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ON COMPLETE MONOMIAL IDEALS

PHILIPPE GIMENEZ, ARON SIMIS, WOLMER V. VASCONCELOS
AND RAFAEL H. VILLARREAL

ABSTRACT. In dimension 2, we study complete mono-
mial ideals combinatorially, their Rees algebras and develop
effective means of finding their defining equations.

1. Introduction. The study of complete ideals in the polynomial
ring k[x, y] is a classical subject started by Zariski in [28] (see also
[29, Appendix 5]) and subsequently developed by various other authors
([14, 17, 18, 21]).

The special case of monomial ideals is enhanced by the use of
combinatorics, especially those parts related to convex hull techniques.
It is somewhat surprising that, only more recently, this facet took
off accordingly. Thus, in [6, 7] Quiñonez studied the normality of
monomial ideals in k[x, y] and established a criterion in terms of certain
partial blocks and associated sequences of rational numbers.

In the present work, the overall goal is to study normal monomial
ideals in k[x, y] in a landscape governed by Zariski’s theory of com-
plete ideals and the structures and algorithms associated to Newton
polygons. A common root between Quiñonez’s approach and ours is
the emphasis on the exponents of the monomials that generate the
given ideal written in lexicographic order with x > y, thus affording a
slightly different angle from the one in some of the previous classical
approaches.
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A difference between our results and Quiñonez’s lies in that we state
necessary or sufficient conditions for normality directly in terms of
the stair sequences of the monomial exponents by means of certain
inequalities. Since each of these criteria is stated by means of a finite
set of numerical inequalities, it is doubtful whether one can group them
together in order to obtain a full characterization of normality (this
point is addressed in detail in Question 2.19).

Other points of contrast are our use of polyhedra theory (such
as Pick’s formula) and a strengthening of the relationship between
normality and m-fullness–the latter a concept introduced by Rees and
developed in [15, 27]. Thus, the preponderance of our algebraic results
is derived from the properties of the polygon defined by the points in the
plane whose coordinates are the exponents of the monomials generating
the ideal. This benefits from the fact that a natural starting point is the
direct description of m-full ideals and the simplicity of their syzygies.

Unavoidably, in such a narrowly defined class of ideals coming from a
slightly distinct view point, we recover some of the results of Quiñonez.
In such cases, we explain the relationship between the two.

Let R = k[x, y], m = (x, y), and I be a monomial ideal. When
needed in our references to the literature, we assume k is infinite. Sup-
pose that I is m-primary, minimally generated by n elements, µ(I) = n,
but I ̸= mn−1. I is minimally generated by n monomials that are listed
lexicographically, I = (xa1 , xa2ybn−1 , . . . , xaiybn−i+1 , . . . , xan−1yb2 , yb1)
with

a1 > a2 > · · · > an−1 > an := 0,

b1 > b2 > · · · > bn−1 > bn := 0,

defining the set of points Pi = (ai, bn−i+1), 1 ≤ i ≤ n.

Our first result describes how, given a monomial ideal I, to find the
smallest m-full monomial ideal I ′ containing it (Proposition 2.7). This
works for any m-primary monomial ideals in k[x1, . . . , xd]. Moreover, in
the case where d = 2, we characterize when I is m-full (Theorem 2.9).

In a different direction, we take up the normality question, by
conveying several necessary conditions or sufficient conditions for it
to hold, expressed by systems of linear inequalities Q(P1, . . . , Pn) ≤ 0
(Proposition 2.12, Theorem 2.13 and Proposition 2.15).
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Our most comprehensive results are given in the equations of the
Rees algebras R[It] of normal monomial ideals. They are put together
from two facts. On one hand, the algebras R[It] being normal are
Cohen-Macaulay by a theorem of Lipman-Teissier ([19, Corollary 5.4]).
On the other hand, the syzygies of I are straightforward enough
to permit getting the equations of R[It] in one or two rounds of
elimination. An effective application of a theorem of Morey-Ulrich
([20, Theorem 1.2]) gives the case when one round of elimination
suffices (Theorem 3.3). This is an approach that has also been exploited
in [3, Theorem 3.17] and [4], allied with a detailed examination of
their Hilbert functions for a wider class of ideals. Here, aiming for
less generality, we get to the equations as quickly and effectively as
possible by introducing a second elimination round to recover them all
(Theorem 3.6). Finally, we recall that, while the Rees algebras of m-full
ideals are not always Cohen-Macaulay, they will be so if their special
fiber is Cohen-Macaulay (Theorem 3.8).

2. Criteria for m-fullness and normality.

2.1. Polyhedra. Let R = k[x1, . . . , xd] be a polynomial ring over a
field k, with d ≥ 2, and let I be a zero-dimensional ideal of R minimally
generated by monomials xv1 , . . . , xvq , where xvj := x

v1,j

1 · · ·xvn,j
n , for

j = 1, . . . , q. Consider the rational convex polyhedron Q := Rd
≥0 +

conv (v1, . . . , vq), where conv (v1, . . . , vq) denotes the convex hull of
v1, . . . , vq in Rd. The integral polytope conv (v1, . . . , vq), denoted by
N(I), is called the Newton polytope of I, and Q is called the Newton
polyhedron of I.

Remark 2.1. Q ∩ Zd = (Qd
≥0 + convQ(v1, . . . , vq)) ∩ Zd. This follows

using that Q is a rational polyhedron, i.e., the vertices of Q are in Qd.

As usual, we denote the floor and ceiling of a real number r by ⌊r⌋
and ⌈r⌉, respectively. One can use these notions to give necessary and
sufficient conditions for the normality of I as well as some descriptions
of the integral closures of the powers of I [1, 8, 10, 11] (see also
Proposition 2.3 and Theorem 2.13 below).
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Definition 2.2. Let A be the d×q integer matrix with column vectors
v1, . . . , vq. The system x ≥ 0;xA ≥ 1 of linear inequalities is said to
have the integer rounding property if

max{⟨y,1⟩ | y ≥ 0;Ay ≤ w; y ∈ Nq} = ⌊max{⟨y,1⟩ | y ≥ 0;Ay ≤ w}⌋

for each integer vector w for which the right hand side is finite. Here,
1 = (1, . . . , 1) and ⟨ , ⟩ denotes the usual inner product.

Systems with the integer rounding property have been widely studied
from the viewpoint of integer programming; see [22, pages 336–338],
[23, pages 82–83], and the references therein.

Proposition 2.3.

(i) [8, Proposition 1.1]. Im = ({xa | a ∈ mQ∩ Zd}) for 0 ̸= m ∈ N.
(ii) [8, Proposition 1.2]. I is generated by all xa with a ∈ (Q +

[0, 1)d) ∩ Nd.
(iii) [9, Corollary 2.5]. I is normal if and only if the system x ≥

0; xA ≥ 1 has the integer rounding property.

Example 2.4. If I = (x2, y3), then N(I) ∩ Z2 = {(2, 0), (0, 3)} and
I = I + (xy2).

If I ⊂ k[x, y], the next result will be used to give the necessary
condition for I to be normal (see Proposition 2.12 (ii)).

Proposition 2.5. (Pick’s formula, [2, page 248]). If P ⊂ R2 is an
integral polytope of dimension 2, then

area (P) = |Z2 ∩ P| − |Z2 ∩ ∂P|
2

− 1 = |Z2 ∩ Po|+ |Z2 ∩ ∂P|
2

− 1,

where ∂P and Po are the boundary and the interior of P, respectively.

2.2. Full ideals. Let R = k[x, y] and m = (x, y). An m-primary ideal
I is said to be m-full if mI : a = I for some a ∈ m \ m2 (see [15,
subsection 14.1.5]). The element a can be taken to be a linear form
not dividing the content ideal c(I) of I (see [15, subsection 14.1.1,
Proposition 14.1.7]). If I is a monomial ideal, a can be taken to be a
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form that is not a monomial since the content is monomial. We shall
take a = x+ y.

The fundamental characterization of m-full ideals of two-dimensional
regular local rings is the following result due to Rees ([15, Exercise 14.1]
and [27, Theorem 4]):

Theorem 2.6. Let I be an m-primary ideal of a regular local ring
(R,m) of dimension 2. Then I is m-full if and only if for all ideals
I ⊂ J , µ(J) ≤ µ(I).

In analogy to the existence of the integral closure of an ideal, let
us consider the question of its m-full closure in the sense of a unique
minimal m-full ideal J containing I. Since the set of m-full ideals
containing I is non-empty and satisfies the minimal chain condition
there may exist, to the authors’ knowledge, more than one minimal
element, a situation that makes appointing one of them inappropriate
as the closure. The situation is clearer if we consider only the set of
monomial ideals.

Proposition 2.7. Let I be an m-primary monomial ideal. Then its
m-full monomial closure I∗ exists, and it is integral over I.

Proof. For any ideal L of a polynomial ring k[x1, . . . , xd], we denote
by M(L) the ideal generated by all monomials that occur in the
representation of the elements of L. It is clear that M(L) is defined by
the monomials that occur in any generating set for L. Note that, if J
is a monomial ideal and L ⊂ J , then M(L) ⊂ J .

• Consider the set of all m-full monomial ideals that contain the
monomial ideal I. For each such m-full monomial ideal L, we
have

mI : x+ y ⊂ mL : x+ y = L.

• If mI : x + y ̸= I, that is, if I is not m-full, note that
M(mI : x + y) properly contains I but it is still contained
in L. In this case, set I1 = M(mI : x + y), and apply the
previous step to it. This process defines an increasing chain
of monomial ideals I ⊂ I1 ⊂ I2 ⊂ · · · , contained in L whose
stable ideal I∗ is m-full.
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• Considering that the integral closure I of I is monomial and
m-full, we have I∗ ⊂ I. �

Example 2.8. Let I = (x3, y5). Then, mI : x+y = (x3, x2y3−xy4, y5).
Thus, I1 = (x3, x2y3, xy4, y5) and mI1 : x+ y = I1. Thus, I

∗ = I1.

Let us cast Theorem 2.6 for monomial ideals of k[x, y] into an
effective form for later usage.

Theorem 2.9. If I is minimally generated by n monomials that are
listed lexicographically,

I = (xa1 , xa2ybn−1 , . . . , xaiybn−i+1 , . . . , xan−1yb2 , yb1),

then I is m-full if and only if there is 1 ≤ k ≤ n such that the following
conditions hold :

(i) bn−i − bn−i+1 = 1 for 1 ≤ i ≤ k − 1,
(ii) k = n or k < n and bn−k − bn−k+1 ≥ 2,
(iii) ai − ai+1 = 1 for k ≤ i ≤ n− 1.

Proof. We first show that I is m-full if and only if order (I) =
n − 1. Thus, suppose order (I) = n − 1, i.e., there is an element
xkyn−1−k ∈ I. Note that I ⊂ J implies order (J) ≤ order (I). Since
µ(J) ≤ order,(J) + 1 ≤ n, I satisfies Theorem 2.6.

Conversely, if I is m-full, order (I) ≤ n− 1, as otherwise I ⊂ (x, y)n,
which has n+1 minimal generators, which would violate Theorem 2.6.

Now, granted order (I) = n−1, suppose an occurrence of a monomial
of degree n−1 is xkyn−1−k. This means that there are at most n−1−k
elements prior to xkyn−1−k and at most k elements after. This gives

I = (xa1 , xa2y, . . . , xak−1yn−2−k, xkyn−1−k, xk−1ybn−k , . . . , xyb2 , yb1).

By choosing k as small as possible we achieve all three conditions.

Conversely, it is clear that the set of the three stated conditions
implies order (I) = n− 1. �

Corollary 2.10. Let I be an ideal minimally generated by n monomials
that are listed lexicographically, I = (xa1 , xa2ybn−1 , . . . , xaiybn−i+1 , . . . ,
xan−1yb2 , yb1). Suppose that I is normal.
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(i) For every i, either ai − ai+1 = 1 or bn−i − bn−i+1 = 1.
(ii) If bn−i − bn−i+1 > 1 for some i, then ai − ai+1 = 1 and

ai+1 − ai+2 = 1.

Proof. Both claims follow readily from Theorem 2.9 because com-
plete monomial ideals of k[x, y] are m-full [15, Theorem 14.1.8]. �

This result has already been observed in [7, page 369]. In the same
work, the following terminology was introduced for zero-dimensional
monomial ideals I ⊂ k[x, y], whose generators are ordered as above: I is
called x-tight (respectively, y-tight) if ai−ai+1 = 1 for all i (respectively,
bi − bi+1 = 1 for all i).

Putting together the previous result and these notions, we have:

Corollary 2.11. If I as above is m-full, then it is the product of an
x-tight ideal and a y-tight ideal.

Proof. It follows from Theorem 2.9 and [7, Proposition 2.2]. �

2.3. Normality criteria. We now proceed to establish separate nec-
essary or sufficient conditions for normality in terms of the associated
monomial exponents. First we state the necessary conditions:

Proposition 2.12. Let I be an ideal minimally generated by n mono-
mials that are listed lexicographically, I = (xa1 , xa2ybn−1 , . . . , xaiybn−i+1 ,
. . . , xan−1yb2 , yb1), and let Pi = (ai, bn−i+1), Pi+1 = (ai+1, bn−i) and
Pi+2 = (ai+2, bn−i−1) be three consecutive points corresponding to the
exponents of the defining monomials of I. The following hold :

(i) If I = I and bn−i−1 − bn−i = 1, bn−i − bn−i+1 = 1, then
ai+1 ≤ ⌈(ai + ai+2)/2⌉.

(ii) If I = I and ai − ai+1 = 1, ai+1 − ai+2 = 1, then bn−i ≤
⌈(bn−i−1 + bn−i+1)/2⌉.

Proof. (i) First we assume that Pi+1 ∈ conv (Pi, Pi+2). Then, we can
write Pi+1 = λ1Pi + λ2Pi+2, where λi > 0, i = 1, 2 and λ1 + λ2 = 1. It
is not hard to see that λi = 1/2 for i = 1, 2. Thus, one has

ai+1 =
ai + ai+2

2
=

⌈
ai + ai+2

2

⌉
.
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We may now assume that Pi+1 /∈ conv (Pi, Pi+2). We proceed by
contradiction assuming that

ai+1 >

⌈
ai + ai+2

2

⌉
, that is, ai+1 −

ai + ai+2

2
≥ 1.

Consider the convex polytope P whose vertices are Pi, Pi+1, Pi+2. We
claim that ∂P∩Z2 = {Pi, Pi+1, Pi+2}. Clearly, conv (Pi, Pi+1)

o∩Z2 = ∅
and conv (Pi+1, Pi+2)

o ∩ Z2 = ∅, because bn−i−1 − bn−i = 1 and
bn−i − bn−i+1 = 1. We claim that also conv (Pi, Pi+2)

o ∩ Z2 = ∅.
Indeed, if this set is non-empty, pick an integral point (c1, c2) in
conv (Pi, Pi+2)

o. By Proposition 2.3, the monomial xc1yc2 is in I = I.
Then, we can write

c1 = tai+2 + (1− t)ai = ϵ1 + aj ,(2.1)

c2 = tbn−i−1 + (1− t)bn−i+1 = ϵ2 + bn−j+1,(2.2)

for some j, where ϵ1 and ϵ2 are in N and 0 < t < 1. From equation (2.1),
we get ai > c1 = ϵ1 + aj . Thus, i < j. From equation (2.2), we get

c2 = t(bn−i−1 − bn−i+1) + bn−i+1 = 2t+ bn−i+1 = ϵ2 + bn−j+1.

Hence, 2 + bn−i+1 > ϵ2 + bn−j+1. If ϵ2 ≥ 1, then bn−i+1 − bn−j+1 ≥ 0,
and consequently, i ≥ j, a contradiction. Hence, ϵ2 = 0, j = i+ 1 and
t = 1/2. Therefore, from equation (2.1), we obtain

ϵ1 =
ai + ai+2

2
− ai+1 ≥ 0,

a contradiction. This completes the proof of the claim. As a conse-
quence, using Pick’s formula (Proposition 2.5), one has

(2.3) area (P) = |P0 ∩ Z2|+ 1

2
.

The equation of the line passing through Pi and Pi+2 is

x1(bn−i−1 − bn−i+1) + x2(ai − ai+2)

= ai(bn−i−1 − bn−i+1) + (ai − ai+2)bn−i+1.

Since

ai+1 −
ai + ai+2

2
≥ 1,
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the point Pi+1 lies above this line. It follows readily that the area of P
is given by

area (P) = ai+1 −
ai + ai+2

2
≥ 1.

Hence, by equation (2.3), P0 ∩ Z2 ̸= ∅. Pick an integral point (c1, c2)
in P0. By Proposition 2.3, the monomial xc1yc2 is in I = I. Then we
can write

c1 = λ1ai + λ2ai+1 + λ3ai+2 = ϵ1 + aj ,(2.4)

c2 = λ1bn−i+1 + λ2bn−i + λ3bn−i−1 = ϵ2 + bn−j+1,(2.5)

for some j, where ϵ1 and ϵ2 are in [0, 1), λi > 0 for i = 1, 2, 3, and
λ1+λ2+λ3 = 1. From equations (2.4) and (2.5), we get ai > c1 = ϵ1+aj
and bn−i−1 > c2 = ϵ2 + bn−j+1. Thus, i < j and −2 < i − j, i.e.,
j = i+ 1. Therefore, we can rewrite equation (2.5) as

c2 = λ1(bn−i − 1) + λ2bn−i + λ3(bn−i + 1)

= bn−i − λ1 + λ3 = ϵ2 + bn−i.

As a consequence, −λ1 + λ3 = ϵ2 ≥ 0. Hence, ϵ2 must be zero because
ϵ2 < λ3 < 1. Then, from equation (2.4), we get

c1 = λ1(ai + ai+2) + λ2ai+1

= λ1(ai + ai+2) + (1− 2λ1)ai+1 = ϵ1 + ai+1.

Thus, λ1(ai+ai+2−2ai+1) = ϵ1 ≥ 0, and hence, ai+ai+2−2ai+1 ≥ 0,
a contradiction.

(ii) Notice that the ideal obtained from I by permuting x and y is
also normal. Thus, this part follows from (i). �

Putting together Corollary 2.10 and Proposition 2.12 we obtain the
following:

Theorem 2.13. Let I be minimally generated by n monomials that are
listed lexicographically, I = (xa1 , xa2ybn−1 , . . . , xaiybn−i+1 , . . . , xan−1yb2 ,
yb1). If I is normal, then there exists k, 1 ≤ k ≤ n, such that :

(i) an−1 = 1, an−2 = 2, . . . , ak = n− k,
(ii) bn−1 = 1, bn−2 = 2, . . . , bn−k+1 = k − 1,
(iii) b2 ≤ ⌈(b1 + b3)/2⌉, b3 ≤ ⌈(b2 + b4)/2⌉, . . . , bn−k ≤ ⌈(bn−k−1

+bn−k+1)/2⌉,
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(iv) a2 ≤ ⌈(a1 + a3)/2⌉, a3 ≤ ⌈(a2 + a4)/2⌉, . . . , ak−1 ≤ ⌈(ak−2 +
ak)/2⌉.

Proof. There is a 1 ≤ k ≤ n such that bn−1 = 1, bn−2 =
2, . . . , bn−k+1 = k − 1 and bn−k − bn−k+1 ≥ 2. Then, using Corol-
lary 2.10 (ii), it is seen that ai − ai+1 = 1 for i ≥ k. Hence, (i) and (ii)
hold. Parts (iii) and (iv) follow from Proposition 2.12. �

Example 2.14. The ideal I = (x3, x2y8, xy15, y21) is not normal (but
it is m-full) and satisfies the conditions of Theorem 2.13. The integral
closure of I is I = (x3, x2y7, xy14, y21).

We next state sufficient conditions of a similar nature for normality.

Proposition 2.15. Let I ⊂ K[x, y] be an ideal minimally generated by
n monomials that are listed lexicographically,

I = (xa1 , xa2ybn−1 , . . . , xaiybn−i+1 , . . . , xan−1yb2 , yb1).

If ai − ai+1 = 1 for i = 1, . . . , n− 1, and 2bn−i ≤ bn−i−1 + bn−i+1 for
all i, then I is normal.

Proof. Notice that ai = n − i for i = 1, . . . , n. Let xc1yc2 be a
minimal monomial generator of I. By Proposition 2.3 (ii), we can
write

c1 = λ1(n− 1) + · · ·+ λi(n− i) + · · ·+ λn−1(1) + ϵ1,(2.6)

c2 = λ2bn−1 + · · ·+ λibn−i+1 + · · ·+ λn−1b2 + λnb1 + ϵ2,(2.7)

where ϵ1 and ϵ2 are in [0, 1), λi ≥ 0 for all i, and
∑n

i=1 λi = 1. Hence,
0 ≤ c1 < n. As c1 is an integer, one has 0 ≤ c1 ≤ n − 1. Thus,
c1 = ai = n − i for some 1 ≤ i ≤ n. To show that xc1yc2 is in I
it suffices to show that xc1yc2 is a multiple of xaiybn−i+1 . The proof
reduces to showing that c2 ≥ bn−i+1. Thus, by equation (2.7), we need
only show the following inequality

(2.8)
λ2bn−1 + · · ·+ λi−1bn−i+2 + λi+1bn−i + · · ·

+ λn−1b2 + λnb1 ≥ (1− λi)bn−i+1.
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Using 1− λi =
∑

j ̸=i λj , it follows that this inequality is equivalent to

(2.9)
λi+1(bn−i − bn−i+1) + λi+2(bn−i−1 − bn−i+1) + · · ·+ λn(b1 − bn−i+1)

≥ λ1bn−i+1 + λ2(bn−i+1 − bn−1) + · · ·+ λi−1(bn−i+1 − bn−i+2).

From equation (2.6) and using the equality n − i = (n − i)
∑n

j=1 λj ,
one has

(2.10)
λi+1(1) ≥ λ1(i− 1) + · · ·+ λi−1(1)

− [λi+2(2) + · · ·+ λn−1(n− i− 1) + λn(n− i)].

Hence, to show equation (2.9), it suffices to prove the following inequal-
ity:

(2.11)

λ1[(i− 1)(bn−i − bn−i+1)− bn−i+1] + · · ·
+ λi−1[(bn−i − bn−i+1)− (bn−i+1 − bn−i+2)]

+ λi+2[(bn−i−1 − bn−i+1)− 2] + · · ·
+ λn[(b1 − bn−i+1)− (n− i)] ≥ 0.

To complete the proof, notice that this inequality holds because all
coefficients of λ1, . . . , λn are non-negative. �

Example 2.16. Let I be the ideal of Q[x, y] generated by x2, xy2, y3.
This ideal is normal, and satisfies ai − ai+1 = 1 for i = 1, 2, but
2b2 ̸≤ b1 + b3, where b1 = 3, b2 = 2 and b3 = 0.

Corollary 2.17. Let I be minimally generated by n monomials that are
listed lexicographically, I = (xa1 , xa2ybn−1 , . . . , xaiybn−i+1 , . . . , xan−1yb2 ,
yb1). Assume that I is m-full, and let k be the integer obtained in The-
orem 2.9, 1 ≤ k ≤ n. If

(i) 2b2 ≤ b1 + b3, 2b3 ≤ b2 + b4, . . . , 2bn−k ≤ bn−k−1 + bn−k+1,
(ii) 2a2 ≤ a1 + a3, 2a3 ≤ a2 + a4, . . . , 2ak−1 ≤ ak−2 + ak,

then I is normal.

Proof. As observed in Corollary 2.11, an m-full ideal I is the product
of an x-tight ideal X and a y-tight ideal Y . Moreover, by [7, Proposi-
tion 2.6], the product of an x-tight ideal and a y-tight ideal is integrally
closed if and only if both ideals are integrally closed. One can apply
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Proposition 2.15 to X, and the similar result holds for y-tight ideals to
Y to get the required result. �

Remark 2.18. For an m-full ideal, normality is a condition in between
the set of conditions (iii)–(iv) in Theorem 2.13, and the set of conditions
(i)-(ii) in Corollary 2.17.

Related questions.

Question 2.19 (Finiteness question). Each of the necessary and suf-
ficient conditions of normality above is cast in the form of a system Q
of linear inequalities on the coordinates of the points Pi. It is not likely
that a full set of conditions can be expressed by a finite set Q1, . . . , Qm of
inequalities. More precisely, for each type of such inequality Q, denote
by M(Q) the set of all monomial ideals that satisfies Q. For instance,
for the normal ideals I lying in the variety M(Qi), then for all pairs of
integers a, b ≥ 1, the ideal (xa, y)(x, yb)I is also normal, by Zariski’s
theorem, so it must belong to one of the other varieties M(Qj).

Question 2.20 (Realization question). Let I be an m-full ideal min-
imally generated by n elements and I its integral closure. Since I is
also minimally generated by n elements, there is at least one map φ
between the set of points {P1, . . . , Pn} of I and {P ′

1, . . . , P
′
n} of I given

by Pi = P ′
j +Rij, for each i and some j. Note that R1j = Rnj = (0, 0).

We ask what is the nature of such maps? Is there more than one such
mapping? A positive answer would help in predicting the integral clo-
sure of a monomial ideal by first determining its m-full closure.

3. Rees algebras. Let I be a monomial ideal of R = k[x, y]. We
now study the Rees algebras R[It] emphasizing when they are Cohen-
Macaulay and obtaining their defining equations.

3.1. Syzygies. We have the following facts about their syzygies.

(Matrix of syzygies). Let I be an ideal minimally generated by
n monomials that are listed lexicographically,

I = (xa1 , xa2ybn−1 , . . . , xaiybn−i+1 , . . . , xan−1yb2 , yb1).
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Among the Taylor syzygies, a subset of n − 1 “consecutive” ones
minimally generate, giving rise to the n× (n− 1) syzygy matrix:

φ =



ybn−1 0 · · · 0 0
−xa1−a2 ybn−2−bn−1 · · · 0 0

0 −xa2−a3 · · · 0 0
...

... · · ·
...

...
0 0 · · · yb2−b3 0
0 0 · · · −xan−2−an−1 yb1−b2

0 0 · · · 0 −xan−1


.

Note that φ is monomial (this is not typical of monomial ideals in
higher dimension, it is an issue of which Cohen-Macaulay monomial
ideals of codimension 2 have a minimal presentation with monomial
entries). In particular, we have:

Proposition 3.1. Let I be a codimension 2 monomial ideal of R =
k[x, y]. The content ideal of the syzygies of I is I1(φ) = (xr, ys).

A similar assertion holds for an m-primary m-full ideal of a two-
dimensional regular local ring (R,m) (of infinite residue field): I1(φ) =
(x, f), x ∈ m \m2.

3.2. Equations of the Rees algebra. Let I be an ideal of R
minimally generated by n monomials. Let B = R[T1, . . . ,Tn] 7→ R[It]
be an R-algebra presentation of the Rees algebra of I, and set Q to be
the kernel. Q is a graded prime ideal in the standard R-grading of B,
Q = Q1 +Q2 + · · · . With the syzygies defining Q1, we focus on Q2.

• (Elimination). Write the set Q1 of syzygies of I as

Q1 = [T1, . . . ,Tn] · φ = T · φ,

which we rewrite as

T · φ = I1(φ) ·B(φ),

(B(φ) is called the Jacobian dual of φ) where I1(φ) is repre-
sented as [xr, ys]. By elimination,

I2(B(φ)) ⊂ Q2 ⊂ Q.
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• (Expected equations). I is said to have the expected equa-
tions if Q = (Q1, I2(B(φ))). Our setting is now ready for sev-
eral applications of [20]. See also [3, Theorem 3.17], where a
similar development takes place.

We will make use of the following criterium of Cohen-Macaulayness
of Rees algebras.

Proposition 3.2 (Cohen-Macaulay test). Let (R,m) be a Cohen-
Macaulay local ring of dimension 2 and infinite residue field. If I is
an m-primary ideal, then R[It] is Cohen-Macaulay if and only if the
reduction number of I is at most 1.

Proof. The forward assertion is a consequence of the Goto-Shimoda
theorem ([12]) for rings of dimension 2. For the converse, if J is a
minimal reduction and I2 = JI, IR[It] = IR[Jt], from which it follows
that IR[It] is a maximal Cohen-Macaulay module over R[It]. The
Cohen-Macaulayness ofR[It] follows from this (see [26, page 102]). �

Theorem 3.3. The Rees algebra of a complete ideal I of R is always
Cohen-Macaulay. In particular, I has reduction number ≤ 1. I has the
expected equations if and only if

In−2(φ) = I1(φ)
n−2.

The Cohen-Macaulayness is the result of Lipman-Teissier ([19,
Corollary 5.4]). The last assertion follows from [20, Theorem 1.2]
and the observations above on the syzygies of I.

Example 3.4. Suppose I = (x, yb1) · · · (x, ybn−1), b1 ≤ · · · ≤ bn−1,
n ≥ 4. Consider its matrix φ of syzygies. Inspection gives: I1(φ) =
(x, yb1), while the required equality

In−2(φ) = I1(φ)
n−2,

that is,

(xn−2, xn−3yb1 , xn−4yb1+b2 , . . . , yb1+b2+···+bn−1) = (x, yb1)n−2,

means
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b1 = b2 = · · · = bn−1,

and therefore, I = (x, yb1)n−1.

These observations mean that, at least among standard ideals, those
with the expected equations are rare. If I is normal but does not have
the expected equations, where are the missing equations? A guess (to
be proved below) is that they are quadratic, missing from I2(B(φ)).
Note that, if I has the expected equations,

Q = I1(φ)B(φ) : I1(φ).

Since the right-hand side is always contained in Q, we now discuss the
case of equality. If I has the expected equations, K = T ·φ+ I2(B(φ))
is a prime ideal of R[T] of height n− 1. We can rewrite (K, (x, y)) (an
ideal of height n) as

(3.1) (K + (x, y)) = (L, (x, y)),

where L is the ideal of k[T] of the maximal minors of the 2 × (n − 1)
matrix B0(φ) obtained from B(φ) by reduction mod(x, y). By the
Eagon-Northcott formula,

heightL ≤ (n− 1)− 2 + 1 = n− 2.

The equality heightL = n − 2 now follows from (3.1). Thus, L is
Cohen-Macaulay. We note that, with this, we have that the regularity
of k[T]/L is 1, since B0(φ) is a matrix with linear entries.

Theorem 3.5. Let I be a monomial ideal such that R[It] is Cohen-
Macaulay. Let φ be the matrix of syzygies of I and B0(φ) the matrix
of linear forms of k[T] defined above. The following conditions are
equivalent :

(i) I has the expected equations;
(ii) height I2(B0(φ)) = n− 2.

Proof. It suffices to show that (ii) implies (i). We will prove
this by showing that K = (T · φ, I2(B(φ)) is a prime ideal. Since
height (K, (x, y)) = n, heightK ≥ n− 2. Let P be a minimal prime of
K of heightn− 2, (x, y) ̸⊂ P . Let z ∈ (x, y) \P . Then the localization
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Pz is a minimal prime of Kz = (In−1(φ) ·T)z. But this is the defining
ideal of Rz[t], so it has height n− 1.

This shows that K has height n−1. K is a specialization of a generic
residual intersection of a complete intersection, so it is Cohen-Macaulay
([16, Theorem 5.9]).

To prove Q = K, it suffices to show that K is prime (recall that Q is
a prime of height n− 1). As above, we can pick z ∈ (x, y) but avoiding
every associated prime of K. But, as we saw, Kz is a prime ideal of
height n− 1. This is enough to show that K is prime. �

3.3. Full set of quadratic equations. We shall describe where the
quadratic relations of the Rees algebras R[It] are located. In general,
from a presentation

0 −→ Q −→ B = R[T1, . . . ,Tn] −→ R[It] −→ 0,

B/(Q1) defines the symmetric algebra Sym (I) of I. We put

0 −→ A = A2 +A3 + · · · −→ Sym (I) −→ R[It] −→ 0.

Here, A2 represents the effective quadratic relations of the Rees algebra
R[It], and we represent it as

0 −→ δ(I) −→ S2(I) −→ I2 −→ 0.

For a discussion of δ(I), see [24]. One of its properties gives δ(I) in
the exact sequence

0 −→ δ(I) −→ H1(I) −→ (R/I)n −→ I/I2 −→ 0,

where H1(I) is the first Koszul homology module on a set of n genera-
tors of I. This says that δ(I) are the homology classes of the syzygies
of I with coefficients in I.

Theorem 3.6. Let (R,m) be a two-dimensional regular local ring and
I an m-primary ideal. If the Rees algebra R[It] is Cohen-Macaulay,
then

Q = (Q1, Q2) = (Q1) : I = (T · φ) : I.

Proof. Since R is Cohen-Macaulay, the reduction number r(I) of I
satisfies r(I) < dimR = 2. We now apply [25, Theorem 1.2]: R[It] is
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defined by linear and quadratic equations, Q = (Q1, Q2) and

ann(δ(I)) ·Q2 ⊂ Q1B1.

Of course, any nonzero ideal contained in ann(δ(I)) serves the purpose,
in particular ann(H1(I)) ⊃ I (actually there is equality). This gives the
assertion. �

Note that this does not require that I1(φ) be a complete intersection.

Example 3.7. Let

I = (x, y)(x, y3)(x, y6) = (x3, x2y, xy4, y10).

I is normal, and its matrix of syzygies is

φ =


y 0 0
−x y3 0
0 −x y6

0 0 −x

 .

Note that I1(φ) = (x, y), but I2(φ) = (x2, xy, y4) ̸= I1(φ)
2, so it

does not have the expected equations. We have:

I2(B(φ)) = I2

([
−T2 −T3 −T4

T1 y2T2 y5T3

])
,

which gives only two minimal generators for Q2. An appeal to
Macaulay2 ([13]) gives the extra generator:

Q = (Q1, Q2) = T · φ : I

= (T · φ, I2(B(φ)),T2T4 − y3T2
3).

An interesting question would be about the arithmetical and ho-
mological properties of the Rees algebras of m-full ideals. Even for
monomial ideals, these often fail to be Cohen-Macaulay, as the follow-
ing example shows:

I = (x11, x8y, x6y2, x5y3, xy4, y10),

an m-full ideal. To show that R[It] is not Cohen-Macaulay, by invoking
Macaulay2, it is enough to verify that the special fiber F(I) of I is not
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Cohen-Macaulay, according to the following criterion inspired by [5,
Corollary 2.11]:

Theorem 3.8. Let I be an m-primary m-full ideal. If the special fiber
F = F(I) is Cohen-Macaulay, then R[It] is also Cohen-Macaulay.

Proof. Suppose µ(I) = n, and let us determine the Hilbert function
of F . For every j ≥ 0,

µ(Fj) = j(n− 1) + 1,

since Ij is m-full and contains an element of order j(n− 1). It follows
that the Hilbert series of F is:

HF (t) =
1 + (n− 2)t

(1− t)2
.

This says that if F is Cohen-Macaulay, as a module over a Noetherian
normalization A = k[u, v], it is A-free, with one generator of degree 0
and n− 2 generators of degrees

1 ≤ d1 ≤ d2 ≤ · · · ≤ dn−2.

The Hilbert function forces d1 = · · · = dn−2 = 1. Therefore, I has
reduction number at most one. �

The same assertion holds for two-dimensional regular local rings of
infinite residue field.

REFERENCES

1. J.P. Brennan, L.A. Dupont and R.H. Villarreal, Duality, a-invariants and

canonical modules of rings arising from linear optimization problems, Bull. Math.
Soc. Sci. Math. Roum. 51 (2008), 279–305.

2. W. Bruns and J. Gubeladze, Polytopes, rings, and K-theory, Springer Mono.

Math., Springer, Dordrecht, 2009.

3. A. Conca, E. De Negri, A.V. Jayanthan and M.E. Rossi, Graded rings
associated with contracted ideals, J. Algebra 284 (2005), 593–626.

4. A. Conca, E. De Negri and M.E. Rossi, Contracted ideals and the Gröbner
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6. V. Crispin Quiñonez, Integral closure and related operations on monomial

ideals, Ph.D. thesis, Stockholm University, 2006.



ON COMPLETE MONOMIAL IDEALS 225
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