On the independency of differential forms on algebraic varieties.

By
Yoshikazu NAKaI

(Received April 20, 1953)

In the classical algebraic geometry the following theorem has been hitherto admitted generally.

Let V^{r} be a projective model of an algebraic, variety, $\omega^{i}(i=1, \cdots$,s) linearly independent differential forms of the first kind on \boldsymbol{V}, k a common field of definition for ω_{i} and \boldsymbol{W} a generic hyperplane section of \boldsymbol{V} with reference to k. Then ω_{i} 's induce on \boldsymbol{W} linearly independent differential froms $\bar{\omega}_{i}$ of the first kind.

Recently J. Igusa proved this rigorouly using the theory of harminic integrals. ${ }^{1)}$ It seems to be true that it holds also for the ground field of arbitrary characteristic, but the proof is not yet obtained. In this paper, modifying the above we shall prove the following :

Let \boldsymbol{V} be an algebraic variety in a projective space, $\omega_{i}(i=1, \cdots, s)$ linearly independent differential forms on \boldsymbol{V} (they may be not of the first kind), k a common field of definition for ω_{i} and \boldsymbol{C}_{m} a generic hypersuface section of \boldsymbol{V} of order m with reference to k. Then the induced differential forms $\bar{\omega}_{i}$ on \boldsymbol{C}_{m} by ω_{i} are also lincarly independent provided m is sufficiently large.

I wish to express my sincere gratitude to Professors Y. Akizuki and J. Igusa for their valuable advices and kind encouragement.

§ 1. Some results on uniformizing parameters. ${ }^{\text {() }}$

Definition. Let \boldsymbol{X} and \boldsymbol{Y} bo two cycles on a Variety \boldsymbol{V} and \boldsymbol{Q} a Point on \boldsymbol{V}. If any component of \boldsymbol{X} containing \mathbb{Q} intersect pro-

[^0]perly with every component of \boldsymbol{Y} containing \boldsymbol{Q}, then we shall say that the intersection product $\boldsymbol{X} . \boldsymbol{Y}$ is defined locally at \boldsymbol{Q}.
We shall mean by $\boldsymbol{X} \equiv \boldsymbol{Y}(\bmod . \boldsymbol{Q})$ that the cycles \boldsymbol{X} and \boldsymbol{Y} contain the same components containing \boldsymbol{Q} with the same multiplicities. For any number of cycles $\boldsymbol{X}_{1}, \cdots, \boldsymbol{X}_{s}$ the local intersection product at \boldsymbol{Q} is defined in an analogous way.

Proposition 1. Let \boldsymbol{V}^{r} be a Variety, $f_{i}(i=1, \cdots, s \leq r)$ functions on \boldsymbol{V} and \boldsymbol{Q} a Point on \boldsymbol{V} where each function f_{i} is deffned and finite. Suppose that the intersection product $\left(f_{1}-f_{1}(\boldsymbol{Q})\right) \cdots\left(f_{s}-f_{s}(\boldsymbol{Q})\right)$ is defined locally at \boldsymbol{Q}, then the functions $f_{1}, \cdots f_{s}$, are algebraically independent.

Proof. Without loss of generalities we can suppose that $f_{i}(\boldsymbol{Q})$ $=0$. We shall use the induction. For $s=1$ the assertion is trivial. Suppose that f_{1}, \cdots, f_{n} are algebraically independent and f_{n+1} is algebraic with respect to f_{1}, \cdots, f_{n}. Let k be a common field of definition for f_{i}, \boldsymbol{P} a generic Point of \boldsymbol{V} over k, and put $f_{i}(\boldsymbol{P})=t_{i}$. Then t_{1}, \cdots, t_{n} are independent variables over k and t_{n+1} is algebraic over $k\left(t_{1}, \cdots, t_{n}\right)$ by induction assumption. Let \boldsymbol{Z}_{n} be a component of $\left(f_{1}\right) \cap \cdots \cap\left(f_{n}\right)$ containining \boldsymbol{Q} and \boldsymbol{Z}_{n+1} a component of $\boldsymbol{Z}_{n} \cap\left(f_{n+1}\right)$ containing \boldsymbol{Q}. Then since f_{i} are defined over $k, \boldsymbol{Z}_{n}, \boldsymbol{Z}_{n+1}$ are algebraic over k. Let \boldsymbol{M} and \boldsymbol{N} be generic Points of \boldsymbol{Z}_{n} and \boldsymbol{Z}_{n+1} respectively over k. Then $\left(\boldsymbol{I}, t_{1}, \cdots, t_{n}\right) \rightarrow(\boldsymbol{M}, 0, \cdots, 0)$ is a specialization over k, and this can be extended to a finite specialization $(\boldsymbol{M}, 0, \cdots, 0, c)$ of $\left(\boldsymbol{P}, t_{1}, \cdots, t_{n}, t_{n+1}\right)$ over k. Since \boldsymbol{Z}_{n+1} is a Subvariety of $\boldsymbol{Z}_{n}, \boldsymbol{N}$ is a specialization of \boldsymbol{M} over \bar{k} and this can be extended to the specialization ($\boldsymbol{N}, c^{\prime}$) of (\boldsymbol{M}, c) over \bar{k}. Thus we see that ($\boldsymbol{N}, 0, \cdots, 0, c^{\prime}$) is a specialization of ($\boldsymbol{P}, t_{1}, \cdots, t_{n}, t_{n+1}$) over \boldsymbol{k}. But since $(\boldsymbol{N}, 0, \cdots, 0,0)$ is a specialization of $\left(\boldsymbol{P}, t_{1}, \cdots, t_{n+1}\right)$ and t_{n+1} has the uniquely determined specialization 0 over the specializa tion $\boldsymbol{P} \rightarrow \boldsymbol{Q}$, hence also it has the uniquely determined specialization over $\boldsymbol{P} \rightarrow \boldsymbol{N}$ with reference to k. Then we must have $\boldsymbol{c}^{\prime}=0$. By hypothesis t_{n+1} is algebraic over $k\left(t_{1}, \cdots, t_{n}\right)$ hence c can be so chosen that c is in \bar{k}, and c has the specialization 0 over \bar{k}. Then c must be 0 , i.e. $(\boldsymbol{M}, 0)$ is a specialization of $\left(\boldsymbol{P}, t_{n+1}\right)$ over k and \boldsymbol{Z}_{n} must be contained in $\left(f_{n+1}\right)$. Thus we have arrived at a contradiction and the assertion is proved. q.e.d.

Remark. The condition "each f_{i} is defined and finite at Q " is essential as is shown in the following example.

Example. In L^{2}, let $\boldsymbol{P}=(1, x, y)$ be a generic Point of L over Π

On the independency of differential forms on a!gebraic varieties. 69
(prime field) and define $f_{i}(i=1,2)$ as follows.

$$
f_{1}(\boldsymbol{P})=x, f_{2}(\boldsymbol{P})=x+c, c \in I I
$$

They are not clearly independent, but they intersect properly at the point at infinity ($0,0,1$).

Theorem 1. ${ }^{3)}$ Let $\tau_{1}, \cdots, \tau_{r}$ be functions on \boldsymbol{V}^{r} and \boldsymbol{P}^{\prime} a simple Point of \boldsymbol{V}, then $\tau_{1}, \cdots, \tau_{r}$ are uniformizing parameters at $\boldsymbol{P}^{\mathbf{4}^{4}}$ on \boldsymbol{V} if and only if the following conditions hold for $\left(\tau_{i}\right)$.
(i) each function \bar{i}_{i} is defined and finite at \boldsymbol{P}^{\prime}.
(ii) Intersection product $\left(\tau_{1}-\tau_{1}\left(\boldsymbol{P}^{\prime}\right)\right) \cdots\left(\tau_{r}-\tau_{r},\left(\boldsymbol{P}^{\prime}\right)\right)$ is defined locally at \boldsymbol{P}^{\prime} and contain \boldsymbol{P}^{\prime} with multicity 1.

Proof. Let k be a common field of definition for $\tau_{i}(i=1, \cdots, r)$ \boldsymbol{P} a generic Point of \boldsymbol{V} over k, Γ_{i} the graph of τ_{i} in $\boldsymbol{V} \times S^{1}$, and put $\tau_{i}(\boldsymbol{P})=t_{i}, \tau_{i}\left(\boldsymbol{P}^{\prime}\right)=t_{i}^{\prime}$ and $\boldsymbol{Q}, \boldsymbol{Q}^{\prime}$ points in $S^{\prime \prime}$ whose coordinates are $\left(t_{1}, \cdots, t_{r}\right),\left(t_{1}^{\prime}, \cdots, t_{r}^{\prime}\right)$ respectively.

Suppose that (τ_{i}) are uniformizing parameters at \boldsymbol{P}^{\prime} on \boldsymbol{V} and let \boldsymbol{W} be the locus of $\boldsymbol{I}^{\boldsymbol{r}} \times \boldsymbol{Q}$ over k in $\boldsymbol{V} \times S^{\boldsymbol{c}}$. Then \boldsymbol{W} has the properties described in W-F, VIII, prop. $10,{ }^{5)}$ i.e. \boldsymbol{W} is transversal to $\boldsymbol{V} \times \boldsymbol{Q}^{\prime}$ at $\boldsymbol{P}^{\prime} \times \boldsymbol{Q}^{\prime}$; Moreover if \boldsymbol{Z} is any Subariety of S^{r} which has \boldsymbol{Q}^{\prime} as a simple point, then $\boldsymbol{V} \times \boldsymbol{Z}$ and \boldsymbol{W} are tranversal to each other at $\boldsymbol{P}^{\prime} \times \boldsymbol{Q}^{\prime}$. Let \boldsymbol{X}_{i} be the components of $\left(\tau_{i}-\tau_{i}\left(\boldsymbol{P}^{\prime}\right)\right)$ containing P^{\prime}, then we shall show by induction that we have
(1) $\quad \boldsymbol{X}_{1} \cdots \boldsymbol{X}_{n} \equiv \operatorname{pr}_{r}\left[\left(\boldsymbol{V} \times t_{1}^{\prime} \times \cdots \times t_{n}^{\prime} \times S^{-n}\right) . \boldsymbol{W}\right] \quad\left(\bmod \boldsymbol{P}^{\prime}\right)$

In fact we have

$$
\operatorname{pr}_{o i}\left[\left(\boldsymbol{V} \times S^{i-1} \times t_{i}^{\prime} \times S^{r-t}\right) . \boldsymbol{W}\right]=\Gamma_{i} \cdot\left(\boldsymbol{V} \times t_{i}^{\prime}\right)
$$

where $\mathrm{pr}_{o t}$ means the projection on the product of \boldsymbol{V} and the i-th factor of S^{1}. Hence

$$
\operatorname{pr}_{v}\left[\left(\boldsymbol{V} \times S^{i-1} \times t_{i}^{\prime} \times S^{r-i}\right) \cdot \boldsymbol{W}\right]=\operatorname{pr}_{v}\left[\Gamma_{i} \cdot\left(\boldsymbol{V} \times t_{i}^{\prime}\right)\right] \equiv \boldsymbol{X}_{i} \quad\left(\bmod \boldsymbol{P}^{\prime}\right)
$$

From this we see at once that \boldsymbol{X}_{i} is a Variety for every i and contained in ($\tau_{i}-t_{i}^{\prime}$) with multiplicity 1 , and the equality (1) is proved for $n=1$. Suppose that the equality (1) is already proved for a number $\leq n$, and \mathbf{Z}_{n} be a component of $\boldsymbol{X}_{1} \cdots \boldsymbol{X}_{n}$ containing \boldsymbol{P}^{\prime}, Then we have

[^1]$$
\left.\boldsymbol{Z}_{n} \equiv \operatorname{pr}_{v}\left[\left(\boldsymbol{V} \times t_{1}^{\prime} \times \cdots \times t_{n}^{\prime} \times S^{r-n}\right) . \boldsymbol{W}\right] \quad\left(\bmod \boldsymbol{P}^{\prime}\right)\right)
$$
and we see by the property of \boldsymbol{W} that \boldsymbol{Z}_{n} is a Variety and contained in $\boldsymbol{X}_{1} \cdots \boldsymbol{X}_{n}$ with multiplicity 1 . We shall next show that the intersection product
\[

$$
\begin{equation*}
\left(\boldsymbol{Z}_{n} \times S^{r}\right) \cdot\left(\boldsymbol{V} \times S^{n} \times t_{n+1}^{\prime} \times S^{r-n-1}\right) . \boldsymbol{W} \tag{2}
\end{equation*}
$$

\]

is defined locally at $\boldsymbol{P}^{\prime} \times \boldsymbol{Q}^{\prime}$. Since the first and the last two members intersect properly, it is sufficient to show that

$$
\left(\boldsymbol{Z}_{n} \times S^{n} \times t_{n+1}^{\prime} \times S^{r-n-1}\right) . \boldsymbol{W}
$$

is defined locally at $\boldsymbol{P}^{\prime} \times \boldsymbol{Q}^{\prime}$ by W-F, VII, Cor. of Th. 10 . Now the projection from \boldsymbol{W} to \boldsymbol{V} is regular along \boldsymbol{Z}_{n}, then we see easily that

$$
\left(\boldsymbol{Z}_{n} \times S^{\boldsymbol{n}} \times t_{n+1}^{\prime} \times S^{r-n-1}\right) \cap \boldsymbol{W} \subset\left(\boldsymbol{V} \times t_{1}^{\prime} \times \cdots \times t_{n+1}^{\prime} \times S^{r-n-1}\right) \cap \boldsymbol{W}
$$

and the right hand member containes only one component containing $P^{\prime} \times \boldsymbol{Q}^{\prime}$ whose dimension is $r-n-1$, hence counting the dimension we see that the left hand side is defined locally at $\boldsymbol{P}^{\boldsymbol{\prime}} \times \boldsymbol{Q}^{\prime}$. Then by W-F, VII, Th. 16 we see that \boldsymbol{Z}_{n} and \boldsymbol{X}_{n+1} intersect properly (locally at \boldsymbol{P}^{\prime}) and we have

$$
\begin{align*}
& \boldsymbol{Z}_{n} \cdot \boldsymbol{X}_{n+1} \equiv \boldsymbol{Z}_{n} \cdot \operatorname{pr}_{v}\left[\left(\boldsymbol{V} \times S_{n} \times t^{\prime}{ }_{n+1} \times S^{r-n-1}\right) \cdot \boldsymbol{W}\right] \tag{3}\\
& \quad=\operatorname{pr}_{v}\left[\left(\boldsymbol{Z}_{n} \times S^{r}\right) .\left(\boldsymbol{V} \times S^{n} \times t_{n+1}^{\prime} \times S^{r-n-1}\right) \cdot \boldsymbol{W}\right] \quad\left(\bmod . \boldsymbol{P}^{\prime}\right)
\end{align*}
$$

Moreover we have

$$
\begin{equation*}
\operatorname{pr}_{v}\left[\left(\boldsymbol{Z}_{n} \times S^{r}\right) . \boldsymbol{W}\right]=\boldsymbol{Z}_{n} \equiv p r_{r}\left[\left(\boldsymbol{V} \times t_{1}^{\prime} \times \cdots \times t_{n}^{\prime} \times S^{r-n}\right) . \boldsymbol{W}\right] \tag{4}
\end{equation*}
$$

$\left(\bmod \boldsymbol{P}^{\prime}\right)$
and since the projection from \boldsymbol{W} to \boldsymbol{V} is regular along \boldsymbol{Z}_{n}, there is one and only one Subvariety of \boldsymbol{W} which has the projection \boldsymbol{Z}_{n} on \boldsymbol{V}, and such a component must be contained in $\left(\boldsymbol{V} \times t_{1}^{\prime} \times \cdots \times t_{n}^{\prime} \times S^{r-n}\right)$. \boldsymbol{W}. Then we can replace it in the position of $\left(\boldsymbol{Z}_{n} \times S^{r}\right)$. \boldsymbol{W} in (3), Thus we have

$$
\boldsymbol{Z}_{n} \cdot \boldsymbol{X}_{n+1} \equiv \operatorname{pr}_{V}\left[\left(\boldsymbol{V} \times t_{1}^{\prime} \times \cdots \times t_{n+1}^{\prime} \times S^{r-n-1}\right) . \boldsymbol{W}\right] \quad\left(\bmod \boldsymbol{P}^{\prime}\right)
$$

and the equality (1) is proved. In pariticular we have

$$
\boldsymbol{X}_{1} \cdots \boldsymbol{X}_{r} \equiv \operatorname{pr}_{r}\left[\left(\boldsymbol{V} \times \boldsymbol{Q}^{\prime}\right) . \boldsymbol{W}\right] \equiv \boldsymbol{P}^{\prime}
$$

and the condition (ii) is satisfied.
Conversely let (τ_{i}) satisfy the conditions (i) and (ii) and define \boldsymbol{W} as in the above proof. Then the projection from \boldsymbol{W} to \boldsymbol{V} is regular at \boldsymbol{P}^{\prime}. . By Prop. $1, t_{1}, \cdots, t$. are independent variables

On the independency of differential forms on algebraic varieties. 71
over k, hence \boldsymbol{W} has the projection S^{r} on S^{r}. Now we shall prove the equality (1) under these conditions. By induction suppose that (1) is proved for a number $\leq n$. The condition (ii) implies that the intersection product (2^{\prime}) hence (2) are defined and the relation (3) also holds. By condition (i) we have the equality (4) and hence (1) too. Thus we have

$$
\left(\boldsymbol{V} \times Q^{\prime}\right) . \quad \boldsymbol{W} \equiv \boldsymbol{P}^{\prime} \times Q^{\prime} \quad\left(\bmod \boldsymbol{P}^{\prime} \times Q^{\prime}\right)
$$

and the assertion is proved.
q. e. d.

Corollary 1. Let \boldsymbol{V}^{r} be a Variety, \boldsymbol{U}^{s} its simple Subvaviety, \boldsymbol{P}^{\prime} a simple Point of \boldsymbol{V} which is also simple on \boldsymbol{U} and $\tau_{1}, \cdots \tau_{r}$ uniformizing parameters at \boldsymbol{P}^{\prime} on \boldsymbol{V}. Then we can select among ($\bar{\tau}_{i}$) uniformizing parameters at \boldsymbol{P}^{\prime} on \boldsymbol{U}, where $\bar{\tau}_{i}$ are functions on \boldsymbol{U} induced by τ_{i}.

Proof. Let P_{0}^{\prime} be a representative of $\boldsymbol{P}^{\prime}, V_{0}, U_{0}$ the representatives of $\boldsymbol{V}, \boldsymbol{U}$ containing P_{0}^{\prime} and T, N the tangential linear varieties to V_{0}, U_{0} at P_{0}^{\prime} Since $\left(\tau_{i}-\tau_{i}\left(P^{\prime}\right)\right.$) containes only one component \boldsymbol{A}_{i} containing \boldsymbol{P}^{\prime} and \boldsymbol{I}^{\prime} is a simple Point of \boldsymbol{A}_{i}, there exist the tangential linear varieties M_{i} to $A_{i_{0}}$ at P_{0}^{\prime}, where $A_{i 0}$ are representatives of $\boldsymbol{A}_{i}(i=1, \cdots, r)$. The assumption means that the linear varieties M_{i} are transversal to each other at P_{0}^{\prime} in T^{r}, i.e. when we denotes the indeterminates in T by $X_{i}(i=1, \cdots, r)$ and by $F_{i}(X) \equiv \sum a_{i j} X_{j}+a_{i}=0$ ($i=1, \cdots, r$) the defining equations for M_{i}, the matrix $\left\|a_{i j}\right\|$ is regular. Let

$$
H_{a}(X) \equiv \Sigma b_{a j} X_{j}+b_{a}=0 \quad(\mu=1, \cdots \gamma-s)
$$

be the defining equations for N. Then to prove the assertion it is necessary and sufficient to show that there exist s-polynomials among $F_{i}(X)$ such that $H_{a}(X) \quad(\mu=1, \cdots, r-s)$ and $F_{i_{1}}(X), \cdots, F_{i_{s}}(X)$ constitutes a set of linearly independent linear forms. Then an elementary considerations shows us that the assertion hold. q.e.d.

Corollary 2. Let \boldsymbol{V}^{r} be a Variety defined over k, \boldsymbol{U}^{s} its simple Subvariety and \boldsymbol{U}^{\prime} a specialization of \boldsymbol{U} over k. Let \boldsymbol{Q} be a Point in $\boldsymbol{U} \cap \boldsymbol{U}^{\prime}$ which has the following properties; (a) there is one and only one component $\boldsymbol{U}^{\prime \prime}$ of \boldsymbol{U}^{\prime} containing \boldsymbol{Q}, and $\boldsymbol{U}^{\prime \prime}$ is contained in \boldsymbol{U}^{\prime} with multiplicity 1; (b) \boldsymbol{Q} is simple on $\boldsymbol{V}, \boldsymbol{U}$ and $\boldsymbol{U}^{\prime \prime} ;(c) \boldsymbol{Q}$ is rational over k. Let $\tau_{1}, \cdots, \tau_{r}$ be uniformizing parameters at \boldsymbol{Q} on \boldsymbol{V} and suppose that $\tilde{\tau}_{1}^{\prime}, \cdots, \tau_{s}^{\prime}$ are uniformizing parameters at \boldsymbol{Q} on $\boldsymbol{U}^{\prime \prime}$, then $\bar{\tau}_{1}, \cdots, \bar{\tau}_{s}$ are uniformizing parameters at \boldsymbol{Q} on \boldsymbol{U}, where $\bar{\tau}_{i}$ and $\bar{\tau}_{i}^{\prime}$ are functions on \boldsymbol{U} and $\boldsymbol{U}^{\prime \prime}$ respectively induced by the functions $\bar{\tau}_{i}$ on \boldsymbol{V}.

Proof. Put $\tau_{i}(\boldsymbol{Q})=t_{i}$. Then we have by hypothesis

$$
\left[\left(\bar{\tau}_{1}^{\prime}-t_{1}\right) \cdots\left(\bar{\tau}_{s}^{\prime}-t_{s}\right)\right]_{v^{\prime \prime}} \equiv \boldsymbol{Q} \quad(\bmod \boldsymbol{Q})
$$

Hence we have

$$
\left(\tau_{1}-t_{1}\right) \cdots\left(\tau_{s}-t_{s}\right) \cdot \boldsymbol{U}^{\prime \prime} \equiv \boldsymbol{Q} \quad(\bmod \boldsymbol{Q})
$$

by W-F, VII, Cor. of Th. 18. Since the left hand side is a component of a specializotion of

$$
\left(\tau_{1}-t_{1}\right) \cdots\left(\tau_{s}-t_{s}\right) \cdot \boldsymbol{U}
$$

over k, with multiplicity 1 , and $\left(\tau_{i}-t_{i}\right)$ and \boldsymbol{Q} are invariant by the specialization $\boldsymbol{U} \rightarrow \boldsymbol{U}^{\prime}$ over k we must have

$$
\begin{array}{lll}
& \left(\tau_{1}-t_{1}\right) \cdots\left(\tau_{s}-t_{s}\right) \cdot \boldsymbol{U} \equiv \boldsymbol{Q} & (\bmod \boldsymbol{Q}) \\
\text { i.e. } & {\left[\left(\bar{\tau}_{1}-t_{1}\right) \cdots\left(\overline{\bar{\tau}}_{s}-t_{s}\right)\right]_{\boldsymbol{V}} \equiv \boldsymbol{Q}} & (\bmod \boldsymbol{Q})
\end{array}
$$

Thus the condition (ii) of Th. 1 is satisfied by $\bar{\tau}_{1}, \cdots, \tau_{s}$. The first condition is clearly satisfied by the assumption and the assertion is proved.
q. e. d.

§ 2. The independency of differential forms.

Proposition 2. Let $\varphi_{i}(1 \leq i \leq s)$ be linearly independent functions on \boldsymbol{V} and \boldsymbol{C}_{m} an irreducible hypersurface sectiou of \boldsymbol{V} of order m. Then if m is sufficiently large the functions $\bar{\varphi}_{1}$, which are the functions on \boldsymbol{C}_{m} induced by φ_{i}, are linearly independent.

Proof. Suppose that $\bar{\varphi}_{i}$ are linearly dependent on \boldsymbol{C}_{m}, and let K be a common field of definition for $\boldsymbol{V}, \boldsymbol{\varphi}_{i}$ and \boldsymbol{C}_{m}, and $\boldsymbol{P}, \boldsymbol{Q}$ the generic Points of $\boldsymbol{V}, \boldsymbol{C}_{m}$ over K respectively. Then by the assumption the quantities $\varphi_{i}(\boldsymbol{Q})$ are linearly dependent over K and there exist quantities c_{i} in K such that we have $\sum c_{i} \varphi_{i}(\boldsymbol{Q})=0$ without being $\sum c_{i} \varphi_{i}=0$. Then $\left(\sum c_{i} \varphi_{i}\right)_{0}$ must contain \boldsymbol{C}_{m} as its component. Since the linear system defined by the functions φ_{i} on \boldsymbol{V} has a fixed degree, \boldsymbol{C}_{m} cannot be a component of such a linear system if m is sufficiently large. Thus the assertion is proved.

Proposition 3. Let $\omega_{i}(i=1, \cdots, s)$ be differential forms on \boldsymbol{V} and k a common field of definition for $\omega_{i}{ }^{(6)}$ Then if ω_{i} are linearly dependent over the constant field, they are already dependent over k.

This can be proved in an analogous way as in the case of functions, and the proof is omitted.

[^2]On the independency of differential forms on algebraic varieties. 73
Let \boldsymbol{V} be a projective model of an algebraic Variety, $\omega_{i}(1 \leq i \leq s)$ linearly independent differential forms on \boldsymbol{V}, k a common field of definition for ω_{i} and $\boldsymbol{P}=\left(1, x_{i}, \cdots, x_{N}\right)$ a generic Point of \boldsymbol{V} over k. Let H_{m}^{\prime} be a hypersurface in the ambient projective space \boldsymbol{L}^{N} defined by the equation
such that the intersection product $\boldsymbol{C}_{m}^{\prime}=\boldsymbol{V} \cdot \boldsymbol{H}_{m}^{\prime}$ is irreducible and goes through \boldsymbol{P}. Let $\boldsymbol{H}_{\boldsymbol{M}}(M \geq m)$ be a generic hypersurface defined by the equation

$$
\sum_{i_{0}+\cdots+i_{N^{n}}=3} u_{i_{0} i_{1} \ldots i_{N}} X_{0}^{i_{0}} X_{1}^{t_{1} \cdots} X_{N^{N}}^{i_{N}}=0
$$

where $\left(u_{i_{0} i_{1} \cdots i_{N},}, i_{1}+\cdots+i_{N}>0\right)$ are $\binom{N+M}{M}-1$ independent variables over $k(\boldsymbol{P})$ and $u_{\boldsymbol{\mu 0}_{0.0}}$ is determined by the equation

$$
u_{M 0 . .9}=\sum_{N \geq i_{1}+\cdots+i_{N}>0} u_{i_{0} f_{1} \cdots i_{N}} x_{1}^{i_{1} \cdots x_{N^{2}}^{i}}
$$

Then as is well known $\boldsymbol{C}_{3}=\boldsymbol{V} \cdot \boldsymbol{H}_{3}$ is irreducible. Under these conditions we have the

Proposition 4. Let $\bar{\omega}_{i}, \bar{\omega}_{i}{ }^{\prime}$ be differential forms on \boldsymbol{C}_{M} and $\boldsymbol{C}_{m}{ }^{\prime}$ respectively induced by differential forms $\omega_{i}(i=1, \cdots s)$ on \boldsymbol{V}. Then if $\bar{\omega}_{i}{ }^{\prime}$ are linearly independent on $\boldsymbol{C}_{m}{ }^{\prime}$, $\bar{\omega}_{i}$ are also linearly independent on \boldsymbol{C}_{3}.

Proof. Let τ_{i} be functions on \boldsymbol{V} defined over k by $\tau_{i}(\boldsymbol{P})=x_{i}$. Then by Prop. 5 of Nakai (4) we can suppose that $\tau_{1}, \cdots, \tau_{r}$ are uniformizing parameters on \boldsymbol{V} at \boldsymbol{P}. Hence by Cor. 1 of Th. 1 we can assume that $\bar{\tau}_{1}^{\prime}, \cdots, \bar{\tau}_{r-1}^{\prime}$ are uniformizing parameters at \boldsymbol{P} on $\boldsymbol{C}_{m}^{\prime}$. Then $\bar{च}_{1}, \cdots, \bar{\tau}_{r-1}$ are also uniformizing parameters at \boldsymbol{P} on $\boldsymbol{C}_{\boldsymbol{M}}$ by Cor. 2 of Th. 1 , where $\bar{\tau}_{i}, \bar{\tau}_{i}^{\prime}$ are functions on $\boldsymbol{C}_{M}, \boldsymbol{C}^{\prime}{ }_{m}$ respectively (In the following we shall denote by-and -' the functions on $\boldsymbol{C}_{\boldsymbol{M}}$ and $\boldsymbol{C}^{\prime \prime}{ }_{m}$ respectively induced by the function on \boldsymbol{V}). Let

$$
\omega_{i}=\sum_{i_{1}<\cdots . \cdots i_{p}} \varphi_{p}^{(i)} i_{i} d \tau_{i_{1}} \cdots d \tau_{i_{p}}
$$

Then we have

$$
\begin{aligned}
\bar{\omega}_{i} & =\sum_{i_{1}<\cdots<i_{p}}\left(\bar{\varphi}_{i_{1} \cdots i_{p}}^{(i)}-\frac{\bar{\alpha}_{i_{p}}}{\bar{x}_{r}} \bar{\varphi}_{i_{1} \ldots i_{p-1}}^{(i)}+\cdots+(-)^{p} \frac{\bar{u}_{i_{1}}}{\bar{u}_{r}} \bar{\varphi}_{i_{2} \ldots i_{p} r}^{(i)}\right) d \bar{\tau}_{i_{1}} \cdots d \overline{\bar{i}}_{i_{p}} \\
& =\sum \int_{i_{1} \cdots s_{p}}^{(r)} d \bar{\tau}_{i_{1}} \cdots d \overline{\bar{\tau}}_{i_{p}} .
\end{aligned}
$$

where the sum is extended over all combinations of indices $i_{1}<\cdots<i_{p}$ taken from $1, \cdots, r-1$, and $\bar{\alpha}_{i}$ are determined by the relation

$$
d\left(\sum_{M \geq i_{1}+\cdots i_{v}>0} u_{i_{0} i_{1} \ldots i_{v}} \bar{\tau}_{1}^{i_{1}} \ldots \bar{\tau}_{N^{v}}^{i}\right)=0
$$

and they are linear combinations of the functions of the form $\bar{\tau}_{1}^{i,}$ $\ldots \bar{\tau}_{N^{v}}^{*} \frac{\bar{\partial} \tau_{i}}{\partial \tau_{j}}$ with the coefficients in $k[u]$ (Cf. the proof of Th. 2 of Nakai (4)). In the same way we have

$$
\begin{aligned}
\bar{\omega}_{i}^{\prime} & =\sum_{i_{1}<\cdots<i_{p}}\left(\bar{\varphi}_{i_{1} \ldots i_{p}}^{\prime}-\frac{\tilde{\alpha}_{i_{p}}}{\tilde{\alpha}_{r}} \bar{\varphi}_{i_{1} \ldots i_{p-1}}^{\prime}+\cdots+(-)^{p} \frac{\tilde{\alpha}_{i_{1}}}{\tilde{\alpha}_{r}} \bar{\varphi}_{i_{2} \cdots i_{i_{r}}}^{\prime}\right) d \bar{\tau}_{i_{1}}^{\prime} \cdots d \bar{\tau}_{i_{p}}^{\prime} \\
& =\sum_{i_{1}<\cdots<i_{p}} \tilde{\phi}_{i_{1} \ldots i_{p}} d \bar{\tau}_{i_{1}}^{\prime} \cdots d \bar{\tau}_{i_{p}}^{\prime} .
\end{aligned}
$$

We shall remark here that $\varphi_{i_{1} \ldots i_{p}}(\boldsymbol{P})=\bar{\varphi}_{i_{1} \ldots s_{p}}(\boldsymbol{P})=\bar{\varphi}_{{ }_{1} \ldots f_{p}}^{\prime} \quad(\boldsymbol{P})$; moreover since $(M-m) . \boldsymbol{X}_{0}+\boldsymbol{C}_{m}{ }^{p}$ is a specialization of $\boldsymbol{C}_{\boldsymbol{M}}{ }^{p}$ (where \boldsymbol{X}_{0} is the intersection product of \boldsymbol{V} with the hyperplane $X_{0}=0$) and \boldsymbol{X}_{0} does not contain \boldsymbol{P} we see that $\grave{\alpha}_{i}(\boldsymbol{P})$ are the uniquely determined specialization of $\bar{u}_{i}(\boldsymbol{P})$ over the specialization $(u) \rightarrow(v)$ with reference to $k(\boldsymbol{P})$.

Now suppose that $\bar{\omega}_{i}$ are linearly dependent, then there exist s-quantities in $\left.k_{\llcorner } u\right]$ such that we have

$$
\sum a_{i}(u) \bar{\Phi}_{i_{1} \ldots i_{1}}(\boldsymbol{P})=0 \text {, for all sets of indices } i_{1}<\cdots<i_{p} .
$$

By Th. 1 of Weil (6) there exist a valuation of $k(u, \boldsymbol{P})$ over $k(u)$ which has the value in the algebraic closure $\overline{k(v)}$ of $k(v)$. Let it be ν and suppose that $a_{i_{0}}(u)$ has the minimum value for ν, then the quantities $a_{i}(u) / a_{i 0}(u)$ has the finite specialization over the specialition $(u) \rightarrow(v)$ with reference to $k(\boldsymbol{P})$. Hence we have a nonidentical relation of the form

$$
\sum a_{i}^{\prime} \tilde{D}_{i_{1} \cdots \gamma_{p}}(\boldsymbol{P})=0, \text { for all sets of indices } i_{1}<\cdots<i_{p}
$$

and a^{\prime} are in $\overline{k(v)}$. But since $k(v, \boldsymbol{P})$ is a regular extension over $k(v)$, we see easily that there exists quantities $a_{i}^{\prime \prime}$ in $k(v)$ such that

$$
\sum a_{i}^{\prime \prime} \widetilde{D}_{i_{1} \ldots i_{p}}(\boldsymbol{P})=0, \text { for all sets of indices } i_{1}<\cdots<i_{p} .
$$ i.e. $\sum a_{i}^{\prime \prime} \bar{\omega}_{i}^{\prime}=0$. It contradicts to our hypothsis and the assertion is proved.'

q. e. d.

Lemma. Let K be a field containing k such that $\operatorname{dim}_{k} K=1$, and z_{1}, \cdots, z_{n} elements in K. Then for any valuation v of K over k, the value domain for the module of linear forms $o=\sum_{i=1}^{n} k z_{i}$ are bounded, i.e. there exist an integer N such that $|v(\alpha)|<N$ for any element α of o.
7) The device of the latter part of this proof is due to the remark by Prof. Y. Akizuki.

On the independency of differential forms on algebraic varieties. 75
Proof. ${ }^{8)}$ As we easily see, it is sufficient to show the lemma under the additional condition that k is algebraically closed. Moreover we can suppose that z_{1}, \cdots, z_{n} are linearly independent over k. We shall first show by induction that there exist the basis of o such that the value of the basis are all different form each other. Suppose that we have

$$
v\left(z_{1}\right)<v\left(z_{2}\right)<\cdots<v\left(z_{s}\right)=v\left(z_{s+1}\right)=\cdots=v\left(z_{s+j}\right)<\cdots \leq v\left(z_{n}\right) .
$$

Then we can find elements in k such lhat $z_{s} / z_{s+i} \equiv a_{i}(\bmod \phi)$, $i=1, \cdots, j$, where ϕ is the valuation ideal. Put $z_{s+i}^{\prime}=z_{s}-a_{i} z_{s+i .}$ Then z_{s+i}^{\prime} can be replaced by z_{s+i} and we have $v\left(z_{s+i}^{\prime}\right)>v\left(z_{s}\right)$. Take an element which has the minimum value among $\left\{z^{\prime}{ }_{s+i}, i=1, \cdots, j\right\}$ and $\left\{z_{l}, s+j<t \leq n\right\}$, and call it $z^{\prime \prime}{ }_{s+1}$, then we get the basis of o whose first $s+1$ elements have dfferent values to each other and the remaining basis have the values not less than the values of the first $s+1$ basis elements. Continuing this process in finite number we will arrive at the required basis. Let them be x_{1}, \cdots, x_{n}, and suppose that $v\left(x_{1}\right)<\cdots<v\left(x_{n}\right)$. Then we see immediately that $v\left(x_{1}\right) \leq v(\%)$ $\leq v\left(x_{n}\right)$ for any α in o and the assertion is proved. q.e.d.

Proposition 5. Let K be a field containing k, z_{1}, \cdots, z_{n} elements in K and put $o=\sum k z_{i}$. Then for any independent variable x over k we can find infinitely many elements among $\left\{x^{m}\right\}, m=0,1,2, \cdots$ which are linearly independent over o.

Proof. Put $K_{0}=k\left(2_{1}, \cdots, z_{n}, x\right)$ and L be any subfield of K_{0} such that we have $\operatorname{dim}_{l}, K_{0}=1$ and x is transcendental over L. Let v be a valuation of K_{0} over L such that $v(x)>0$. Suppose that there are only a finite number of elements among $\left\{x^{m}\right\}$ which are linearly independent over $o^{\prime}=\sum_{i=1}^{s} L z_{i} \supset o$, and let them be $1, x^{m_{1}}, \cdots, x^{m_{s}}$. Put $o^{\prime \prime}=\sum_{i, j} L z_{i} x^{m}{ }_{j}$, then by the above lemma $v(\mu)$ is bounded for any element α in $o^{\prime \prime}$. By assumption, for any large N we have a relation of theform $\mu_{N} x^{N}=\sum_{i=1}^{s} \mu_{i} x^{m}{ }_{i}$ where $\mu^{\prime} s$ are in o^{\prime}. But the right hand member is contained in $o^{\prime \prime}$ and has a bounded value for v and the left hand member may have any large value, and it is a contradiction. Hence there are infinitely many elements among $\left\{x^{m}\right\}$ which are linearly independent over o^{\prime} hence also over o. q.e.d.

Now we are well prepared to prove our main theorem.
Theorem 2. Let $\boldsymbol{V}^{r}(r \geq 2)$ be a projective model of an algebraic

[^3]Variety, $\omega_{i}(1 \leq i \leq s)$ liuearly independent differential forms on \boldsymbol{V}, k a common field of definition for ω_{i} and \boldsymbol{C}_{m} a generic hypersurface section of \boldsymbol{V} of order m with reference to k. Then if m is sufficiently large, ω_{1} induce on \boldsymbol{C}_{m} linearly independent differential forms $\bar{\omega}_{i}$.

Proof. Using the same notations as in Prop. 4, let

$$
\omega_{i}=\sum_{i_{1}<\cdots<i_{p}} \varphi_{i_{1} \ldots i_{p}}^{(i)} d \tau_{i_{1}} \cdots d \tau_{i_{p}},
$$

where the sum is extended over all sets of indices $i_{1}<\cdots<i_{p}$ taken from $1, \cdots, r$ and the functions $\varphi_{i_{1} \ldots i_{p}}^{(i)}, \tau_{i}$ are all defined over k. Let \boldsymbol{P} be a generic Point of V over k and put $o=\sum_{i} k . \varphi_{\varphi_{1} \ldots j_{p}}^{(i)}(\boldsymbol{P})$. Then by Prop. 5 we can suppose 1 , $x_{1}^{{ }_{1}{ }_{12}}, \cdots, x_{1}{ }_{1}{ }^{1 r}$ are linearly independent over o. Moreover as is seen from the proof of Prop. 5 we can choose $e_{1 j}$ in such a way that $e_{1 j}+1$ is not divisible by the characteristic of the universal domain. Now put.

$$
\begin{aligned}
& y_{11}=x_{1} \\
& y_{12}=x_{2}-x_{1}^{{ }^{{ }_{12}}+1} \\
& \ldots \ldots \ldots \ldots \ldots \ldots \\
& y_{1 r}=x_{r}-x_{1}{ }^{c_{1 r}+1}
\end{aligned}
$$

and let η_{11} be functions on \boldsymbol{V} defined over k by $\eta_{1 i}(\boldsymbol{P})=y_{1 i}$. Then we see easily that $\eta_{11}, \cdots, \eta_{1}$, are also served as uniformizing parameters at \boldsymbol{P} on \boldsymbol{V} and we can express ω_{i} in the form

$$
\omega_{t}=\sum_{j_{1}<\cdots \cdots<j_{p}}^{\substack{j_{j} \\ \psi_{j}(t)} j_{p}} d \eta_{j_{1}} \cdots d \eta_{j_{p}}
$$

where

$$
\begin{array}{ll}
\psi_{j_{1} \ldots j_{p}}^{(i)}=\varphi_{j_{1} \ldots j_{p}}^{(i)} & \text { if } j_{1}>1 \\
\psi_{1 j_{2} \ldots j_{p}}^{(i)}=\varphi_{1 j_{2} \ldots j_{p}}^{(i)}+\sum_{l \geq 2}\left(e_{1 l}+1\right) \eta_{11}{ }^{{ }^{\prime}{ }_{1 l}} \varphi_{l j_{2} \ldots j_{p}}^{(i)}
\end{array}
$$

It is to be noted that for any choice of indices $k_{1}<\cdots<k_{p}, \varphi_{k_{1} \cdots k_{k_{p}}}^{(i)}$ appears in the expression of $\psi_{1 k_{2} \ldots k_{p} .}^{(i)}$. Writing ω_{i} in the form

$$
\omega_{i}=d \eta_{11} \cdot \omega_{i}^{*}+\omega_{i}^{(i)} .
$$

- we will see that ω_{i}^{*} are linearly independent differential forms on \boldsymbol{V}. In fact suppose that ω_{i}^{*} are linearly dependent, then there exist the quanties c_{i} in k such that we have

$$
\begin{array}{cl}
& \sum c_{i} \omega_{i}^{*}(\boldsymbol{P})=0 \\
\text { i.e. } \quad & \sum c_{i} \phi_{1 j_{2} \cdots j_{p}}^{(i)}(\boldsymbol{P})=0 \text { for all } j_{2}<\cdots<j_{p} \\
\sum c_{i}\left[\varphi_{j_{j 2}}^{(i)} \ldots j_{p}\right. \\
& \left.(\boldsymbol{P})+\sum_{l \geqslant 2}\left(e_{1 l}+1\right) \cdot y_{11}{ }^{e^{2} l}{ }^{l} \varphi_{l j_{2} \ldots j_{p}}^{(i)}(\boldsymbol{P})\right]=0 .
\end{array}
$$

On the independency of differential forms on algebraic varieties. 77
But since 1, $y_{11}^{\epsilon_{12}}, \cdots, y_{1,}^{c_{1}}$ are linearly independent over o we must have

$$
\sum c_{i} \varphi_{i_{1} \ldots i_{p}}^{(i)}(\boldsymbol{P})=0 \text { for all } i_{1}<\cdots<i_{p}
$$

It contradits to the independency of ω_{i}.
Next we shall transform the uniformizing parameters into

$$
\begin{aligned}
& y_{\varepsilon_{1}}=y_{11} \\
& y_{22}=y_{12} \\
& y_{23}=y_{13}-y_{12}^{c_{23}+1} \\
& \cdots \cdots \cdots \cdots \\
& y_{2 r}=y_{1 r}-y_{12}^{f_{12}+1}
\end{aligned}
$$

where $e_{0_{j}}(j=3, \cdots, r)$ are so chosen that $1, y_{12}^{\epsilon_{23}}, \cdots, y_{12}^{\epsilon_{2 r}}$ are linearly independent over $o^{\prime}=\sum_{\substack{\left(j_{2}, \ldots j_{p}\right)}} k \psi_{1 j_{2} \ldots j_{p}}^{(i)}(\boldsymbol{P})$ and $e_{2 j}+1$ are not divisible by the characteristic of the universal domain. Then by the same process as above we can express ω_{i} in the form

$$
\omega_{i}=d \eta_{11} d \eta_{22} \omega_{i}^{* *}+\omega_{i}^{(* *)}
$$

where $\eta_{2 j}$ are functions on V defined over k by $\eta_{2 j}(\boldsymbol{P})=y_{2 j}$ and $\omega_{i}^{* *}$ are linearly independent. Continuing this process p-times we shall arrive at an expression of the form

$$
\omega_{i}=d \eta_{p_{1}} d \eta_{p_{2}} \cdots d \eta_{p_{p}} \varphi_{i}+\tilde{\omega}_{i}
$$

where φ_{i} are functions on \boldsymbol{V} defined over k and linearly independent on \boldsymbol{V}. From the above construction we see that $y_{p j}(j=\cdots 1, p)$ are contained in $k\left[x_{1}, \cdots, x_{r}\right]$; moreover if we put $y_{p j}=L_{j}(x), L_{j}(X)$ has the form $X_{j}+G_{j}(X)$, where $G_{j}(X)$ are polynomials in $k\left[X_{1}, \cdots X_{j-1}\right]$. Henceforth we shall write η_{j} instead of $\eta_{p j}$.

Next we shall show that there exist an irreducible hypersurface section of \boldsymbol{V} on which ω_{i} induce linearly independent differential forms $\bar{\omega}_{i}$. For this we shall divide into the three cases.
(I) The case $p \leq r-2$.

Let \boldsymbol{H}_{1} be a hypersurface in L^{N} defined by the equation of the form

$$
H_{1}(X) \equiv v_{0}+v_{p+1} \cdot L_{p+1}(X)^{m_{p+1}}+\cdots+v_{r} \cdot L_{r}(X)^{m} r=0
$$

where $v_{p+1}, \cdots, \boldsymbol{v}_{\text {r }}$ are independedt variables over $k(\boldsymbol{P})$ and v_{0} is determined by

$$
v_{0}=-\sum_{j=p+1}^{r} v_{j} L_{j}(x)^{m_{j}}
$$

Then by Th. 2.4 of Matsusaka (3) we see easily that the intersection product $\boldsymbol{U}_{1}=H_{1} . \boldsymbol{V}$ is irreducible for suitable choices of m_{j} $(j=p+1, \cdots, r) \cdot$ (In the following we shall consider more two special hypersursurfaces. The irreducibility of the intersection product of \boldsymbol{V} with these hypersurfaces can be seen by the same reasoning as this case and will not be mentioned explicitly.) We shall now show that $\bar{\eta}_{1}, \cdots \bar{\eta}_{r-1}$ are uniformizing parameters at \boldsymbol{P} on \boldsymbol{C}_{1}. For this purpose it is sufficient to show that the determinant

$$
\left|\begin{array}{ll}
\partial L_{j} / \partial x_{i}, & j=1, \cdots, r-1 \\
\partial H_{1} / \partial x_{i} & \\
\partial F_{s} / \partial x_{i}, & s=1, \cdots, N-r
\end{array}\right| \quad i=1, \cdots, N .
$$

is not 0 (cf. the Def. 1 of Koizumi (2)), where $F_{s}(X)$ are polynomials in the defining ideal ϕ of \boldsymbol{V} such that $\left|\partial F_{s} / \partial x_{i}\right| \geqslant 0(s=1, \cdots$, $N-r ; i=r+1, \cdots, N)$. The existence of such polynomials is assured by the hypothesis that $\tau_{1}, \cdots, \tau_{r}$ are uniformizing parameters at \boldsymbol{P} on \boldsymbol{V} (cf. Prop. 5 of Nakai (4)). But it is clearly seen from the forms of $L_{j}(X)$ and $H_{1}(X)$. Then the induced differential forms $\bar{\omega}_{i}$ on \boldsymbol{C}_{1} can be written in the form

$$
\bar{\omega}_{i}=\bar{\varphi}_{1} \cdots{ }_{p}(i) d \bar{\gamma}_{1} \cdots d \bar{\gamma}_{p}+*
$$

But by Prop, 2, $\bar{\varphi}_{1}^{(i)} \ldots$. are independent functions on \boldsymbol{C}_{1} if m_{j} are sufficiently large. Hence $\bar{\omega}_{i}$ are also linearly independent differential forms on \boldsymbol{C}_{1}.
(II) The case $p=r-1 \geq 2$.

Take m_{0} so large that on any irreducible hypersurface section of \boldsymbol{V} of order $\geq m_{v}$, the induced functions $\bar{\varphi}_{1}^{(t)} \ldots, r_{-1}$ are linearly independent. In particular let \boldsymbol{H}_{2} be a hypersurface defined by the equation of the form

$$
v_{0}+v_{r} \cdot L_{r}(X)+\sum_{m \geq i_{2}+\cdots+i_{r-1}>0} v_{i_{2} \cdots i_{r-1}} \cdot L_{v}(X)^{i_{2} \ldots L_{r-1}}(X)^{i_{r-1}}=0
$$

where $v_{i_{2}}, \cdots, v_{i_{r-1}}, v_{r}$ are independent variables over $k(\boldsymbol{P})$ and v_{0} is determined by the equation

$$
v_{0}=-v_{r} L_{r}(x)_{m>i_{2}+\ldots, i_{r-1}>0} v_{i_{2} \ldots i_{r-1}} L_{2}(x)^{t_{2} \ldots L_{r-1}(x)^{i_{r-1}}}
$$

and the sum is extended over all sets of indices such that $0<i_{2}+$ $\cdots+i_{r-1} \leq m\left(m \geq m_{0}\right)$. Since $r \geq 3$ we see that $\boldsymbol{C}_{2}=\boldsymbol{V} \cdot \boldsymbol{H}_{2}$ is irreducible, and by the analogous reasoning as in the case (I) that $\bar{\eta}_{1}, \cdots, \bar{\eta}_{r-1}$ are uniformizing parameters at \boldsymbol{P} on \boldsymbol{C}_{2}. Then the in-

On the independency of differential forms on algebraic varieties. 79
duced differential forms have the form

$$
\bar{\omega}_{i}=\bar{\varphi}_{1}^{(i)} \ldots, r_{-1} \quad d \bar{\eta}_{1} \cdots d \bar{\eta}_{r-1}
$$

and $\bar{\varphi}_{1 \ldots, r-1}^{(i)}$ are linearly independent functions on \boldsymbol{C}_{2}, hence $\bar{\omega}_{i}$ are also independent on \boldsymbol{C}_{2}.
(III) The case $r=2, p=1$.

In this case we have

$$
\omega_{i}=\varphi_{1}^{(i)} d \eta_{1}+\varphi_{2}^{(i)} d \eta_{2}
$$

and $\varphi_{1}{ }^{(1)}(1 \leq i \leq s)$ are linearly independent function on \boldsymbol{V}. Let \boldsymbol{H}_{3} be a hypersurface in \boldsymbol{L} defined by the equation

$$
v_{0}+v_{1} X_{1} L_{2}(X)^{m-1}+v_{2} L_{2}(X)^{m}=0
$$

where v_{1} and v_{2} are independent variables over $k(\boldsymbol{P})$ and v_{0} is determined by

$$
v_{0}=-v_{1} x_{1} L_{2}(x)^{m-1}-v_{2} L_{2}(x)^{m}
$$

and m is an integer not divisible by the characteristic of the universal domain. Then $\boldsymbol{C}_{3}=\boldsymbol{V} \cdot \boldsymbol{H}_{3}$ is irreducible, and the induced differential forms have the form

Put

$$
\bar{\omega}_{i}=\left(\bar{\varphi}_{1}^{(i)}-\frac{v_{1} \bar{\eta}_{2}}{(m-1) v_{1} \bar{\eta}_{1}+m v_{2} \bar{\eta}_{2}} \bar{\varphi}_{2}^{(i)}\right) d \bar{\eta}_{1}
$$

$$
\psi_{i}=\left\{(m-1) v_{1} \cdot \bar{\eta}_{1}+m v_{2} \cdot \bar{\eta}_{2}\right\} \bar{\varphi}_{1}^{(i)}-v_{1} \bar{\eta}_{2} \bar{\varphi}_{2}{ }^{(i)}
$$

Then they are functions on \boldsymbol{V} defined over $k\left(v_{1}, v_{2}\right)$. We shall show that ψ_{i} are independent. Suppose that they are linearly dependent then there exist the quantities u_{i} in $k\left(v_{1}, v_{2}\right)$ such that

$$
\sum_{i} \mu_{i}\left[\left\{(m-1) \cdot v_{1} \cdot \bar{\eta}_{1}+m v_{2} \cdot \bar{\eta}_{2}\right\} \bar{\varphi}_{1}{ }^{(t)}-v_{1} \bar{\eta}_{2} \bar{\varphi}_{2}{ }^{(i)}\right]=0
$$

Since \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are independent variables over $\boldsymbol{k}(\boldsymbol{P})$ and \boldsymbol{P} is a generic Point of \boldsymbol{V} over $k\left(v_{1}, v_{2}\right)$ we can see immediately

$$
\sum \alpha_{1} \cdot m v_{2} \eta_{2} \cdot \varphi_{1}{ }^{(i)}=0
$$

i.e.

$$
\sum \alpha_{i} \varphi_{1}^{(i)}=0
$$

this is a contradiction. Moreover the degree of the linear system determined by the functions $\left\{\psi_{i}\right\}$ is bounded though the functions ψ_{i} varie as m varies. Hence if m is sufficiently large the induced functions $\bar{\psi}_{1}$ are linearly independent on \boldsymbol{C}_{3} by Prop. 2. Hence the differential forms $\bar{\omega}_{i}$ are linearly independent on \boldsymbol{C}_{3}.

Now we see in any case if ω_{i} are linearly independent differen-
tial forms on $V^{r}(r \geq 2)$ of degree $p(1 \leq p \leq r-1)$, then there exist an irreducible hypersurface section \boldsymbol{C} of \boldsymbol{V} of order m where ω_{i} induce linearly independent differential forms $\bar{\omega}_{i}$. Then ω_{i} induce the linearly independent differential foams on a generic hypersurface section \boldsymbol{C}_{M} of order M for all values of $M \geq m$, by prop. 4. Thus the theorem is completely proved. q.e.d.

We shall denote by $R_{p}(\boldsymbol{V})$ the number of linearly independent differential forms of the first kind of degree p on $\Delta^{\prime \prime}\left(R_{1}(\boldsymbol{V})\right.$ is the irregularity, and $R_{r}(\boldsymbol{V})$ is the geometric genus of V respectively). Then we have immediately the

Corolllary. The numbers $R_{p}(\boldsymbol{V})$ are bounded for any value of $p(1 \leq p \leq \operatorname{dim} . \boldsymbol{V})$.

Mathematical Institute Kyoto University.

Bibliography.

(1) Igusa, J. On the Picard varieties attached to algebraic varieties, Amer. J. Math. Vol. LXXIV, 1952.
(2) Koizumi, S. On the differential forms of the first kind on algebraic varieties. J. Math. Soc. Japan, Vol. 2, 1951.
(3) Matsusaka, T. The theorem of Bertini on linear system in modular field. Mem. Coll. Sci. Univ. Kyoto, saries A Vol XXVI, 1950.
(4) Nakai, Y. On the divisors of differential forms on algebraic varieties. forthcoming in J. Math. Soc. Japan.
(5) Weil, A. Foundations of algebraic geometry. Amer. Math. Soc. Colloq. publications.
(6) Weil, A. Arithmetic on algebraic varieties. Ann. of Math. Vol. 53, 1951.

[^0]: 1) Cf. J. Igusa (1). The numbers in bracket refer to the bibliography at the end of the paper.
 2) We seall use the notations and terminology adopted in Weil (5).
[^1]: 3) This formulation is due to Prof. J. Igusa.
 4) Cf. Definition 1 of Nakai (4).
 5) This means " proposition 10 of chapter VIII of Weil (5)".
[^2]: 6) cf. § 1 of Nakai (4).
[^3]: 8) I thank this proof to my friend M. Nagata.
