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ALGEBRAIC INTERPRETATION OF A
THEOREM OF CLEMENTS AND LINDSTRÖM

SUSAN M. COOPER AND LESLIE G. ROBERTS

ABSTRACT. We study Hilbert functions of quotients of

the truncated polynomial ring k[x1, . . . , xn]/
(
xe1+1
1 , xe2+1

2 ,

. . . , xen+1
n

)
, where e1 ≥ e2 ≥ · · · ≥ en ≥ 1 are integers. We

use the work of Clements-Lindström to recover the well-known
Macaulay’s Theorem.

1. Introduction. Let R = k[x1, . . . , xn], where k is a field, the xi

are indeterminates of degree 1, and I is a homogeneous ideal in R. Let
S = R/I. Then S = ⊕i≥0Si is a graded ring. The Hilbert function of S
is defined by HS(i) = dimk Si, i ≥ 0. By convention we take HS(i) = 0
if i < 0. A sequence {ci}i≥0 such that ci = HS(i), i ≥ 0 for some such
S is called an O-sequence. In particular we have c0 = 1. It is conve-
nient to take ci = 0 for i < 0. Macaulay characterized O-sequences
combinatorially. Macaulay’s characterization has been formulated by
Stanley [7, Theorem 2.2 (i)⇔(iii)] in the form c0 = 1, ci ≥ 0 for all
i ≥ 0, and ci+1 ≤ c<i>

i for i ≥ 1, where c<i>
i is defined in terms of bino-

mial expansions. It is well known to commutative algebraists that the
paper [1] of Clements and Lindström generalizes Macaulay’s charac-
terization of O-sequences to Hilbert functions of quotients of truncated
polynomial rings of the form k[x1, . . . , xn]/

(
xe1+1

1 , xe2+1
2 , . . . , xen+1

n

)
,

where e1 ≥ e2 ≥ · · · ≥ en ≥ 1 are integers. However [1] is written
in a combinatorial language and it seems not to be as well understood
how to interpret [1] algebraically. Greene and Kleitman give an expo-
sition of the work of Clements and Lindström in [3] (also in a primarily
combinatorial language). The purpose of this expository note is to
describe our present understanding of how things work algebraically.
In Section 2 we recall the results of Macaulay (as presented in [7]).
In Section 3 we interpret [1] in terms of rev-lex-segments and order
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ideals, and in Section 4 we count the number of elements in rev-lex-
segments, obtaining binomial expansions given in [3] that are similar
to those used by Stanley in [7] to describe O-sequences. In Section 5
(after Example 5.1) we describe through examples an algorithm to use
these binomial expansions to work with the analogue of O-sequences
for truncated polynomial rings. Finally in Section 6 we indicate how
Macaulay’s characterization of O-sequences follows from Section 5.

2. Macaulay’s Theorem. As above let R = k[x1, . . . , xn].

Definition 2.1. [7, page 59] An order ideal of R is a non-empty set
M of monomials in x1, . . . , xn such that if x ∈ M and y is a monomial
dividing x then y ∈ M .

Note that if M is an order ideal then 1 ∈ M . One might also refer
to the set of exponents of an order ideal of R as an order ideal in N

n

(N = {0, 1, 2, . . .}). Explicitly an order ideal in N
n is a non-empty

subset Λ of N
n such that if α ∈ Λ and β <pr α then β ∈ Λ (where

β <pr α means that α − β has all coordinates ≥ 0, with at least one
coordinate > 0).

Let M be the set of all monomials in x1, . . . , xn. Then M is an order
ideal of R if and only if M\M is the set of monomials in a monomial
ideal IM of R. If I is any homogeneous ideal of R then R/I has a k-
basis which is (the canonical image of) an order ideal of R ([7, Theorem
2.1]). Therefore there is a monomial ideal J of R such that R/J has
the same Hilbert function as R/I.

Of special interest in Macaulay’s Theorem is the rev-lex order ideal.
First recall the definition of deg-rev-lex ordering on M, as given in re-
cent expositions, such as [2, Chapter 2, Definition 6 (p.56)] (there called
Graded Reverse Lex Order, or grevlex). Let xα = xa1

1 xa2
2 · · ·xan

n and
xβ = xb1

1 xb2
2 · · ·xbn

n where α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bn).
Then xα > xβ means that either

∑
ai >

∑
bi (i.e. deg xα > deg xβ)

or
∑

ai =
∑

bi and the last non-zero coordinate of α − β is negative.
In this situation we will also say that deg α =

∑
ai, deg β =

∑
bi and

α > β, thereby putting a corresponding deg-rev-lex order on N
n as

well. In the following > will always denote deg-rev-lex order. When
comparing monomials of the same degree we will often simply write
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“rev-lex” order. Some consequences of the definition are:

(a) x1 > x2 > · · · > xn;

(b) Any monomial containing only x1, . . . , xi−1 is larger than any
monomial of the same degree that contains xi (where “contains” means
that the variable in question occurs with a positive exponent), or more
generally xxa

i > yxb
i if x and y are monomials in x1, . . . , xi−1, xxa

i and
yxb

i have the same degree, and a < b.

A rev-lex-segment of degree d is a collection S of monomials of degree
d such that if y ∈ S and y1 is a monomial of degree d such that
y1 > y then y1 ∈ S. That is S consists of the largest |S | elements of
degree d in rev-lex order (| ∗ | denoting cardinality). For example {x2

1},
{x2

1, x1x2}, {x2
1, x1x2, x

2
2}, {x2

1, x1x2, x
2
2, x1x3} are all rev-lex-segments,

but {x2
1, x1x2, x1x3} is not since x2

2 > x1x3 and x2
2 /∈ {x2

1, x1x2, x1x3}.

Definition 2.2. A rev-lex-segment order ideal M is an order ideal
such that for all d the monomials Md ⊂ M of degree d are a rev-lex-
segment.

Macaulay’s Theorem can be stated in the following manner.

Theorem 2.3. There is a one-to-one correspondence between
O-sequences (i.e. Hilbert functions of quotients k[x1, . . . , xn]/I, I a
homogeneous ideal) and rev-lex-segment order ideals, defined as follows:
to the sequence 1, c1, c2, . . . , ci, . . . , (c1 ≤ n) associate a set M by
letting the degree d part Md be the largest cd monomials of degree d in
x1, . . . , xn.

The only thing that one needs to establish in order to prove Theorem
2.3 is that the set M constructed in the statement of the Theorem is
in fact an order ideal. The following definition will be needed:

Definition 2.4. Let M be any set of monomials in R, and let Md

be the set of elements of M in degree d. Then the compression C∞M
of M is the set of monomials consisting of the largest |Md| elements of
degree d, for all d ≥ 0.
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Given a bit of translation, [1, Corollary 2] says that the compression
of an order ideal is an order ideal. This, together with Stanley’s obser-
vation [7, Theorem 2.1] that every Hilbert function comes from some
order ideal, is exactly what we need to show that the set constructed
in the statement of Theorem 2.3 is an order ideal. More details of the
translation will be described in the next sections.

3. Truncated polynomial rings. Suppose we have a sequence of
integers e = {e1, . . . , en} where e1 ≥ e2 ≥ e3 ≥ · · · ≥ en ≥ 1. Let Re =
k[x1, . . . , xn]/(xe1+1

1 , . . . , xen+1
n ). Let Me be the set of monomials of

Re. These are monomials xα with α ∈ N
n
e = {(a1, a2, . . . , an)|0 ≤

ai ≤ ei ∀i}. If also β = (b1, b2, . . . , bn) ∈ N
n
e then we say that xβ

divides xα if bi ≤ ai, 1 ≤ i ≤ n. If xβ divides xα we will define xα/xβ

to be xα−β . We can regard Me as a subset of the monomials M in
R = k[x1, . . . , xn]. The definitions of order ideal and deg-rev-lex order
can be adapted to Me in a natural way.

Definition 3.1. An order ideal of Me (or Re) is a non-empty set
M ⊆ Me such that if x ∈ M and y is a monomial dividing x then
y ∈ M . The exponent set {α|xα ∈ M} of M will also be referred to as
an order ideal (of N

n
e ).

Definition 3.2. Let xα, xβ ∈ Me, where α = (a1, a2, . . . , an) and
β = (b1, b2, . . . , bn) with ai ≤ ei, bi ≤ ei for all i. Then xα > xβ

(in deg-rev-lex order of Me) means that either
∑

αi >
∑

βi (i.e.
deg xα > deg xβ) or

∑
αi =

∑
βi and the last non-zero coordinate

of α − β is negative.

Definition 3.3. Let (Me)d be the set of all monomials of degree
d in Me. A rev-lex-segment of degree d in Me is a subset S of (Me)d

such that if M ∈ S and M1 ∈ (Me)d with M1 > M then M1 ∈ S.
A rev-lex-segment order ideal M of Me is an order ideal of Me such
that for all d the monomials Md ⊂ M of degree d are a rev-lex-segment
of degree d. A final rev-lex-segment of degree d in Me is a subset S ′

of (Me)d such that if M ∈ S ′ and M1 ∈ (Me)d with M1 < M then
M1 ∈ S. The complement in (Me)d of a rev-lex-segment is a final
rev-lex-segment and vice versa. (Perhaps rev-lex-segments should be
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called initial rev-lex-segments, but we skip the “initial” as we use them
more frequently than final rev-lex-segments.)

Note that a subset M ⊆ Me is an order ideal of Re if and only if M
is an order ideal of R. Also, if xα, xβ ∈ Me then xα > xβ in Me if
and only if xα > xβ in M. But a rev-lex-segment in Me need not be
a rev-lex-segment in M. As in the case of R and M, the complement
N = Me\M of an order ideal M ⊆ Me is the k-basis of a monomial
ideal IM of Re.

As in the case of R we have

Theorem 3.4. Let I be a homogeneous ideal in Re. Then there is
an order ideal M in Me whose canonical image in Re/I forms a k-basis
of Re/I.

Proof. The proof is the same as that of [7, Theorem 2.1]. (However
we cannot just apply [7, Theorem 2.1] to the quotient of R with the
same Hilbert function as Re/I because an order ideal of M need not
be an order ideal of Me).

Note that Re/IM has the same Hilbert function as Re/I.

Definition 3.5. Let M be any set of monomials in Me, and let Md

be the set of elements of M in degree d. Then the compression CM
of M (in Me) is the set of monomials consisting of the largest |Md|
elements in Me of degree d, for all d ≥ 0.

In order to apply the work of Clements and Lindström [1] we intro-
duce some auxiliary notation.

Definition 3.6. (1) Let M be any set of monomials in Me.
Then the last compression LM of M (in Me) is the set of monomials
consisting of the smallest |Md| elements in Me of degree d, for all d ≥ 0.

(2) If m ∈ (Me)d then Γ(m) is the set of all degree d − 1 monomial
factors of m. If M is any subset of Me then we define Γ(M) :=
∪m∈MΓ(m).
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(3) A set M ⊆ Me is closed if Γ(M) ⊆ M .

(4) If m ∈ (Me)d then P (m) is the set of all degree d + 1 monomial
multiples of m in Me . If M is any subset of Me then we define
P (M) := ∪m∈MP (m).

The operations C, Γ, L, and P are always relative to a chosen se-
quence e. For simplicity of notation we omit indicating this explicitly.
Sometimes we may wish to apply these operations to the exponent vec-
tor of a monomial in Me . For example if 0 ≤ ai ≤ ei for 1 ≤ i ≤ n
then Γ((a1, a2, . . . , an)) = ∪n

i=1{(a1, a2, . . . , ai−1, ai−1, ai+1, . . . , an)},
where if ai = 0 then that element of the union is omitted. The action of
P on exponent vectors is similar, replacing ai−1 by ai+1 and omitting
(a1, . . . , ai−1, ai + 1, ai+1, . . . an) if ai = ei.

Remark 3.7. We note that M is an order ideal if and only if
Γ(M) ⊆ M (i.e. M is closed), and that M is the complement of an
order ideal if and only if P (M) ⊆ M .

The results that we need from [1] are the following.

Theorem 3.8. [1, Theorem] Let M ⊆ Me. Then Γ(CMd) ⊆
C(Γ(Md)) for each d ≥ 1.

Corollary 3.9. [1, Corollary 1] Let M be as above. Then
P (LMd) ⊆ L(P (Md)) for each d ≥ 0

Corollary 3.10. [1, Corollary 2] Let M be as above. If M is
closed then CM is closed, i.e. the compression of an order ideal is a
rev-lex-segment order ideal.

Clements and Lindström work only with vectors (a1, a2, . . . , an)
where 0 ≤ ai ≤ ki for a given set of integers 1 ≤ k1 ≤ k2 ≤ · · · ≤ kn.
We regard these as exponent vectors of monomials. They work with
lexicographic order, and their compression is the first (i.e. smallest)
vectors in lexicographic order. However the following easy lemma
shows that reversing the order of the coordinates and replacing <
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by > turns their definitions of Γ, C, L, P into the ones given above,
so we can apply their results verbatim. Their increasing sequence
1 ≤ k1 ≤ k2 ≤ · · · ≤ kn is turned into our decreasing sequence
e1 ≥ e2 ≥ e3 ≥ · · · ≥ en ≥ 1 because of the reversal of order of
the coordinates. Let <lex denote lexicographic order. As always, <
denotes reverse lexicographic order.

Lemma 3.11. If α ∈ N
n denote by αr the vector obtained by

reversing the order of the coordinates. Suppose that deg (α) = deg (β).
Then α > β if and only if αr <lex βr.

Proof. If deg (α) = deg (β) then α > β if and only if the last non-zero
coordinate of α−β is negative if and only if the last non-zero coordinate
of β−α is positive if and only if the first non-zero coordinate of βr−αr

is positive if and only if αr <lex βr.

Putting Theorem 3.4, Remark 3.7, and Corollary 3.10 together we
have

Theorem 3.12. There is a one-to-one correspondence between
Hilbert functions H = {ci}i≥0 of quotients of Re by a homogeneous
ideal, and rev-lex-segment order ideals of Me. The order ideal corre-
sponding to H is obtained by taking the largest ci monomials of Me in
degree i for all i ≥ 0.

From Theorem 3.8 and Corollary 3.9 we will obtain growth conditions
on the Hilbert function of a quotient of Re.

Definition 3.13. If xα is a monomial of degree d in Me define
L (xα) to be the set of all monomials of degree d in Me that are
greater than or equal to xα.

Clearly every rev-lex-segment S of degree d in Me equals L (xα),
where xα is the smallest element of S.

Now we prove a couple of lemmas that are crucial to our way of
looking at things.
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Lemma 3.14. Let S = L (xα) be a rev-lex-segment of degree d > 0
in Me, where α = (a1, . . . , an). Suppose that r is the smallest index
such that ar > 0. Then the set T = Γ(S ) is equal to L (xα/xr).

Proof. We have S = C(S ) so by Theorem 3.8 (with Md = S )
we have T ⊆ CT. But |T | = |CT |, so T = CT. We have α =
(0, . . . , 0, ar, ar+1, . . . , an) and let β = (0, . . . , 0, ar − 1, ar+1, . . . , an)
so that xα/xr = xβ . Clearly xα/xr ∈ T so it suffices to prove that
if xα′ ∈ (Me)d−1 and xα′

< xβ then xα′
/∈ T. Let s be the largest

index in which the coordinates of α′ and β differ (necessarily with that
of α′ being larger). Since β is 0 in coordinates 1 through r − 1 and
deg β = deg α′ = d− 1 we must have s > r. Then xix

α′
< xα for any i

such that xix
α′ ∈ Me because the coordinates of the exponent vector

of xix
α′

in the range s through n can only be the same or larger than
those of xα′

and at least the s coordinate of the latter is already greater
than as.

Lemma 3.15. Let S = L (xα) be a rev-lex-segment of degree
d in Me, where α = (a1, a2, . . . , an). Let U (or U (S ) if it is
necessary to specify the starting rev-lex-segment) be the set of all
degree d + 1 monomials in Me all of whose degree d factors are in
S. Suppose that r is the smallest index such that ar > 0 and let
β = (0, . . . , 0, br, br+1, . . . , bn) where br = ar + 1 and bi = ai if
r + 1 ≤ i ≤ n. If xβ′ ∈ (Me)d+1 then xβ′ ∈ U if and only if β′ ≥ β in
the deg-rev-lex order of N

n. If ar < er then xβ = xrx
α ∈ (Me)d+1 and

U = L (xrx
α). If ar = er then U = L (xγ) where xγ is the smallest

monomial of Me that is larger than xβ.

Proof. We have (Me)d+1\U = P ((Me)d\S ) and S ′ := (Me)d\S is
a final rev-lex-segment. Therefore L(S ′) = S ′ and by Corollary 3.9
with Md = S ′ we have P (S ′) ⊆ LP (S ′). Since |P (S ′)| = |LP (S ′)|
we have P (S ′) = LP (S ′). Therefore P (S ′) is a final rev-lex-segment,
and hence U is a rev-lex-segment.

If xβ ∈ (Me)d+1 (equivalently er > ar) then clearly every degree d
monomial factor of xβ is greater than or equal to xα so xβ ∈ U. If
xβ′ ∈ (Me)d+1 and if xβ′

> xβ then xβ′ ∈ U since U is a rev-lex-
segment. If xβ /∈ (Me)d+1 (equivalently er = ar) then we can define
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f = (f1, f2, . . . , fn) by fi = ei + 1, 1 ≤ i ≤ n, so that Me ⊂ Mf and
xβ ∈ (Mf )d+1. Let Uf be the set of monomials in (Mf )d+1 all of whose

degree d factors are greater than or equal to xα. If xβ′ ∈ (Me)d+1 and
if xβ′

> xβ then xβ′ ∈ Uf since Uf is a rev-lex-segment in (Mf )d+1.

But clearly Me ∩ Uf = U so again xβ′ ∈ U.

Now assume that deg β′ = d + 1 and β′ < β. Then β′ =
(. . . , b′r, . . . , b′s, b

′
s+1, . . . , b′n) where b′s > bs and bi = b′i for s + 1 ≤

i ≤ n. We have r < s ≤ n, because otherwise the degree of β′ would
be greater than d + 1. If b′j 
= 0 for some j < s then xβ′

/xj < xα,
i.e. xβ′

/xj /∈ S so xβ′
/∈ U. If b′s > bs + 1 then xβ′

/xs < xα so again
xβ′

/∈ U. We can’t have both b′j = 0 for j < s and b′s = bs + 1 because
br ≥ 2. Hence always xβ′

/∈ U.

The final assertion of the Lemma is obvious.

If ar = er in Lemma 3.15, then γ can be described as follows. If r > 1
then γ = (0, . . . , 0, 1, er, ar+1, . . . , an). If r = 1 pick j, 2 < j ≤ n to
be the smallest integer such that aj > 0 and

∑j−1
i=2 (ei − ai) ≥ 2. Then

γ = (0, . . . , 0, a, es, . . . , ej−1, aj − 1, aj+1, . . . , an) where a and s are
chosen so that γ is of degree d+1. The summation condition guarantees
that such a γ exists. (We need the sum ≥ 2 so that each of e1 + 1 and
aj can be decreased by 1 without forcing some other coordinate to be
greater than the corresponding value ei.) If no such j exists, then U is
empty.

The n-tuple γ is perhaps best described with an example. Suppose
e = (10, 10, 10, 10, 10, 10) and let α = (10, 9, 10, 0, 0, 1) (so that r = 1).
Then β = (11, 9, 10, 0, 0, 1) and j = 6 yielding γ = (0, 1, 10, 10, 10, 0).

Theorem 3.16. Let Re/I be a graded quotient of Re with Hilbert
function H. Suppose that H(d) = c. Let S be the rev-lex-segment of
degree d consisting of the c largest monomials of degree d in Me. Then
H(d − 1) must be at least the cardinality of the rev-lex-segment T of
degree d − 1 consisting of all degree d − 1 factors of elements of S.

Proof. By Theorem 3.4 there is an order ideal M of Me which forms a
k-basis of Re/I. We have S = CMd and T = Γ(S ). By Theorem 3.8,
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Γ(CMd) ⊆ C(Γ(Md)) so H(d−1) = |Md−1| ≥ |Γ(Md)| = |C(Γ(Md))| ≥
|Γ(S )| = |T | as claimed.

Theorem 3.17. Let Re/I be a graded quotient of Re with Hilbert
function H. Suppose that H(d) = c. Let S be the rev-lex-segment of
degree d consisting of the c largest monomials of degree d in Me. Then
H(d + 1) can be at most the cardinality of the rev-lex-segment U of
degree d + 1 consisting of those degree d + 1 monomials in Me all of
whose degree d factors are in S.

Proof. By Theorem 3.4 there is an order ideal M of Me which forms
a k-basis of Re/I. Let Ni = (Me)i\Mi for all i. By Corollary 3.9 we
have P (LNd) ⊆ L(P (Nd)). Therefore (Me)d+1\U = P ((Me)d\S) =
P (LNd) ⊆ L(P (Nd)). The latter has the same cardinality as P (Nd) ⊆
Nd+1. Therefore |U| ≥ |Md+1| = H(d + 1) as claimed.

Remark 3.18. The condition e1 ≥ e2 ≥ · · · ≥ en is necessary to apply
[1] (as explained in the discussion after Corollary 3.10). The following
example shows that without this condition the theory does not work
at all. Let e1 = 1 and e2 = 3. Then Re = k[x1, x2]/(x2

1, x
4
2), which has

Hilbert function 1, 2, 2, 2, 1, 0 →. The graded quotient ring Re/(x1x2)
has Hilbert function 1, 2, 1, 1, 0 →. But if we take the rev-lex-segments
of degrees 0,1,2,3 containing respectively the largest 1, 2, 1, 1 elements
we get {1, x1, x2, x1x2, x1x

2
2}, which is not an order ideal because x1x

2
2

has factor x2
2 which is not in the set. But if we take e1 = 3, e2 = 1 we

get {1, x1, x2, x
2
1, x

3
1}, which is an order ideal.

Remark 3.19. Hilbert functions exhibiting the extreme behaviour in
Theorems 3.16 and 3.17 in fact do exist. Suppose c > 0 is the proposed
value of a Hilbert function in degree d. Let S be the rev-lex-segment
of degree d consisting of the c largest monomials of degree d in Me. Let
M be the order ideal of all factors of elements of S together with the
set U described in Lemma 3.15. Then Re/IM has Hilbert function H
with H(d) = c, H(d−1) the value given by Theorem 3.16 and H(d+1)
the value given by Theorem 3.17.
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4. Binomial expansions. In this section e, Re and Me are as
in the previous section. We will count the number of elements in the
various rev-lex-segments discussed in Section 3, leading to binomial
expansions similar to that used by Stanley in describing h<i> in [7].

Now we count the number of elements in a deg-rev-lex segment. First
a preliminary definition.

Definition 4.1. Let (
e1, . . . , er

d

)

denote the number of monomials of degree d in x1, . . . , xr in which the
exponent of xi does not exceed ei. If d = 0 define the value to be 1.

We will refer to the
(
e1,... ,er

d

)
as “binomials”, but note that

(
e1
d

)
is not

the usual binomial coefficient. It equals 1 if 0 ≤ d ≤ e1 and 0 if d > e1.
We will refer to d as the “denominator” of the binomial and e1, . . . , er

as the “numerator”. There does not seem to be a simple explicit
expression for

(
e1,e2,... ,er

d

)
. However there is a generating function,

namely
(
e1,e2,... ,er

d

)
is the coefficient of td in

∏r
i=1(

∑ei

j=0 xj).

Lemma 4.2. Let xα ∈ Me be a monomial of degree d in the xi

(1 ≤ i ≤ n), where α = (a1, . . . , as, 0, . . . , 0), with as > 0 for some s
satisfying 1 ≤ s ≤ n. Then the number of elements in L (xα) is given
by the following recursively defined binomial expansion.

(a) (
e1, . . . , es

d

)

if xα is the smallest monomial in (Me′)d, (e′ = (e1, . . . , es)).

(b) otherwise
as−1∑
i=0

(
e1, . . . , es−1

d − i

)
+ S

where S is the expansion for L (xβ) where β = (a1, . . . , as−1, 0, . . . , 0).



372 S. M. COOPER AND L. G. ROBERTS

Definition 4.3. The expression given by Lemma 4.2 will be referred
to as the degree d e-binomial expansion of L (xα) (or of the integer
|L (xα)|).

Remark 4.4. If s = 1 we must have case (a) so the recursion
terminates. If s > 1 then we have case (a) if and only if α =
(0, . . . , 0, bi, ei+1, . . . , es, 0, . . . , 0) for some i, 1 ≤ i ≤ s with bi +∑s

j=i+1 ej = d. If es ≥ d then we have case (a) if and only if xα = xd
s .

Remark 4.5. The summation in (b) enumerates respectively the
number of monomials in L (xα) with no xs, with xs to the first power,
the second power, respectively, up to exponent as − 1. The S term
enumerates those monomials with factor xas

s . We could also define the
recursion in (b) as

(
e1,... ,es−1

d

)
+ S1 where S1 is the binomial expansion

enumerating L (xα′
) where α′ = (a1, . . . , as − 1, 0, . . . , 0).

Remark 4.6. If we are given the cardinality a = |L (xα)| of the rev-
lex-segment instead of its smallest element xα we can obtain the same
binomial expansion as follows. The sequence {(e1

d

)
,
(
e1,e2

d

)
,
(
e1,e2,e3

d

)
, . . . }

is strictly increasing once it becomes non-zero. If the n-th term is still
0 there are no monomials of degree d in x1, . . . , xn and L (xα) is
empty. Otherwise take the first term

(
e1,... ,es

d

)
in the expansion to be

the largest of {(e1
d

)
,
(
e1,e2

d

)
,
(
e1,e2,e3

d

)
, . . . ,

(
e1,e2,... ,en

d

)} that is less than
or equal to a. If a =

(
e1,... ,es

d

)
then we have case (a) of Lemma 4.2 and

this is the entire binomial expansion. Otherwise repeat the process
with a− (

e1,... ,es

d

)
using {( e1

d−1

)
,
(
e1,e2
d−1

)
,
(
e1,e2,e3

d−1

)
, . . . ,

(
e1,e2,... ,en

d−1

)}. We
are done when the total of our expansion is a. (If the first non-zero
value in {(e1

d

)
,
(
e1,e2

d

)
,
(
e1,e2,e3

d

)
, . . . ,

(
e1,e2,... ,en

d

)} is greater than a then,
by Lemma 4.2 (b), take the first term in the expansion to be the last
coefficient

(
e1,... ,es

d

)
that has value 0).

Remark 4.7. Let a = |L (xα)| where α = (a1, . . . , ap, 0, . . . , 0) where
p is the largest value of i such that ai > 0. Then the degree d e-
binomial expansion of a has the following form. If xα is the smallest
monomial of degree d in x1, . . . , xp then there is one (which we think
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of as 1 = ap+1 + 1) term
(
e1,e2,... ,ep

d

)
. Otherwise there are ap terms

ap−1∑
i=0

(
e1, e2, . . . , ep−1

d − i

)

then ap−1 terms
ap−1+ap−1∑

i=ap

(
e1, e2, . . . , ep−2

d − i

)

and so on, until the expansion terminates with case (a) of Lemma 4.2,
in which case there is one extra term with the same numerator. The
denominators are d, d−1, . . . , successively decreasing by one, with the
final denominator at least one. Each numerator e1, . . . , ei−1 except the
last occurs ai ≤ ei times. The final numerator e1, . . . , es also occurs
≤ es+1 times because if as+1 = es+1 we would have terminated earlier
with case (a). Thus we obtain the expansion of [3, page 70]. The form
of the expansion is perhaps best understood with examples, which we
give in the next section.

Remark 4.8. If in Lemma 4.2 some of the coordinates of α are greater
than the corresponding ei then the expansion described in the Lemma
still gives the number of monomials in the rev-lex-segment consisting of
all monomials in Me of degree d whose exponent vector is greater than
α in the deg-rev-lex ordering of N

n. Coordinates that are too large are
taken into account automatically by the definition of the

(
e1,... ,er

d

)
.

Definition 4.9. Let a, d ≥ 1. Then a<d>
e is the integer obtained

by increasing by 1 all the denominators in the degree d e-binomial
expansion of a, and a

e
<d> is the integer obtained by decreasing by 1 all

the denominators in the degree d e-binomial expansion of a.

Theorem 4.10. Let S = L (xα) be a rev-lex-segment of degree d as
in Lemma 3.14. Suppose that the binomial expansion for c = |L (xα)|
given by Lemma 4.2 is

(
e1, . . . , el

d

)
+ · · · +

(
e1, . . . , es

d − a

)
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(where l = p or l = p − 1 with p as in Remark 4.7). Then the rev-lex-
segment T (in degree d − 1) of Lemma 3.14 contains

c
e
<d> =

(
e1, . . . , el

d − 1

)
+ · · · +

(
e1, . . . , es

d − a − 1

)

elements.

Proof. This follows from the definition of the expansion in Lemma 4.2
and the description of T in Lemma 3.14. Each term in the expansion
of L (xα/xr) enumerates monomials of degree one lower than the
corresponding term for L (xα) (involving the same variables).

Corollary 4.11. Suppose that the Hilbert function of a graded
quotient of Re has value c in degree d. Then the Hilbert function in
degree d − 1 must have value at least c

e
<d>.

Proof. This follows from Theorem 4.10 and Theorem 3.16.

Theorem 4.12. Let S = L (xα) be a rev-lex-segment of degree d as
in Lemma 3.15. Suppose that the binomial expansion for c = L (xα)
given by Lemma 4.2 is

(
e1, . . . , el

d

)
+ · · · +

(
e1, . . . , es

d − a

)

(where l = p or l = p − 1 with p as in Remark 4.7). Then the rev-lex-
segment U (in degree d + 1) of Lemma 3.15 contains

c<d>
e =

(
e1, . . . , el

d + 1

)
+ · · · +

(
e1, . . . , es

d − a + 1

)

elements.

Proof. This follows from the definition of the expansion in Lemma
4.2 and the description of U in Lemma 3.15 (together with Remark
4.8). Each term in the expansion of L (xrx

α) enumerates monomials
of degree one higher than the corresponding term for L (xα) (involving
the same variables).
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Corollary 4.13. Suppose that the Hilbert function of a graded
quotient of Re has value c in degree d. Then the Hilbert function in
degree d + 1 can have value at most c<d>

e .

Proof. This follows from Theorem 4.12 and Theorem 3.17.

B. Richert and S. Sabourin [6] have obtained similar results which we
think are essentially equivalent to Corollary 4.13. They also obtained
the algorithm mentioned before Example 5.2. We believe that they
used a different method of proof. In addition, J. Mermin has obtained
results concerning compressed ideals [4] and lexlike sequences [5] which
are of interest.

5. Examples and an Algorithm.

Example 5.1. Let e be {4, 3, 3, 2} and xα = x3
2x

2
3x

2
4 (so α =

(0, 3, 2, 2)). Then xα is not the smallest monomial of degree 7 in
x1, x2, x3, x4 so we are in case (b) of Theorem 4.2. The expansion starts
out

(
4,3,3

7

)
enumerating monomials of degree 7 in x1, x2, x3 followed by(

4,3,3
6

)
enumerating monomials of degree 6 in x1, x2, x3 (which are to be

multiplied by x4). Now we find the expansion of L (x3
2x

2
3). Again we

are in case (b), so we get 2 more terms
(
4,3
5

)
enumerating monomials

of degree 5 in x1 and x2 (which are to be multiplied by x2
4) and

(
4,3
4

)
enumerating monomials of degree 4 in x1 and x2 (which are to be
multiplied by x3x

2
4). We conclude with the expansion of L (x3

2). This
is the smallest monomial of degree 3 in x1 and x2 so we are in case
(a) of Theorem 4.2, yielding that the degree 7 e-binomial expansion of
x3

2x
2
3x

2
4 is

(
4, 3, 3

7

)
+

(
4, 3, 3

6

)
+

(
4, 3
5

)
+

(
4, 3
4

)
+

(
4, 3
3

)
= 10 + 13 + 3 + 4 + 4.

Note that indeed we have a4 = 2 terms with numerator 4 3 3, and
a3 + 1 = 3 terms with numerator 4 3 (the extra term coming from the
termination with case (a)) as observed in Remark 4.7. The total is 34,
so x3

2x
2
3x

2
4 is the 34-th degree 7 monomial in deg-rev-lex order, when

powers are restricted to x4
1, x

3
2, x

3
3, x

2
4.
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Furthermore we have

34<7>
e =

(
4, 3, 3

8

)
+

(
4, 3, 3

7

)
+

(
4, 3
6

)
+

(
4, 3
5

)
+

(
4, 3
4

)

= 6 + 10 + 2 + 3 + 4
= 25

and

34e
<7> =

(
4, 3, 3

6

)
+

(
4, 3, 3

5

)
+

(
4, 3
4

)
+

(
4, 3
3

)
+

(
4, 3
2

)

= 13 + 14 + 4 + 4 + 3
= 38.

Therefore if a graded quotient of k[x1, x2, x3, x4]/(x5
1, x

4
2, x

4
3, x

3
4) has

Hilbert function with value 34 in degree 7 then the Hilbert function
has value at most 25 in degree 8 and at least value 38 in degree 6.

Using the notation introduced in Lemmas 3.14 and 3.15, we observe
that S = L (x3

2x
2
3x

2
4), T = L (x2

2x
2
3x

2
4) and U can be enumerated as

if formally U = L (x4
2x

2
3x

2
4). The terms of the binomial expansion of

L (x2
2x

2
3x

2
4) enumerate respectively monomials of degree 6 in x1, x2, x3,

degree 5 in x1, x2, x3, degree 4 in x1, x2, degree 3 in x1, x2, and degree
2 in x1, x2 (the last enumerating L (x2

2)), all of degree 1 lower than
the corresponding term of expansion of L (x3

2x
2
3x

2
4) illustrating the

proof of Theorem 4.10. Similarly the terms in the binomial expansion
of L (x4

2x
2
3x

2
4) are of degree one higher than the corresponding terms

in the expansion of L (x3
2x

2
3x

2
4). Actually U = L (x1x

3
2x

2
3x

2
4), the

enumeration of which gives the same expansion.

Note that the sequence
(
e1,... ,er

i

)
, i ≥ 0 is the Hilbert function of Re

or equivalently of a complete intersection CI(e1 + 1, e2 + 1, . . . , er + 1)
defined by a regular sequence consisting of r homogeneous polynomials
of degrees e1 + 1, . . . , er + 1 in k[x1, . . . , xr]. This, together with the
construction in Remark 4.6 starting from a = |L (xα)|, suggests the
following algorithm for finding the degree d e-binomial expansion of
a. We illustrate it with Example 5.1 above, in which e = {4, 3, 3, 2}.
Make a table with rows CI(5), CI(5, 4), CI(5, 4, 4), CI(5, 4, 4, 3), the
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columns from left to right corresponding to degrees 0, 1, 2, . . . .

CI(5) 1 1 1 1 1 0 0 0 0 0 0 0 0
CI(5, 4) 1 2 3 4 4 3 2 1 0 0 0 0 0

CI(5, 4, 4) 1 3 6 10 13 14 13 10 6 3 1 0 0
CI(5, 4, 4, 3) 1 4 10 19 29 37 40 37 29 19 10 4 1

In finding the 7-binomial expansion of 34 we form the sequence(
4
7

)
,
(
4,3
7

)
,
(
4,3,3

7

)
,
(
4,3,3,2

7

)
and select the largest which is less than or

equal to 34. This is the degree 7 column 0 1 10 37, so start with
10 =

(
4,3,3

7

)
. Now subtract 34 − 10 = 24 and go down the degree 6

column, 0 2 13 40, selecting 13 =
(
4,3,3

6

)
, which is the largest number in

the degree six column which is less than or equal to 24. Now subtract
24−13 = 11 and go down the degree 5 column selecting 3 =

(
4,3
5

)
. Sub-

tract 11 − 3 = 8 and go down the degree 4 column selecting 4 =
(
4,3
4

)
,

subtract yielding 8−4 = 4, then the degree 3 column selecting 4 =
(
4,3
3

)
which completes the expansion. These entries in the table are under-
lined. To find 34<7>

e shift each number one unit to the right and add,
yielding 34<7>

e = 6+10+2+3+4 = 25 as obtained in Example 5.1. To
find 34e

<7> shift each number one unit to the left and add, obtaining
34e

<7> = 13+14+4+4+3 = 38, also as was obtained in Example 5.1.
Now we work out a couple of other examples, using the table above.

Example 5.2. Let e = {4, 3, 3, 2} as above, and xα = x1x
2
4. The

degree 3 e-binomial expansion of L (xα) is
(
4,3,3

3

)
+

(
4,3,3

2

)
+

(
4
1

)
= 10+

6+1 (the 10 from the degree 3 column (counting all monomials of degree
3 in x1, x2, x3), the 6 from the degree 2 column (counting all monomials
of degree 2 in x1, x2, x3 which are to be multiplied by x4), and the 1
from the degree 1 column counting x1x

2
4 itself). These entries are in

bold in the table. This gives 17 = 10 + 6 + 1. Shifting left in the table
gives 17e

<3> = 6 + 3 + 1 =
(
4,3,3

2

)
+

(
4,3,3

1

)
+

(
4
0

)
. Here T = L (x2

4) and
L (x2

4) has been enumerated as 6 monomials of degree 2 in x1, x2, x3,
three monomials of degree 1 in x1, x2, x3 (which are to be multiplied
by x4) and one monomial 1 of degree 0 (which is to be multiplied by
x2

4). This is not the “official” Lemma 4.2 expansion of L (x2
4) which

would be
(
4,3,3,2

2

)
= 10, but it is correct enumeration. If we shift right

in the table we obtain 17<3>
e = 13 + 10 + 1 =

(
4,3,3

4

)
+

(
4,3,3

3

)
+

(
4
2

)
.

The 13 enumerates all monomials of degree 4 in x1, x2, x3 of which
there are only 13 because the exponent of x2 and x3 is at most 3, the
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10 enumerates all monomials of degree 3 in x1, x2, x3 (which are to
be multiplied by x4) and the 1 enumerates x2

1x
2
4 itself (1 monomial of

degree 2 in x1, which is multiplied by x2
4). Here U = L (x2

1x
2
4).

Example 5.3. Let e = {4, 3, 3, 2} as above, and xα = x4
1x

2
2x4. This

example illustrates that we need not have Γ(U (L (xα))) = L (xα).
The degree 7 e-binomial expansion of S = L (xα) is

(
4,3,3

7

)
+

(
4
6

)
+

(
4
5

)
+(

4
4

)
= 10 + 0 + 0 + 1 = 11 (the 10 from the degree 7 column (counting

all monomials of degree 7 in x1, x2, x3), the first 0 from the degree 6
column (counting all monomials of degree 6 in x1, of which there are
none because e1 = 4, but if there were any they would be multiplied by
x4), the second 0 counting all monomials of degree 5 in x1 (again there
are none, but if there were any they would be multiplied by x2x4), and
the 1 counting all monomials of degree 4 in x1, of which there is one,
namely x4

1 which when multiplied by x2
2x4 yields xα). Shifting left in

the table gives 11e
<7> = 13 + 0 + 1 + 1 =

(
4,3,3

6

)
+

(
4
5

)
+

(
4
4

)
+

(
4
3

)
.

Here T = L (x3
1x

2
2x4) and L (x3

1x
2
2x4) has been enumerated as 13

monomials of degree 6 in x1, x2, x3, zero monomials of degree 5 in x1

(which would be multiplied by x4 if there were any), one monomial x4
1

of degree 4 in x1 (which is to be multiplied by x2x4) and one monomial
x3

1 of degree 3 in x1 (which is to be multiplied by x2
2x4 yielding x3

1x
2
2x4

itself). Note that we have to keep
(
4
6

)
and

(
4
5

)
in the degree 7 binomial

expansion of 11 even though they are 0 in order to correctly compute
11e

<7> by lowering denominators (actually keeping
(
4
5

)
suffices here,

but it seems preferable to keep
(
4
6

)
as well). If we shift right in the

table we obtain 11<7>
e = 6 + 0 + 0 + 0 =

(
4,3,3

8

)
+

(
4
7

)
+

(
4
6

)
+

(
4
5

)
= 6.

This counts all monomials of degree 8 in x1, x2, x3, the smallest of
which is x2

1x
3
2x

3
3 so here U = L (x2

1x
3
2x

3
3). As noted in the proof of

Lemma 3.15 and Remark 4.8 this expansion of 11<7>
e is obtained by

enumerating the formal expression L (x5
1x

2
2x4) in the usual way. The

three 0’s in the resulting expansion of 11<7>
e reflect the fact that there

are no monomials of degree 7 in Me involving only x1 and x2 which
are formally greater than or equal to x5

1x
2
2. In fact the next monomial

of degree 8 in Me smaller than x2
1x

3
2x

3
3 is x4

1x
3
2x4 and this contains a

degree 7 factor x3
1x

3
2x4 that is not in L (xα) so U cannot be any larger

than L (x2
1x

3
2x

3
3). The official expansion of L (x2

1x
3
2x

3
3) is just the single

term
(
4,3,3

8

)
and we must use it if we go back down using Theorem 4.10,

obtaining Γ(U (L (x4
1x

2
2x4))) = Γ(L (x2

1x
3
2x

3
3)) = L (x1x

3
2x

3
3).
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6. Recovering Macaulay’s Growth Conditions. If we make
the ei (which we will informally write ∞) larger than the degree
under discussion we recover the usual form of Macaulay’s Theorem.
Thus

(∞,... ,∞
d

)
(with n ∞’s in the numerator) means the number of

monomials of degree d in n variables (without restriction on exponents)
which is C(d + n − 1, d), where we write the usual binomial coefficient

a!
b!(a−b)! as C(a, b) to avoid conflict with the notation in Definition 4.1.
The expansion of Lemma 4.2 becomes the usual binomial expansion
mentioned in [7, page 60]. Corollaries 4.11 and 4.13 then become

Theorem 6.1. Let R be a graded algebra over a field k, generated
by elements of degree 1. Suppose that the Hilbert function of R has
value h in degree i. Suppose that h has binomial expansion

h = C(ni, i) + C(ni−1, i − 1) + · · · + C(nj , j)

where ni > ni−1 > · · · > nj ≥ j ≥ 1. Define

h<i> = C(ni + 1, i + 1) + C(ni−1 + 1, i) + · · · + C(nj + 1, j + 1)

and

h<i> = C(ni − 1, i − 1) + C(ni−1 − 1, i − 2) + · · · + C(nj − 1, j − 1).

Then

(a) The Hilbert function of R in degree i + 1 has value at most h<i>.

(b) The Hilbert function of R in degree i− 1 has value at least h<i>.

Furthermore the two extreme cases are realized by the quotient of a
polynomial ring by a lex-segment ideal.

Part (a) of the Theorem is of course very well known and is stated
explicitly in [7, Theorem 2.2(c)]. Part (b) is less often stated.

Acknowledgments. We gratefully acknowledge the NSERC for
its financial support of both authors. The first author is thankful for
insightful conversations with S. Sabourin.



380 S. M. COOPER AND L. G. ROBERTS

REFERENCES

1. G. F. Clements and B. Lindström, A Generalization of a Combinatorial
Theorem of Macaulay, J. of Combinatorial Theory, 7 (1969), 230-238.

2. D. Cox, J. Little, and D. O’Shea, Ideals, Varieties and Algorithms - An
Introduction to Computational Algebraic Geometry and Commutative Algebra,
Springer- Verlag, New York, second edition, (1997).

3. C. Greene and D. Kleitman, Proof Techniques in the Theory of Finite Sets.
In Studies in Combinatorics, (Gian-Carlo Rota, ed.), MAA Stud. Math., 17 (1978),
22-79.

4. J. Mermin, Compressed Ideals, Bulletin of the London Mathematical Society,
40 (2008), 77–87.

5. , Lexlike Sequences, J. Algebra, 303 (1) (2006), 295–308.

6. B. Richert and S. Sabourin, The Residuals of Lex Plus Powers Ideals
and the Eisenbud-Green-Harris Conjecture, to appear in the Illinois Journal of
Mathematics.

7. R. P. Stanley, Hilbert Functions of Graded Algebras, Adv. in Math., 28 (1978),
57-83.

Mathematics Department, California Polytechnic State University, San
Luis Obispo, CA 93407, USA.
Email address: sucooper@calpoly.edu

Department of Mathematics, University of Nebarska - Lincoln, Lincoln,
NE 68588, USA.
Email address: scooper4@math.unl.edu

Department of Mathematics and Statistics, Queen’s University, Kingston,
ON K7L 3N6, CANADA.
Email address: robertsl@mast.queensu.ca


