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In this note we shall give an algebraic proof of the following
Theorem. Let E  he the linear system cut out on a non-singular

surface by  the hypersurfaces of  order m .  Then those curves of E
which carry d  o r more nodes an d  n o  other k inds o f  singularities,
together with their specializations, form an algebraic subsystem of E,
an d  (if it is not vacuous) each of its components has dimension
dim E—d.

This theorem, as Severi showed already, plays an important
rôle for a proof of the completeness of characteristic linear series
in the classical case. The problem on the completeness of charac-
teristic series in  abstract case was taken up in the lectures of
Zariski on minimal model of algebraic surfaces held in our depart-
ment (October 1956),' )  and he conjectured that the problem would
be true when the geometric genus is zero . Nakai proved at first
the linearity of the characteristic series, but the question of the
completeness remained unsolved until Zariski left here. The only
missing point was the above theorem. Then we discussed on the
problem in our seminar, thus we arrived at several proofs. So
we wish to publish in the following papers, to which this paper
also belongs, different proofs by several authors as a dear memory
of Zariski and his lectures in Kyoto.

The principle of this first paper is very simple and elementary.
So before stating the exact proof we shall explain the main idea
by taking up the case of plane curves.

Let be an irreducible component of the algebraic system of

1) The contents of his lectures will be published soon as a series o f his papers
on minimal model and rationality of algebraic surfaces.



2 a  h
so=ax2-Fhxy-l-by2+higher degree =0 , where

h  2 b
0 .

o f aso/axi = ar/ax2= 0 , we
the points which are not
the remaining points by

•

From the (m - 1 ) 2 intersecting points
exclude the nodes Pi , •••, P  o f C A and
simple intersecting points. We denote
Q „  • • • ,Q , ,  and product up

Qi)

144 Y asuo A k izuk i and Hideyuk i M atsum ura

plane curves of m 'h degree generated by the curves carrying d or
more nodes and let CA be a generic curve of over an algebraical-
ly closed ground field k  which has exactly d distinct nodes.

Further let C A , be a special curve belonging to which has
d '( > d )  distinct nodes and no other singularities. Let 50(2; xo,
x2) =0  be the equation of C A  and 50(2' ; x ) =0  be that of CA ,. The
double points P,(1 < i < d )  of CA must satisfy

50(2 , x) = 0 , ar/ax, = 0 , a so/ax,=o .

Let us now consider the intersection of two curves aso/axi=ariax2
= 0 .  At a node P  they intersect simply, because the equation 50=0
may be expressed locally at P  as

The points Q „ •-•,Q , form evidently a  rational cycle over k(2),
hence R (À )  is in k(2). Moreover R (2 ) 0 .  Thus the equation
R = 0  defines an algebraic subset Zi o f R ,  which is unmixed and
of codimension 1 in '?".2) Let X be a generic point of a component
C of 93 containing 2 ', and let (2, R (2), P1 ,  P d t  

( 2 1 )  • . . 1  Q 8 ) ( i f

0, .P,, • • • , Pd , 0„ (T) (■if , 0, P,', •••, P ri  ( 2 1 ' ,  • - , Q , ' )  be speciali-
zations over k .  Then

HS0 (2 ,  ( 2 )=R ( 2 ) =0 .

Therefore there must exist at least one a l satisfying so(-2- , Q j ) =0.
This point is either a multiple point of Cr or a point at infinity.
If the coordinate system was taken at the begining so general that
a r ia . ;  0 at the points at infinity of CA , ,  the second case is im-
possible. On the other hand, (4 ' cannot coincide with any of the
points P l  since they are simple intersecting points of aso/3x1=
aso/ax2=0. Hence al cannot coincide with any of the Pi .  There-

2 )  Z 1  is not empty as there exists Q f  and R ( A ) = 0 .
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fore C  has d + 1  or more nodes. So we get the theorem (at least
locally) in the case of plane curves.

Let F  be a nonsingular surface defined over an algebraically
closed field k  in a projective space L ', and let E =E „ be the linear
system cut out on F by the hypersurfaces of order m .  We are
interested in those curves o f E  which have nodes and no other
kinds of multiple points. We set dim E =N , and denote by L N
the parameter space o f E .  Let p„, •••, çoN . be forms o f order m
which are linearly independent on F .  We denote by D(À ) the
divisor on F  corresponding to the parameter A E L' , i. e. the inter-
section of F with the hypersurface so, (x) =- 0.

Lemma 1 .  Let Q  be a multiple point of  a divisor D(À ) of  E.
Assume that .x0 0 and 4 = ( f 1 , • • •, f_,)/a(xs, • • • , x„) () at Q (where

s,)0 (F) =the homogeneous prime ideal of F ) .  We set
,_11 (5o,) —a(°À f, , •  ,  f„_,)/a (xi , x 3 , •••, x„) ( j= 1 ,  2 ). .

Then Q  is a node of D (i)  if  and only if the n hypersztrfaces 1=0
(i=1, •••, n - 2 ) ,  4 i (i0A )  = 0  ( j= 1 ,  2 )  are transversal at Q , i.e. if
and only if

, F(sox) (4 ( v , )  •  4 2 ( Ç ) ,  f ,  • • . , (x, ,  x2, • • x „) 0

at Q.
Proof. Let K  k  be an algebraically closed field over which

Q  and A are rational, let o be the local ring of Q  on the space L"
with respect to K , and let s.Dt be the maximal ideal of o .  As 4 0
at Q , 11= ( f „••• ,f ,)1 .)  is the prime ideal of the surface F  in o.
(We use the inhomogeneous coordinates, setting x0 = 1 . )  -0- ----o/p is
the local ring of 0  on F , and {Xi , x- 2}  is a regular syslem of para-
meters of We denote the maximal ideal (Xi , x2)0-  o f 0-  by lit.
Our assumption that Q  is a multiple point of  D(A ) means that
(v, ,  mod p)=--- 0  (1112 ). Now each element of ni2/in 3 is a quadratic
form (hence the product of two linear forms) in a n d  with
coefficients in L e t  l  and 12 b e  th e  linear factors into
which decomposes the image of 50) , in m2/1113 . Then Q  is a node
of D O  if and only if  l, and 12 are not proportional in the Zariski
tangent space mitn 2 ,  or what is the same, if and only if
10, f„ ••., f - 2 ) / a ( x , ,  •  •  •  ,  x „ ) o  at Q.

We have
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5°,1.---= 1 112+ E A, f ,  (m o d  T r) , A, E 0 .
1.4 1

It follows that, for u = 1,1, 2, • • • , n,

(4/ 2 )/3xa+ E A„ • afilax„ (mod (f, ,• • • , f ,  TI 2 ) o) ,

hence

41(50)d 1 ( m o d  ( f 1 , • • • , f ,  9it 2 ) o) for i= 1, 2.

Repeating similar calculations once more, we have
4 '('A)A) ==.--  ( 1 1 10 (mod 9.it ) .

Since 4,(/, /2) = 1, 4,(12) +12 41(11) (i=1, 2 )  and since /, =0 , l 2 0
(m o d  ) ,  we readily find by virtue of Jacobi's theorem on de-
terminants that

4' (50,) —  z1" 2( m o d  9J1).

This proves our lemma.
Oirollary. L et Q ' be a multiple point of  D (2') and let (A', Q')

—> Q )  be a specialization over k. I f  Q  is a  node of D(A ), then
also Q ' is a  node of D(2') .

Lemma 2. If  Q ,' and  Q ,' are two m ultiple points of  a curve
D (2') E E, an d  i f  they are  specialized to one and the same point Q
over a  specialization 2' ,  then Q  is  a m ultiple point, but not a
node, of D (2) .

Proof. Assume that Q  is a node of D (2) . Using the notations
of Lemma 1, we consider the algebraic correspondence sit between
L ' and L  defined by f i(x ) , • • • , f,-2(x) = 0 ,

 (Sox) =  0  , 4 2 (9P)) =O.
fl may very well be reducible, but since these n  hypersurfaces in
L' X L  are transversal by Lemma 1, .̀11 has a unique component
WE. which contains AX Q. A lso  it is  c le a r  (bY writing down the
Jacobian matrix) that W and Ax L are transversal at Ax Q .  T here-
fore /I X Q  is  a proper point of intersection of Ax L  and W with
multiplicity 1. Then we can easily derive a contradiction b y  a
theorem of Weil to the effect that : L et U  and V  be two varieties ;
let W  be a sim ple subvariety  of  Ux V , with the projection U on U,
and  o f  th e  sam e dim ension as U. L e t k  be a  common field of
definition f or U , V  and  W , and  le t P be a  generic point of  U over
k. Then W  (Px V ) = Px  W  (P) is defined and W  (P) =  jQ ,  i s  a
prim e rational cycle over k (P) . Moreover, if  P' x  Q ' is clz point of
W  such that it is a proper intersection, of multiplicity p , of  W  and
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P' X V  o n  U x  V , then, in  any specialization o f  (Q„ -••, Q , )  over
P - - > P ' with respect to k, the point Q ' occurs exactly p  times. ([7]
Chap. 6 Th. 12).

Theorem. L et (g, be the set of those members of  E  which carry
d  o r more nodes and no other k ind of  singularities, and let be
the subset o f  E  obtained by adjoining to (g , those members which
are specializations over k of members of ,. Then (g, is an algebraic
subset o f  L ', an d  ( if  it is not vacuous) each o f  its components has
dimension> N — d .

Proof. 1 ) In order to prove the theorem, it is sufficient to
show the following : A ssuming that ed  i s  an  algebraic set, let II
be one of  its components. Then there exists an algebraic subset
.0 (U ) of  U  with the following properties.

(1) U n T „ ,  3  13 3  OIL + ,
(2) each component of  0  has dimension> dim II —1.

In fact, it is evident that we shall have u u  0(U ) = if  this
statement is proved.

2) I f  II ,  or if II n there is nothing to prove.
(We take 0=11 or 0 = 0  respectively.) Therefore we assume that
the generic member o f II over k  carries just d  nodes, and that
there is a member D (À *) in U  with d '(>  d )  nodes and no other
singularities.

3) We first solve the problem locally. Let À* be as above and
let Q,*, •••, Q,,* be the nodes of D (2 * ).  Taking a suitable coordi-
nate system (defined over k )  in L  and selecting suitable forms

, • • • ,f,_ , f r o m  (F )  we can assume that
(a) .r0 -,1 0 at Q,* •••, d' ; • • • , f - 2 ) / a ( x , ,  • • • , x , , ) )

(b) D (À*) has only a finite number of points at infinity, and
(FAO does not vanish at these points.

We use the notations of lemma 1 and 2. Let À be a generic point
of L ' over k and let

(kx L).W—XX .

Then each P, is on F ,  and rank (a f„ •••,./-„ ,)/a (x„  • • • , x „ ) )

= n -2  at each pi . Let À' be a point of L ' which has 2 *  as a
specialization over k, and let (P„ • • •, (P,', ••-, Ps ')  be a speciali-
zation over ;1•—>À'. Assume that 50,,(P,') =0. Then P,' is a multiple
point of D ( 2 ') ,  because P ,' is at finite distance by our assumption
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(b ) and because rank (a (so,,, f ',  • • • , (x,, • • • , x„)) <  n —2 at
P , ' as A' x  P , ' is a specialization of IX P,.

Now, let ;' be a generic point of 11 over k, and consider those
Pi '  at which 9A , (x) • -P (50p) does not vanish. We denote them by
• , • • • , ,  and set 0 (;') = / / i s 99, (P I). Since + • • • +P ' is clearly
rational over the field k ( ?) ,  f i  (A') belongs to k (A ') and hence
defines a rational function 0 on U . The equation 0=0 defines an
unmixed algebraic subset V (11, ;*) o f codimension 1 in U. Let
• ;* )  be the sum o f those components o f '3'(11, 2*) which
contain 2*. Let be a component of (11, 2* ) and let ; "  be a
generic point of over k. Then there exists at least one speciali-
zation (P1', • • • , P8') —> (P,", • • • , over A' —À" such that so,,, (P,")
for some î, say for i=1 .  P , "  must be a multiple point of D(À ")
by what was said above. From this, and from the proof of Lemma
2, it follows readily that D (A ") has at least d+1 nodes. T h u s

(11, 2 *) c Conversely, any point ;  o f (.,„+, n  U  which has
;* as a specialization is in 0(11, ;,*), as is easily to be seen.

4) Now we can solve the problem globally. Set

'..3-=*(11) =- u A* n '1 3 (1 1 , 2 * ) .

Then l3 is a union of subvarieties of codimension 1 on 11, and has
the property (1) required in 1). Hence we have only to show
that is contained in a proper algebraic subset of U. (From that
would follow the finiteness of the number of the components of
O . )  This can be done by the same method as in 3), and is much
easier. W e  sketch the peoof : Let f  •  • •  , f  be a basis of ( F ) .
Since the number of the minors o f order n -2  of the Jacobian
matrix (3 (f ,, • • • , f )  ( x . ,  X,, • • • , x,)) is finite, we see from Lemma
1 that there are a finite number o f systems o f n  hypersurf aces
• — 1g, (À, x ) =0, g,„(2 , x ) = 0 } (1 < i<  h )  with the following
property : if Q  is a node of D ( ;) ,  then for some i  the n hyper-
surfaces of 2, and A x  L  are transversal at ;X Q .  L e t  W,i  be those
components of the algebraic set V t, defined by 2, which contain
some points of U n C,„+ „  and let V ., be the algebraic subset o f 11
derived from W i j  in a similar manner as the V (11, 2 * ) was derived
from W in 3 ).  Then it is easy to see that e , ,  n 11 c u . This
completes the proof of our theorem.

We add a few elementary lemmas concerning nodes, which
will be used for the third proof of our theorem in [2].
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Lemma 3. I f  Q  is  a  node of  D ( ; ) ,  then Q  is separably alge-
braic over the field k(A).

Proof. W e have only to prove that there is no non-trivial
derivation of the field k ()., Q ) over k (A). But this is an immediate
consequence of Lemma 1.

Now consider in  E X  L  th e  algebraic correspondence 97/ by
which a  curve of E  corresponds to its multiple points. For every
point P  of the surface F ,  those curves o f  E  which have P  as a
multiple point make up a  linear system E , of like dimension N -3 .
Therefore, if  - -P is a generic point of F  over k and if Ï is  a  generic
point of E ,; over k (P), then ;N is  is a  generic point of 9)1 over k.
It follows that IN is irreducible and has dimension N - 1 .  (Cf. [61
p . 143 Lemma.) (We exclude the trivial case N = 2 . )  Let 9)/ be
the projection of 9)/ on  L'. We assume in the sequel that there is
a  member of 9)1 which carries isolated m ultiple points. Then we
have dim 9)1=dim 9:11= N  — 1 (by [71 Chap. 4, Prop. 26). If, more-
over, 931 has a  member which has one and only one node and no
other multiple points, then we see by Lemma 3 that 9J1 and 9)1 are
birationally equivalent.

Lemma 4. I f  Q  is  a  node of  D ( ; ) ,  then AxQ is a simple point
of  9J1.

Proof. We may assume that Q  satisfies the condition x„•,.1 0
of Lemma 1. Then by Lemma 1 we have th a t (J, (99,), L1,(5c,),
f1, •••,f,-,)/a(x1, •••, x,,)7 0 at Q .  We may assume also that 50, =

Then A.0 does not appear in  J, (FA) for i =1, 2. Hence we have

O (Sox , JI(Fx) , 1 2(F).) f i, •• • , f .-2)/ 3  (Ai, xi, • • • ,  x „)

= x , , -  •  ( J i ( s o , )  ,  J 0 ( 9 9 , ) , ( x , ,  •  • . ,

at Q .  This proves our assertion.
Lemma 5. A ssume that E=E„„ m . > 2 .  T hen 9.11 and 951 are

birationally equivalent.
Proof. We have only to show that there is a  member o f E

carrying only one node and no other m ultiple point. Let P  be a
generic point of F  and let be a  generic point of E T  over k (P).
First, P  is a  node of D ( )  and ET. has no base points other than
15, since for any given point (2( p )  we can find hypersurface
sections D , and D ,, intersecting transversally at 15  and not passing
through Q , such that D 1 -FD 2 € E .  O n the other hand, all multiple
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points of D ( )  are conjugates o f P  over k ( i )  (because i s  a
generic point of 91Z over k) and hence nodes. Therefore by Lemma
3, the theorem of Bertini on variable singular points is applicable
for Ei 3. (Cf. [1 ]). Hence DC)) has no multiple points other than
the base point P itself.

Remark. From the proof of Lemma 5 we can easily derive
the birationality of F  and F * , where F *  denotes the dual o f F
defined in [3].
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