
element of one of the spaces A-m. For example, if g is the point mass 
at a > 0, we have 

{ /0°° eiuz6{u - a)du = eiaz, Imz > 0, 

0, l m z < 0 , 

which is clearly not the analytic representation of a function with 
support on [—1,1]. 

The technique may be further modified for kernels not in L2. 

EXAMPLE 4. In sterology one encounters the integral equation (see 
Wahba [8]) 

(4.13) g(t) = tj f{s) ds, t>0. 
t v ^ 1 7 ^ 
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The kernel K(t,s) = (t/y/s2 — t2)H(s — i) is neither symmetric nor 
in L2. However, by means of a few simple transformations, it can be 
changed to a more tractable form and a technique involving analytic 
representations used. 

We first replace t2 by u and s2 by v to obtain 

Ju (v-u)1/2 2y/v 

Subsequently, we replace u by x~x and v by y - 1 , whence we obtain a 
form of Abel's equation: 

(4.14) gix-1'2) = J\x - y)-xl2\y-^{y-^)dy. 

One can then use a fractional derivative and the fact that 

- 1 / 2 

r(i/2) ò[x) 

(See [2; Vol I, p. 117]) to simplify this some more. We therefore 
operate on both sides of (4.14) by D1/2 and then take the analytic 
representation of both sides to obtain 

<4-15) Si/ -/L-U-iWi)«,). 

where / i is the analytic representation of the function fi(y) = f(y~x^2) 
y~l. But the fractional derivative D 1 / 2 of a function h is given by ([2; 
Vol I, p. 115]) 

-3 /2 

D1'*h(x) = ^±^*h{x). 

Hence we have 

<"6> A W - J S / . r(|)r(-i)(x-,) * 

which, after integration by parts, becomes 

(4-17) h{z) = 2„T(f)r(4) L ( ^ dx 
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which converges for g G 1/ 
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