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§ 1. Introduction.

"In this paper we will treat the system of ordinary differential
equations

o) D (31,95, Im) (=1, 2,00, ).
dx
Concerning the system, whose second members are continuous,
many authors®'® have investigated several fundamental theorems.
Here we will extend some of them into the case of the system
which has discontinuous second members.

In the following the integrals are of Lebesgue sense and ¥
represents the vector in the space of m dimensions: namely
Y=Y Ym)>and | ¥ |= vy +y’+ - +%, . Therefore (1) may
be represented by

@) W _fz, ).
dx

And, we assume that f(x,¥) is defined in a domain G: 0<x—x,<a,
| ¥—¥,| < b, having the properties as follows :

a) f(x,¥) is measurable with regard to %, and continuous
function of ¥,

b) |f(xy)| < M(x), where M(x) is summable, i. e. integrable
in the sense of Lebesgue, for 0 < x—1, < a.

For the differential equation (2) we call a curve ¥y=¢ (%),
the solution passing through the point P(x,,¥,)€¢G provided

c¢) ¢(x) is defined in an interval I containing %, ¢ (x») =¥,
and (x, ¢ (x))eG(xel),

d) ¢(x)=?/p+j: f(x, ¢(x))dx  (xel).
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§ 2. Lemmas.

Lemma 1. If ¢(x) is measurable in 0=<x—x<a and
(x,  (x)) €G, then f(x, ¢(x)) is summable in 0 < x—1x, < a.

For the proof we refer to carathéodory.®

Now consider a sequence of functions ¢.(x)(2=1,2,3,--),
which are so defined in x, < 2 < X(< x,+a) that

Y, 2= 2< Xm),

vt [ @) F @)y (o <2< 200,

(3) ¢u(x) =4y, + j {Fx, o(0) +an(D)}dr (2o 2 < %),

n7n—1

Yo+ J (%, ¢a(0))+a, ()} dx (puey S 2 2m=X),

Where x7lj=xo+@(j=l, 2, ey n), and aﬂ(x) (n:l’ 2y 3, ...)

are given measurable functions and we suppose that there exists
such a function N(x), summable in 2, < x < X, that | a,(x)| < N(x)

and jx (M%) +N(x)}dx < b.

z 0 kY

Moreover we consider a sequence of functions ¥,(x)(n=
1,23 -):

(4) %(x)=:l/o+j: (%, ¢.(2) +a.(2)} dx.
Then,
2.0 =y | < [ M@+ Nz b,

| () —¥u(x) | = j-:' {(M(x) +N(x)}dx (x<x'),

and therefore, the sequence of functions {¥,(x)} is equicontinuous.
Hence we can select a uniformly convergent subsequence. The
limiting function ¥(x) is continuous in % < x < X :

T(x) =1§m 7., (x).

Since, at each point in %,; < < Xuj01,
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.0 =60 = [ 170000 +2a(2)|

n

< j IM(x) + N(x)}dx—0 (n—>c0),
Znj
we have

li,m P (%) =I§m Vo (x)="(x).
Therefore we have

lim j £, ga,,,(x))dx=j" Flx U(x))dx:

and hence there exists the limit a(x) =lim j o, (x)dx which is a
n/-» z,

continuous function of x. Consequently, we have
(5) V@ =yo+ | 00 @) dxta ).
%y

Especially put a(x) =0, then y=%(x) is a solution of (2)
passing through the point P,(x, %,). If a,(x) =0 (n=1,2,3,..),
we have the following

Lemma 2. (Carathéodory’s existence theorem™). If for a point
Xin x,< X< x,+a,

r M(x)dz < b,

then passing through the point P, therve exists a solution of (2) which
is defined in x, < x < X.

§ 3. Theorems.

Theorem 1. The set S of all points, which are on any solutions
of (2) passing through the point P, is a closed set. And therefore
the inltersection S, with a hyperplane x=¢ (x, S¢E<x +a) is also
a closed set.

The proof is omitted since it is not difficult because of the
equicontinuity of solutions of (2).

Theorem 2. (Kneser’s theorem®). When x, < ¢ < x,4+a and

X
J' Mx)dx < b, S is a continuum.
z, °

Proof. Suppose that, on the contrary, S; consists of two
closed sets @ and R and the distance between them is positive.
And consider F(P)=PR—PQ as a function of point on the
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solution® y=w,;(x) of (2) which arrives at P,; from the left
and never enter into the interior of S. Then there exists a

boundary point of S on the segment P’,,_,P”,;-.. We represent
this point by Po;_;(%j1, Muy-1). If P'ay_y is not a boundary point of
Saj-1» then we write

7):.;—1—?/7:111_'

ng=
?/nj—l - ?,nj—l

Evidently 0< p; < 1. If P’,;, is a boundary point of S, we can
choose P’,;_, as P,;.,. And we define p.;,=(0. Consider Y,,(x)
such that

Y5 (2) =Yy () + 005 (W5 (%) —Uy(2)}

=nn,+j’ [F (% Yy () + s L Ty () —F (2, W3 (1))} ]

Z“j

for xy < x < %,
then we have
Y,;(tag) =25 and Y5 (%y-1) = Nuyes.
Put

Ony (g1 < XS X0y, §=2,3, ...1),

Pu(x) = {
Pu (X g X § Zn1),

then 0 p. ()1 for 2, <X 2<¢é. Moreover consider following
functions:

Y (%) _{ YUy (Fnjr <ES Koy, j=2, 3,00, 1),
" Yn(®) (K% =2= 1),
y ( ) { .’7nj(x) (xnj-1< xgxnjyj’—‘z’ 3) "',n)’
Y.(x)=4{ "7
Y (1) (0 2 20),
and
Y. (x) { YV, (g <2 = ;,7=2,3,...,m),
Y, (x)=
Yo(®) (%= 2=x0),

then we may write

&) Y.(x)=9p+ L (£ ¥,.(0)) 4+ 0. (& ¥, (%) —F(x, ¥a(x)) )} 1dx.

Since, evidently, the sequence of functions {¥,(x)} (=1, 2, 3,
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...) is uniformly bounded and equicontinuous, we can choose a
uniformly convergent subsequence {¥,,(x)}. The limiting function
Y (x) is a continuous function and ¥(x,) =¥, Y () =7

Since, in Xnj—; < X = X,

Y, =10 =[ p0) {F5,9.0) ~F (% v.())
Tnd
Y -l <2 “Mwas,

Y (%) =Y. (%) =r (% Ya(0) —F (%, Ya(x)) } dx

nl

and
z’7lj
| 7 (2) —¥n(2) | = 2}' M(x)dx,

and then we have

9) lim ¥, (%) =1i,m Yo (%) = Ii,m Y, (x)=Y(x).

n’ oo n

Consequently we have in the limit
(10)  ¥(x)=7 +L F(x, Y(2))dx=1,+ j "fx, Y(2))dx.

Therefore we have obtained a solution ¥=Y(x) of (2), passing
through P, and P and consisting of boundary points of S.
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