## A note on transitive permutation groups of degree p=2q+1, p and q being prime numbers

To Professor Y. Akizuki on the occasion of his 60th birthday

By

## Noboru Ito

(Communicated by Prof. Nagata, Aug. 19, 1963)

1. Let  $p \ge 5$  be a prime number and let  $\Omega$  be the set of symbols  $1, \dots, p$ . Let  $\mathfrak{G}$  be a nonsolvable transitive permutation group on  $\Omega$ . Let  $p_0(\mathfrak{G})$  be the number of irreducible characters of  $\mathfrak{G}$  whose degrees are divisible by p. It seems to be little known about the number  $p_0(\mathfrak{G})$ . In (9) it is shown that  $p_0(\mathfrak{G}) > 0$ . There exist a few groups with  $p_0(\mathfrak{G}) = 1$ ; namely,  $LF_2(l)$  as a permutation group of degree l (l = 5, 7, 11), where  $LF_2(l)$  denotes the linear fractional group over the field of 1 elements ((2), p. 286). In the present note, under the special condition that  $\frac{1}{2}(p-1) = q$  is also a prime, we show that the converse of this fact holds; namely, we prove the following

**Theorem.** Let  $q = \frac{1}{2}(p-1)$  be also a prime. If  $p_0(\mathfrak{G}) = 1$ , then p = 5, 7, 11 and  $\mathfrak{G}$  is isomorphic to  $LF_2(p)$ .

2. Throughout this section we assume that  $q=\frac{1}{2}(p-1)$  is a prime. Then in (6), (7) and (8) we studied the structure of  $\mathfrak G$  to some extent. In particular, we proved that such a group  $\mathfrak G$  is triply transitive on  $\Omega$  with the exception of  $LF_2$  (7) and  $LF_2$  (11). Now let us consider two irreducible characters  $X_0(X)=\frac{1}{2}(\alpha(X)-1)$  ( $\alpha(X)-2)-\beta(X)$  and  $X_{00}(X)=\frac{1}{2}\alpha(X)(\alpha(X)-3)+\beta(X)$  of the symmetric group on  $\Omega$ , where  $\alpha(X)$  and  $\beta(X)$  respectively denote the numbers of fixed symbols and the transpositions in the cycle

structure of X((3)). Then using the above mentioned triple transitivity of  $\mathfrak{G}$  for p>11 we obtain the following

**Lemma.** Let us assume that p>11. Then  $X_0^0$  restricted on  $\mathfrak{G}$  is irreducible, and the decomposition of  $X_{00}$  restricted on  $\mathfrak{G}$  into its irreducible parts has the following form:

$$X_{00} = \sum_{i=1}^{s} (D, C)_{i}$$

where  $(D, C)_i$   $(i=1, \dots, s)$  has degree rp with rs=q-1.

The proof is similar to those of Lemmas 5-10 in (7). A detailed proof will appear elsewhere (Transitive permutation groups of degree p=2q+1, p and q being prime numbers, III). Now by a theorem of Frobenius ((4))  $\mathfrak{G}$  is quadruply transitive on  $\Omega$  if and only if s=1.

**Proof of Theorem.** Surely we can assume that p>11. Because of  $p_0(\mathfrak{G})=1$ , we can assume, by Lemma, that  $\mathfrak{G}$  is quadruply transitive on  $\Omega$ . Therefore  $X_{00}$  restricted on  $\mathfrak{G}$  is irreducible.

If the order of  $\mathfrak{G}$  is divisible by  $q^2$ , then  $\mathfrak{G}$  contains a q-cycle. Thus by a theorem of Jordan ((10), 13.9)  $\mathfrak{G}$  contains the alternating group on  $\Omega$ . Since p>11,  $\mathfrak{G}$  is sextuply transitive on  $\Omega$ . Then using a theorem of Frobenius ((4)) we obtain that  $p_0(\mathfrak{G}) \geq 3$ , which contradicts our assumption  $p_0(\mathfrak{G}) = 1$ . Hence q divides the order of  $\mathfrak{G}$  only to the first power. Let  $\mathfrak{L}$  be a Sylow q-subgroup of  $\mathfrak{G}$  and let Q be a generator of  $\mathfrak{L}$ . Then we have that  $\alpha(Q) = 1$ . Let NsQ denote the normalizer of  $\mathfrak{L}$  in  $\mathfrak{G}$ .

If  $\mathfrak G$  contains a class  $\mathfrak G$  of conjugate involutions J such that  $Ns\mathfrak Q \cap \mathfrak G$  is empty, then we obtain the equation

(B) 
$$0 = \sum_{Y} X(J)^2 X(Q) / X(1) ,$$

where X runs over all the irreducible characters of  $\mathfrak{G}$  ((1), (21)). For  $X=X_{00}$  we have that  $X(J)^2X(Q)/X(1)=-\{\frac{1}{2}\alpha(J)(\alpha(J)-3)+\beta(J)\}^2/\frac{1}{2}p(p-3)=-\{\alpha(J)(\alpha(J)-4)+p\}^2/2p(p-3)$ , because of  $\alpha(J)+2\beta(J)=p$ . Since  $\alpha(J)$  is odd and smaller than p,  $\alpha(J)(\alpha(J)-4)$  is not divisible by p. On the other hand, by our assumption X(1) for  $X \neq X_{00}$  is prime to p. Then (B) shows a contradiction. Hence

for each class  $\mathbb C$  of conjugate involutions of  $\mathbb S$  we have that  $Ns\mathbb Q \cap \mathbb C$  is not empty. In particular, we have that  $\alpha(J)=3$  for every involution J of  $\mathbb S$ .

Let  $\mathfrak{M}$  be the maximal subgroup of  $\mathfrak{G}$ , which leaves the symbols 1, 2, 3 and 4 individually fixed. Then the order of  $\mathfrak{M}$  is odd. Hence by a theorem of M. Hall ((5)) p is smaller than or equal to 11. This is a contradiction.

## Mathematical Institute, Nagoya University

## BIBLIOGRAPHY

- [1] R. Brauer and K. Fowler, On groups of even order, Ann. of Math. 62 (1955), pp. 565-583.
- [2] L. E. Dickson, Linear groups with an exposition of the Galois field theory, Leipzig, 1901.
- [3] G. Frobenius, Über die Charaktere der symmetrischen Gruppe, S.-B. Preuss. Akad. Wiss. Berlin (1900), 516-534.
- [4] G. Frobenius, Über die Charaktere der mehrfach transitiven Gruppen, S.-B. Preuss. Akad. Wiss. Berlin (1904), 528-571.
- [5] M. Hall, On a theorem of Jordan, Pacific J. Math. 4 (1954), 219-226.
- [6] N. Ito, A note on transitive groups of degree p, Osaka Math. J. 14 (1962), 213-218.
- [7] N. Ito, Transitive permutation groups of degree p=2q+1, p and q being prime numbers, Bull. Amer. Math. Soc. 69 (1963), 165-192.
- [8] N. Ito, Transitive permutation groups of degree p=2q+1, p and q being prime numbers. II, to appear in Trans. Amer. Math. Soc.
- [9] N. Ito, Ein Satz über die Permutationsgruppe vom Grad p, to appear in Math. Zeitschr.
- [10] H. Wielandt, Permutationsgruppen, Vorlesungsausarbeitungen von J. André, Tübingen, 1955.