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In the classical algebraic geometry the following theorem has
been hitherto admitted generally.

Let V™ be a projective model of an algebraic, variety, * (i=1,---
, 8) linearly independent differential forms. of the first kind on V, k
a common field of definition for o, and W a generic hyperplane
section of V with veference to k. Then ;s induce on W linearly
independent differential froms @; of the first kind.

Recently J. Igusa proved this rigorouly using the theory of
harminic integrals.” It seems to be true that it holds also for the
ground field of arbitrary characteristic, but the proof is not yet
obtained. In this paper, modifying the above we shall prove the
following :

Let V be an algebraic variety in a projective space, w; (i=1,---,5)
linearly independent diffevential forms on V(they may be not of
the first kind), k a common field of definition for w, and C,, a generic
hypersuface section of V of order m with reference to k. Then the
induced differential forms @, on C,, by w; are also lincarly independent
provided m is sufficiently large.

I wish to express my sincere gratitude to Professors Y. Akizuki
and J. Igusa for their valuable advices and kind encouragement.

§ 1. Some results on uniformizing parameters.”

Definition. Let X and Y bo two cycles on a Variety ¥ and Q
a Point on V. If any component of X containing ) intersect pro-

1) Cf. J. Igusa (1). The numbers in bracket refer to the bibliography at the
end of the paper.

2) We seall use the notations and terminology adopted in Weil (5).
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perly with every component of ¥ containing @, then we shall say
that the intersection product -X. Y is defined locally at Q.

We shall mean by X=Y (mod. Q) that the cycles X and Y con-
tain the same components containing Q with the same multiplicities.
For any number of cycles X,,---,X, the local intersection product
at Q is defined in an analogous way.

Proposition 1. Let V' be a Variety, f; (i=1,---, s <r) functions
on V and Q a Point on V wheve each function f; is deffned and
finite. Suppose that the intersection product (f1—f,(Q))---(f,.—/.(Q))
is defined locally at Q, then the functions f,,---f;, ave algebraically
independent.

Proof. Without loss of generalities we can suppose that f;(Q)
=0. We shall use the induction. For s=1 the assertion is trivial.
Suppose that f3,---, f, are algebraically independent and f£,,, is alge-
braic with respect to f,,---, f.. Let k& be a common field of defini-
tion for f;, P a generic Point of 1"over k, and put f;(P)=t. Then
t,-+, t, are independent variables over k and ¢,,, is algebraic over
k(t,--, t.) by induction assumption. Let Z, be a component of
(fy) n---n (f,) containining Q and Z,,, a component of Z,N (f,..,)
containing 2. Then since f; are defined over k, Z,, Z,,, are alge-
braic over k. Let M and N be generic Points of Z, and Z,,,
respectively over k. Then (P, t,t)—>(M, 0,--, 0) is a
specialization over k, and this can be extended to a finite specializa-
tion (M, 0,---, 0, ¢) of (P, t,,--+, tn, tasy) Over k. Since Z,., isa Sub-
variety of Z, N is a specialization of M over k and this can be

extended to the specialization (N, ¢) of (M, c) over k. Thus we
see that (&, 0,---, 0,¢’) is a specialization of (P, t,---,t,, t..1) over
k. But since (&, 0,---, 0, 0) is a specialization of (P, t,,---,%,.,) and
t.+, has the uniquely determined specialization 0 over the specializa
tion P—Q, hence also it has the uniquely determined specialization
over P— N with reference to k. Then we must have ¢=0. By
hypothesis #,., is algebraic over k(¢,---, t.) hence ¢ can be so chosen

that ¢ is in k, and ¢ has the specialization 0 over .. Then ¢ must
be 0, i.e. (M, 0) is a specialization of (P, t.,,) over k and Z,
must be contained in (f,.:). Thus we have arrived at a contradic-
tion and the assertion is proved. q.ed.
Remark. The condition ‘“each f; is defined and finite at Q"
is essential as is shown in the following example.
Example. In L2 let P=(1, x, y) be a generic Point of L over /7
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(prime field) and define f;(i=1, 2) as follows.
fi(P)=x, fo(P)=x+c, cell

They are not clearly independent, but they intersect properly at the
point at infinity (0, 0, 1).

Theorem 1. Let 7,,---, 7, be functions on V" and P’ a simple
Point of V, then ©,---,z, are uniformizing pavameters at P on V
if and only if the following conditions hold for (z;).

(1) each function <, is defined and finite at P'.
(1) Intersection product (z,—c,(P7"))---(vr—7,(P')) is defined
locally at P' and contain P’ with multicity 1.

Proof. Let k£ be a common field of definition for «; (i=1,---,7)
P a generic Point of ¥V over k, ['; the graph of =; in ¥VxS', and
put = (P)=t, =, (P")=t/and Q, Q' points in S” whose coordinates
are (t,---,t), (t/,---,t.”) respectively.

Suppose that (¢;) are uniformizing parameters at £’ on ¥ and
let W be the locus of P’x @ over k in ¥VxS". Then W has the
properties described in W-F, VIII, prop. 10,° i.e. W is transversal
to Vx Q' at P’'x('; Moreover if Z is any Subariety of S” which
has @’ as a simple point, then ¥'x Z and W are tranversal to each
other at P’'x Q. Let X, be the components of (z;—=(P))
containing P’, then we shall show by induction that we have

(1) X Xumpr,[(Fxt/x--xt/xS™. W|  (mod P)
In fact we have

pr[(Vx S« xt/ xS ). W]=I,-(Vxt/)

where pr,, means the projection on the product of ¥ and the i-th
factor of S'. Hence

pry (VxS xt/ x S7).W]=pr,[[}- (Vxt/)]=X, (mod P')

From this we see at once that X, is a Variety for every i and
contained in (r;—¢/) with multiplicity 1, and the equality (1) is
proved for #»=1. Suppose that the equality (1) is already proved
for a number < #, and Z, be a component of X,.--X, containing
P’, Then we have

3) This formulation is due to Prof. J. Igusa.
4) Cf. Definition 1 of Nakai (4).
5) This means * proposition 10 of chapter VIII of Weil (5)”.
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Zy=pr [ (Fxt/x--xt/xS™). W] (mod P’))

and we see by the property of W that Z, is a Variety and contain-
ed in X,---X, with multiplicity 1. We shall next show that the
intersection product

@) (Zax S7) - (Fx 8" % tnyyx S™"1) . W

is defined locally at P’ x ’. Since the first and the last two mem-
bers intersect properly, it is sufficient to show that

2" (Z,%xS8")X 'y x ST YW

is defined locally at P’ x @/ b_y W-F, VII, Cor. of Th. 10. Now the
projection from W to V is regular along Z,, then we see easily
that :

(Z,xS* )Xy xS NYNWC(Vxt/ x Xt xS " YNW

and the right hand member containes only one component contain-
ing P’ x ' whose dimension is 7-n-1, hence counting the dimension
we see that the left hand side is defined locally at >’ x Q’. Then
by W-F, VII, Th. 16 we see that Z, and X,,, intersect properly
(locally at P’") and we have

3) 2y Xy =2 pry[ (VXS X t'ns1 X Sr—n-l)-"/]
=pry[(Z,xS)(VxS"xt,, xS ). W] (mod. P’)
Moreover we have

@) pr[(Z.xS") . W]=Z,=pr,|(Vxt'x---xt,xS™). W]
(mod P’)
and since the projection from W to V is regular along Z,, there is
one and only one Subvariety of W which has the projection Z, on
¥, and such a component must be contained in (¥V'x t/x --- x t,/ x §™").
W. Then we can replace it in the position of (Z,xS"). W in (3),
Thus we have

Zy X o=pry[(Vxt/x - xt, xS ). W] (mod P’)
and the equality (1) is proved. In pariticular we have
X, X,=pr, [(Fx Q). W]=P (mod P)

and the condition (ii) is satisfied.

Conversely let (r;) satisfy the conditions (i) and (ii) and de-
fine W as in the above proof. Then the projection from W to V
is regular at P’. .By Prop. 1, ¢,---, t, are independent variables
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over k, hence W has the projection S” on S”. Now we shall prove
the equality (1) under these conditions. By induction suppose that
(1) is proved for a number < z. The condition (ii) implies that
the intersection product (2’) hence (2) are defined and the relation
(3) also holds. By condition (i) we have the equality (4) and
hence (1) too. Thus we have

(Vx Q). W=P'xQ (mod P’ x Q')
and the assertion is proved. ‘ q.e. d.
Corollary 1. Let V" be a Variety, U* its simple Subvariely, P’
a simple Point of V which is also simple on U and <, --v, uni-

formizing parameters at P' on V. Then we can select among (7,)
uniformizing pavameters at P’ on U, wherve T, are functions on U
induced by ..

Proof. Let P,/ be a representative of P’, V,, U, the representa-
tives of V,U containing P,/ and T, N the tangential linear varieties
to V,, U, at P/ Since (z;—;(P’)) containes only one component
A, containing P’ and I” is a simple Point of 4, there exist the tan-
gential linear varieties M; to A, at P/, where A, are representa-
tivesof 4, (i=1,---, 7). The assumption means that the linear varieties
M, are transversal to each other at P/ in T”, i.e. when we denotes the
indeterminates in T by X; (i=1,---,7) and by F;(X)=3] a,; X;+a,=0
(i=1,---,7) the defining equations for M;, the matrix [a,,l is regular. Let

Ha(X)EZbaj X,+ba=0 (I/,:l’...r__s)

be the defining equations for N. Then to prove the assertion it is
necessary and sufficient to show that there exist s-polynomials
among F;(X) such that H,(X) («=1,---,7—s) and F,(X), -, F;, (X)
constitutes a set of linearly independent linear forms. Then an
elementary considerations shows us that the assertion hold. g.e.d.

Corollary 2. Let V' be a Variety defined over k, U* its simple
Subvariety and U' a specialization of U over k. Let Q be a Point
in UnU" which has the following properties; (a) there is one and
only one component U" of U’ conlaining Q, and U" is contained in
U’ with multiplicity 1; (b) Q is simple on V, U and U"; (¢) Qis

rational over k. Let t,,---, v, be uniformizing parvameters at Q on V
and suppose that ©/,---, T, are uniformizing parvameters at Q on U",
then 7.+, T, are uniformizing parameters at Q on U, where T; and

7/ are functions on U and U" respectively induced by the functions
T, on V.
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Proof. Put z,(Q)=%. Then we have by hypothesis
[GE =) @ =) ]r=0 (mod Q)

Hence we have v
(Ti—=1) - (5—1,) - U'=Q (mod Q)
by W-F, VII, Cor. of Th. 18. Since the left hand side is a com-
ponent of a specializotion of
(zi—t) - (ze— 1) - U,
over k, with multiplicity 1, and (z;—t;) and Q are invariant by
the specialization U—U’ over k we must have

(5i—t) - (7—1) - U=Q  (mod Q)

ie. [(‘:l_tl)"'(?s_ts)](/'EQ (ITIOd Q)

Thus the condition (ii) of Th. 1 is satisfied by 7,,---,7,. The first
condition is clearly satisfied by the assumption and the asser-
tion is proved. q. e. d.

§ 2. The independency of differential forms.

Proposition 2. Let ¢, (1 < i<5s) be linearly independent functions
on V and C,, an irreducible hypersurface section of V of order m.
Then if m is sufficiently large the functions ¢, which are the func-
tions on C,, induced by ¢:, are linearly independent.

Proof. Suppose that ¢, are linearly dependent on C.,, and let
K be a common field of definition for ¥V, ¢; and C,, and P, Q
the generic Points of ¥V, C, over K respectively. Then by the
assumption the quantities ¢;(Q) are linearly dependent over K and
there exist quantities ¢, in K such that we have > ¢, ¢, (Q)=0
without being 3 ¢ ¢,.=0. Then (3] ¢ ¢:), must contain C,, as its
component. Since the linear system defined by the functions ¢;
on V has a fixed degree, C,, cannot be a component of such a linear
system if m is sufficiently large. Thus the assertion is proved.

Propeasition 3. Let w(i=1,---, s) be differvential forms on V and
k a common field of definition for w.” Then if w; are linearly depen-
dent over the constant field, they are already dependent over k.

This can be proved in an analogous way as in the case of
functions, and the proof is omitted.

6) cf. §1 of Nakai (4).
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Let ¥ be a projective model of an algebraic Variety, o, (1<8i<s)
linearly independent differential forms on ¥, £ a common field of
definition for «; and P=(1, x,,---, xy) a generic Point of V over
k. Let H., be a hypersurface in the ambient projective space L*
defined by the equation

2 vloﬁ-n-{N X;O X{l“'XIi’N=0

fot e tdpy=m

such that the intersection product C.,=V.H., is irreducible and
goes through P. Let H, (M > m) be a generic hypersurface de-
fined by the equation

P um.‘..,NX.ﬁ“ X Xgn=0

tu+....+{‘v=j[

where (4, iy ixs L4+ +iy>0) are (N }&M)~1 independent varia-

bles over k(L) and uy,., is determined by the equation
Ungo.0= =30 iy ey, KA
M2y 4eee 3Ty >0
Then as is well known Cy=V-H, is irreducible. Under these
conditions we have the '

Proposition 4. Let o, &/ be differential forms on Cy and C,,
respectively induced by differential forms o, (i=1,---s) on V. Then
if ;' are linearly independent on C,.', ®, are also linearly independent
on C,.

Proof. Let ©; be functions on V defined over k by «:(P) =x..
Then by Prop. 5 of Nakai (4) we can suppose that t,,---, , are
uniformizing parameters on ¥ at P. Hence by Cor. 1 of Th. 1 we
can assume that 7., ¥,_; are uniformizing parameters at P on
C’,. Then %,,---, 7,_; are also uniformizing parameters at P on Cj
by Cor. 2 of Th. 1, where 7, 7/ are functions on C,, C’, respec-
tively (In the following we shall denote’ by—and—’ the functions
on Cy and (', respectively induced by the function on V). Let

;= 2 50;:?"-1” dTﬁ"'dTip

LS

Then we have

i u;
- S — —i
;= L (501(1?..4' ’_‘TL Sol(,?t _
<(] p r

1< 173 1

g — — —
. + (*)p%gv,si)_...‘p,)drh--- Ttp
ar

= > o9, dt .

»p r

where the sum is extended over all combinations of indices i, <--- <,
taken from 1,---, »—1, and @, are determined by the relation

0 adTy
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d( > Uiy troeeety, ‘1 TN‘V) 0

1_.!
MSiy+-- v>0

and they are linear combinations of the functions of the form 7,

Thy a_“ with the coefficients in k[#] (Cf. the proof of Th. 2 of ‘

‘g
Nakai (4)). In the same way we have

a, a
—_— p— — i —
lU‘,= E (Salil....g b ~’psa’1p...{ — ,-+ te + (*)PTL I o ")dL n' T f
fx(-“‘(‘p » a, »m a,

=31, P, @ o-d,
We shall remark here that ¢;,....., () =%s..., (P)=9¢"4...,, r);
moreover since (M—m). X,+ C,,’ is a specialization of Cj (where
X, is the intersection product of ¥ with the hyperplane X,=0) and X,
does not contain P we see that a;(F?) are the uniquely determined spe-
cialization of #,(L*) over the specialization (#)—(v) with reference
to k(P).

Now suppose that @; are linearly dependent, then there exist
s-quantities in /% #] such that we have

>a(u) P,....., (P) =0, for all sets of indices i, <+ <i,.
By Th. 1 of Weil (6) there exist a valuation of k(u, P) over k(u)
which has the value in the algebraic closure k(v) of k(v). Let
it be v and suppose that a,,(#) has the minimum value for v, then the
quantities a,(u)/a,,(#) has the finite specialization over the speciali-
tion (#)—(v) with reference to k(). Hence we have a non-
identical relation of the form

Za"(i“....,p (P)=0, for all sets of indices i, <--- <,
and &' are in k(v). But since k(v, P) is a regular extension over
k(v), we see easily that there exists quantities @i in k(v) such that

Sl (ﬁﬁ....fp (P)=0, for all sets of indices #; <+ <i,.
ie. X af w/=0. It contradicts to our hypothsis and the assertion is

proved.” q. e. d.
Lemma. Let K be a field containing k such that dim . K=1,
and z,, ---, z, elements in K. Then for any valuatio;z v of K over k,

the value domain for the module of linear forms o= z,kzl ave bounded,
i.e. there exist an integer N such that |v(«)| <N for any element a of o.

7) The device of the latter part of this proof is due to the remark by Prof. Y.
Akizuki. ’ '
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Proof.” As we easily see, it is sufficient to show the lemma under
the additional condition that k is algebraically closed. Moreover
we can suppose that z,---,z, are linearly independent over k. We
shall first show by induction that there exist the basis of o such
that the value of the basis are all different form each other. Suppose
that we have

v(z) <v(2) <+ <0(2) =V (241) =+ =0(2445) <---=0(2a).

Then we can find elements in k& such lhat z,/z...==a; (mod 73),
i=1,---, j, where )@ is the valuation ideal. Put 2',,,=z,— a; z,,,. Then
2's,; can be replaced by z..; and we have v(Z,.,) >v(z). Take an
element which has the minimum value among {2,,,, i=1,---, } and
{2, s+j< t<m}, and call it 2’,,,, then we get the basis of o whose
first s+1 elements have dfferent values to each other and the re-
maining basis have the values not less than the values of the first
s+1 basis elements. Continuing this process in finite number we will
arrive at the required basis. Let them be «x,---, x,, and suppose
that »(x,) <--- <v(x,). Then we see immediately that v(x,) < v(«)
< v(x,) for any « in o and the assertion is proved. q.e.d.

Proposition 5. Let K be a field containing k,z,,--, z. elements
in K and put o=>kz,, Then for any independent variable x over
k we can find infinitely many elements among {x"’}, m=0, 1,2,
which are linearly mdependent over o.

Proof. Put K,=k(z, -+, z,, x) and L be any subfield of K, such
that we have dim, K,=1 and x is transcendental over L. Let v
be a valuation of K, over L such that v(x)>0. Suppose that there
are only a finite number of elements among {x"} which are linearly

independent over o’ =§sj Lz;00, and let them be 1, x™,---, 2™ . Put
0"=3) L 2 x"s then ti);l the above lemma v(«) is bounded for any
elemlézlt «ino”. By assumption, for any large N we have a relation of
theform vy x¥ Z u; x™i where «’s are in o’. But the right hand mem-

ber is contamed in 0" and has a bounded value for » and the left
hand member may have any large value, and it is a contradiction.
Hence there are infinitely many elements among {x™} which are
linearly independent over o’ hence also over o. q.ed.
Now we are well prepared to prove our main theorem.
Theorem 2. Let V' (r = 2) be a projective model of an algebraic

8) I thank this proof to my friend M. Nagata.
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Variety, o;(1 < i <s) linearly independent differential forms on V,
k a common field of definition for o, and C, a generic hypersurface
section of V of order m with reference to k. Then if m is sufficiently
large, o, induce on C,, linearly independent diffevential forms @..
Proof. Using the same notations as in Prop. 4, let
w= 3] ?gf)----ip d’-—il"'d‘_ipy

1< <Ip

where the sum is extended over all sets of indices i, <--- <i, taken

from 1,---, » and the functions ;0}?...,1,, 7, are all defined over k. Let

P be a generic Point of Vover k and put 0=233k. ¢..., (). Then
i

(f1eeeei )

by Prop. 5 we can suppose 1, %,%---,x,"" are linearly independent
over 0. Moreover as is seen from the proof of Prop. 5 we can
choose e,; in such a way that e,;+1 is not divisible by the charac-
teristic of the universal domain. Now put.

Yu=X%

Yor=2X— %, "

and let 5, bz functions on ¥V defined over k by #,(L)=y;. Then
we see easily that z,,---, 7., are also served as uniformizing para-
meters at P» on ¥V and we can express o, in the form

0, =31 ¢y, dyyedy,,

Jl<"" <",J

where o

¢§2...jﬁ=¢§:)....jp. if 11> 1.

; o

‘:l)gj)ﬂ--"j,,—sol(j)z----j},"'121;2(3114'1) Ui %‘;;....,D
It is to be noted that for any choice of indices k, <--- <k,, 9"5?-~--k,,
appears in the expression of 961'1’2....kp. Writing o, in the form

wi=dp;; - oF + of".

we will see that ¥ are linearly independent differential forms on
V. In fact suppose that o} are linearly dependent, then there exist
the quanties ¢; in k& such that we have
51 ¢ wf (PP) =0
ie. SN gb.(;l....jp (P)=0 for all j,<--- <y,
S elei g, (P) + :?;z(e“-,'—l) ‘Y {/’Si....,p(P)]:O.
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But since 1, y;%,---,y:." are linearly independent over o we must
have

e soﬁ?‘..ip (P)=0 for all i, < - <i,

It contradits to the independency of w..
Next we shall transform the uniformizing parameters into

yh:yl]
Yo=Y
(12,;""[

Yos=Y1i35— Y2

eyt

Yor=Y1r— Y12
where e.;(j=3,---, ) are so chosen that 1, - y:¥ are linearly
independent over o'= >\ k f;l..._jp (£) and e,;+1 are not divisible

@)

(oG ))

by the characteristic of the universal domain. Then by the same
process as above we can express o; in the form

w;=dy, dpy w}*+ 0

where 7., are functions on V defined over k by #.,(P) =y,; and oF*
are linearly independent. Continuing this process p-times we shall
arrive at an expression of the form

i =dz,, dnp - diy, ¢i +

where ¢; are functions on ¥V defined over k and linearly indepen-
dent on V. From the above construction we see that y,, (j=---1,p)
are contained in k[x,,---, x.];, moreover if we put y,,=L,(x), L;(X)
has the form X,+G,(X), where G;(X) are polynomials in
k[ X,,---X,.]. Henceforth we shall write »; instead of z,,.

Next we shall show that there exist an irreducible hypersurface
section of ¥ on which o, induce linearly independent differential
forms @,. For this we shall divide into the three cases.

(I) The case p < r—2.

Let H, be a hypersurface in L*¥ defined by the equation of the

form

H] (X) =0,+ 1),,“ 'L,”.] (X)m7’+l + -+ 1),--L,~(X)mr :0.

where v,,,,-:-, v, are independedt variables over k(P) and v, is
determined by

Vy= _2 1), Lj(x)"'i
j=p+1
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Then by Th. 2.4 of Matsusaka (3) we see easily that the intersec-
tion product €’,=H, V is irreducible for suitable choices of m,
(=p+1,---, ) - (In the following we shall consider more two special
hypersursurfaces. The irreducibility of the intersection product
of V with these hypersurfaces can be seen by the same reasoning
as this case and will not be mentioned explicitly.) We shall now
show that 7,---7.., are uniformizing parameters at P on C,. For
this purpose it is sufficient to show that the determinant

oL,/0%:, j=1,-, r—1
oH,/dx, i=1,---, N.
oF,/dx;, s=1,--,N—v

is not O(cf. the Def. 1 of Koizumi (2)), where F,(X) are polyno-
mials in the defining ideal ?5 of V such that |aF.,/dx:| =0 (s=1,--,
N—r;i=r+1,--, N). The existence of such polynomials is assured
by the hypothesis that ‘c,,---,7, are uniformizing parameters at P on
V (cf. Prop. 5 of Nakai (4)). But it is clearly seen from the
forms of L;(X) and H,(X). Then the induced differential forms
@; on C, can be written in the form

‘T)l'__a].(?). P di]“'diﬂ‘*‘ *

But by Prop, 2, g{.. are independent functions on C, if m; are
sufficiently large. Hence ; are also linearly independent differential
forms on C,.

(IT) The case p=r—12=>2,

Take m, so large that on any irreducible hypersurface section
of V of order > m,, the induced functions ¢{..._, are linearly inde-
pendent.. In particular let #, be a hypersurface defined by the
equation of the form :

v+v. - L(X)+ Vi s, -L,(X)®-- L, ,(X)'»-1=0

mShateeectid

r=1

where v,,--, v; , v, are independent variables over k(P) and v,

r—1

is determined by the equation
vy=—v. L.(x)— > ovig..h,r_‘Lg(x)'*--L,A“l(x)fr—‘

'm2h+»--~+i'__‘

and the sum is extended over all sets of indices such that 0 < i,+
i, <m(m>m,). Since >3 we see that C,=V-H, is ir-
reducible, and by the analogous reasoning as in the case (I) that
71,"**, 7»—; are uniformizing parameters at P on C., Then the in-
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duced differential forms have the form
(T]i:-(??‘](f?..r—] (lﬁﬂ"dir—l
and ¢®..._, are linearly independent functions on C,, hence «; are
also independent on C,.
(IlI) The case r=2, p=1.
In this case we have
wi:folm d%+%m dﬁe
and ¢,”(1 <i <s) are linearly independent function on V. Let H,
be a hypersurface in L defined by the equation '
v+, X, LQ(X)m—I"'v-z LQ(X)m= .
where v, and v, are independent variables over k(P) and v, is
determined by
vo=—0, % Ly(x)" " —v, Ly()™
and m is an integer not divisible by the characteristic of the uni-

versal domain. Then C,=V-H, is irreducible, and the induced
differential forms have the form

= (7.0 _ Uy 7y RO
w;= (9, (m—1) 07, + MV ¢.")d7,
Put
di={(m—1)v, 7+ mv,-7,} 6,9 —v, 7, $,
Then they are functions on ¥V defined over k(v,,v,). We shall show
that ¢; are independent. Suppose that they are linearly dependent
then there exist the quantities ¢ in k(v,, v,) such that

z."af[ {(m—1) v, 7, +mv,- 7.} 9, —0, 7, §,2]=0

Since v, and v, are independent variables over k(P) and P is a
generic Point of V over k(v,, v,) we can see immediately

2la,-mu, 72‘3”1(“:0
i.e. . Z a; 501([):0

this is a contradiction. Moreover the degree of the linear system
determined by the functions {¢;} is bounded though the functions
¢, varie as m varies. Hence if m is sufficiently large the induced
functions ¢, are linearly independent on C, by Prop. 2. Hence the
differential forms w, are linearly independent on C.,.

Now we see in any case if o; are linearly independent differen-
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tial forms on V"(» > 2) of degree p(1 <p <7r—1), then there
exist an irreducible hypersurface section C of V of order m where
o, induce linearly independent differential forms @,. Then o, induce
the linearly independent differential foams on a generic hypersur-
face section C, of order M for all values of M > m, by prop. 4.
Thus the theorem is completely proved. q.e.d.

We shall denote by R,(¥V) the number of linearly independent
differential forms of the first kind of degree p on 4"(R,(V) is the
irregularity, and R,(V) is the geometric genus of V respectively).
Then we have immediately the

Corolllary. The numbers R,(¥) are bounded for any value
of p(1<p < dim. V).
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