J. Math. Kyoto Univ.
6-2 (1967) 177-185

On the jacobian varieties of the fields
of elliptic modular functions II.
By

Koji Dor* and Hidehisa NacaNuma

(Roceived November 29, 1966)

The purpose of this note is to observe the Galois groups of nor-
mal extensions obtained by the coordinates of the ideal section points
of the jacobian variety J, of an algebraic curve uniformized by
elliptic modular functions, which was investigated in a previous work.
[2] with the same title. Our result can be obtained by slight mod-
ification of the consideration due to G.Shimura [6]. In fact, in his.
[6, footnote 9), p.281], our problem was suggested.

In §4 of the present paper, we treated a simple jacobian variety
J, of dimension 2, having a real quadratic number field Q(y/d) as.
its endomorphism algebra. By a numerical example, we shall show

that there occur two types of Galois group G(K(1)/Q), according as.

(—‘;’—>= +1 or —1, which is isomorphic to GL(2,GF(l)) or
GF()*-SL(2,GF(I*)) respectively, where [ (|I) denotes a prime
ideal in Q (;/d) and K(I)/Q a normal extension generated by the:

coordinates of the I-section points of J,.

Notations. Let F be an algebraic number field of finite degree.
over Q and o be the ring of integers in F. Let (A", 6) be an abelian
variety of type (F) in the sense of [4] i.e. a couple (A4, 6) formed
by an abelian variety A of the dimension # and an isomorphism ¢
of F into EndQA=End AR ;zQ such that #(1)=1, (=the identy
element of End@A). In the following treatment, (A" 6) will denote
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an abelian variety of type (F) which are assumed to be principal,
namely, we assume that 8(0) =EndQANO(F). Putting m=2n/[F: Q]
for (A", 6), m is called the index of (A", 6). For a prime ideal [
of p and a natural number », put

g(t, A= {t€ A|6(a)t=0 for all acl), g(=, A)=)g(> A.

§1. [-adic representation M.

Let (A", 6) be an abelian variety type (F) with the index m.
For a prime ideal | of o which is prime to the characteristic of the
field of definition for A, we have

g(l, A)=o/I*@---PDo/* (m-copies)

@D g(l=, A)=F1/oD---DFi/o; (m-copies),

where F; and o; denotes the [-completion of F and the valuation
ring in F, respectively. We call any one of the isomorphisms of
g({=, A) onto @F (/o; an f-adic coordinate-system of g(I*, A) and
choose a fixed one, say, 2, Let Z(A, F) and Z,(A, F) denotes the
commutator of #(v) in End A and of §(F) in EndQ(A), respectively.
Then for an element A€ Z(A, F), there exists a square matrix M of
size m, with coefficients in of, such that, for every teg((, A), we
have v(A¢)=M»>(¢). The mapping i—M is uniquely extended to a
representation of Z,(A, F) by matrices with coefficients in Fy, which
we call the [-adic representation of Z,(A4, F') with respect to ». For
an element £ Z,(A, F) and an l-adic representation Mi of Z,(A, F).
we denote by P(§ X) the characteristic polynomial of M((¢) i.e.,

where X is an indetermicate and 1, denotes the unit matrix of size
m.
Let (A, 6) be an abelian variety of type (F), defined over &,

which is principal. Namely, & is a field of definition for 4 and every
element of §(v). We denote by End(A4, k) the set of all elements
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in End(A) defined over k. In the present treatment we restrict
ourselves to the case where k is an algebraic number field and we
recall a few facts in [4], which concerns the reduction of abelian
variety with respect to a discrete place b of k2 We denote by 'k
the residue field of %k with respect to p. (A, 0) being as above,
then, if A has no defect for b, (Ay, 3) is principal, where Ay is the
reduction of A modulo p and E‘(,a)zg(/—,u) (=the reduction of 6(x)
modulo p) for every a<o. For every i€End(A, k) and its reduc-
tion 2 of 2 modulo p, the correspondence 1—7 defines a ring-isomor-
phism of End(A, k) into End(Ay, E). Let [ be a prime ideal of
o which is prime to the characteristic of k. We can choose l-adic
coordinate systems of g([~, A) and g(I*, Ap) in such a way that for
every A€End(A4, k), we have M{() =M 1(71). For every integral ideal
a of F, the reduction modulo p defines a homomorphism of g(a, A)
onto g(a, Ay), provided that every point of g(a, A) is rational over k.
Moreover, if ais prime to the characteristic of l;, this homomorphism is
an isomorphism. We remark that the N(p)-th power endomorphism 7y
is contained in Z(Ayp, F) since (A, 0) is assumed to be defined over 4.

§2. Galois group G(K()/k).

Let (A, 6) be an abelian variety of type (F), defined over an
algebraic number field £ of finite degree, which is principal. For a
prime ideal [ of o and a natural number #, let K([") resp. K(I7)
be the field generated over k by the coordinates of the points in g(I*, A)
resp. in g([*, A). The field K(I*) resp. K(I*) is a finite resp. an
infinite normal extension of k. Taking a basis of g(I", A) resp.
g(,”A), we get a represantation R!, resp. R!. of the Galois group
G(K(")/k) resp. G(K({~)/k) by matrices in GL(m,o/[") resp.
GL(m,v) by means of (1.1), where m is the index of (4,0).
We may assume that

R, (s)=R'.(s) mod (1)

if ¢' is the restriction of an element ¢ of G(K(~)/k) to K({").
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Let p be a prime ideal of k, for which we assume that A has
no defect axd let ¢ be a prime divisor of p in K(=), and §' the
restriction of P to K(I"). Let oy be a Froberius automorphism for
. The restriction ¢ of oy to K(") is a Frobenius automorphism
for . As was remarked in §1, the reduction modulo T defines an
isomorphism of g({~, A) onto g(I~, Ap), provided that [ is prime to
the characteristic of 2. From the definition of Frobenius automorp-
hism, we see that

t° mod P=np(t mod P) (teg(~, A)).
Therefore, choosing suitable basis of g([=, A) and g(=, Ap), we get
RL(%):MI(%), so that
det[X-1,—Rl.(op) ] =P (n, X)
det[X-1,—R'.(¢")]=P(xn,, X) mod I".

For the determination of G(K(l)/k) in the special case of (A,6)
as in §4, we shall need the following statement concerning the
representation RY,:G(K(1)/k)—~GL(m,o/l). This is a special case
of a more precise result due to S:zimura [5].

Proposition 1. Let F be a totally real aigebraic number field
of finite degree and (A, 0) an abelian variety of type (F), de-
fined over Q, which is principal and of index m. Suppose that
0(F)=EzdQ(A). Then we have

RLIGKW)/Q)]c(Z/c)*-SL(m, 0/1),
where ¢ is the smallest positive integer divisible by |, and (Z/c)*
denotes the multiplicative group in Z/c.

Proof. Let C be a polarization of A. We remark that the

automorphism group of the polarized akelian variety (A4, C,0) is
{+1}. Then the proof is ircluded in [5, Th. 7.2, p.150].

§3. Jacobian variety J,.

For every positive integer g, put

n@={(¢ §)este 2 ie=0w}.
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Then 1',(q) is a properly discontinuous group operating on the upper
half plane
H={zeC|I,(2)=>0}.

Let C, be a non-singular curve of the field of modular functions be-
Ionging to the group I'y(q), and J, the jacobian variety of C,. Let
T, be the element of End@(/,), corresponding to the so called Hecke
operator acting on the space S,(I'y(¢)) of cusp forms of weight 2
with respect to I'h(g). We can take Q as the field of definition for
C,J, and T,. For every prime number p, other than p|g, we have
“good” reduction modulo p for C, J, and the so called congruence

relation
(3. 1) Tp:ﬂ.'p"'ﬂ';,

where 7, is the p-th power endomorphism of (J,), (=reduction of
J. modulo p), n,=p-=n;’ and-ﬁis the reduction of T, modulo p.
Let M‘ be a representation of End@(/,) by the differential forms of
the first kind, then M‘(T,) can be considered as a representation of
T, for the space S,(I'h(g)). It is well-known that the eigenvalues
of M‘(T,) are real algebraic integers of finite degree< g (=the genus
of C,). Taking an eigenvalue ¢, of M*(T,) and putting 6(c,)=T,,
we get an abelian variety (J% 6) of type (Q(c,)).

In certain cases, the jacobian variety J# turns out to be simple
and End@(/,) is generated by 7T, over Q, which is isomorphic to a
totally real algebraic number field of degree g (cf. [2], [3]). We
shall determine the galois Groups G(K(I)/Q) for some I, in §4, in a
special case of these. For these reasons, we restrict ourselves to the
following situations.

Now let us consider the jacobian variety (J/,, ) under the con-
ditions such that ([, 6) is principal and of index 2, which is defined
over Q and 7,=6(F) for every natural number #, where F is a
totally real algebraic number field. Let o be the ring of integers in
F and [ a prime ideal of v. As we defined in §1, Pi(x,, X) denotes
the characteristic polynomial of Mi(=,), where =, in the p-th power
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endomorphism of (J,),.

Proposition 2. Let (], 0) be the jacobian variety satisfying
the above conditions. Let p be a prime number such that p+q,
and | a prime ideal in F which is prime to p. Then the char-

acteristic polynomial Pi(x,, X) is given by
Pi(r,, X0)=X*—c,X+p,
either the condition (A) or (B) is satisfied:

(A) c3—4p=1-m@Gn o) where ([, m)=1.
(B) X:=ci—4p () has no solutions in o i.e c;—4p is not

a quadratic residue med. |.

In particular, if (A) is satisfied, R./s') is conjugate to
b1
(0 3)

Proof. The first part of our assertion is an easy consequence
of 3.1) i.e, ny—n,T,+p-0,0,=0, where 8¢, is the identity auto-
morphism of (J,),. This means that

, . (¢, O p O\ __
(Mi(x))*— M1 (x) (O c,)+<0 p>—0.

If we put M(x,)= (;L g), a, B, 7, 6€0, it follows

a*—cax+p+pr=0

F—coatp+pr=0

Bla+d—c,)=0

rla+d—c,)=0.
This shows that Pi(n, X)= X*—c,X+p, except for the case M1 (x,)
= <‘6) 2) where w=c,+1/c:—4p/2. However, our assumption (A) or
(B) means c¢;—4p& F1. Hence, if either (A) or (B) is satisfied
the exceptional case does not occur. The second part of our assertion

follows from the same argument as the proof of [6, Lemma 1, p.213].

§4. The case of 1',(23).

Let us consider the special case ¢q=23 ( =the smallcst prime
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number for which C, is of genus 2). We denote, as usual, by 4(2)
the cusp-form of degree 12 with respect to SL(2, Z) and put

f(z)= 1€/m=§ a.q’; qg=em:
g(2)=T:(f(2)).
Then f(z), g(z) is one of the basis of S,(r,(23)). Furthermore, if
we put
0i(2)=g@) +a;-f(2)= _Zmlc,,',q"; 1=1,2

so that tne corresponding Dirichlet series >c, 7z ° should admit an
Euler product, it can be verified that «; satisfies a’—a;—1=0 and

the eigenvalues ¢, ; of Hecke operators T, are given by
1+v'5 1-v'5

Cp1=0sp+ 5 @ and c,,g:a2,+Ta,, especially,
—14+v5
Co1 =" 5

In this case ([, 0) is a simple abelian variety of dimension 2
(¢f. [2]) so that the situations of Proposition 1 and that of §3
are applicable. Namely, 6(c, ,) =7, gives an isomorphism of
Q(y/5) onto End@(/Js) and (Ju, 6) is principal, defined over Q.
Proposition 1 shows that, in this case, for a prime number /,

case (i) if ()=0-L, L= in Q(+/5),

(4.1) RYIGKW)/QICGL(2 2/()),i=1,2,

and
case (ii) if(/)=[ remains prime in Q(+/5),
(4.2) R [GK()/Q)1C(Z/(1))*-SL(2,0/1),

where o denotes the ring of integers in Q(v/5).

Now we can check for several primes [, the equalities of (4.1)
and (4.2) hold. In fact, we can check it by the following steps.
Put St=R'[G(K()/Q)|NSL(2,0/{). Then, for the equalities of
(4.1) and (4.2), it is sufficient to show the followings:

(@) S1=SL(2,0/1)
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and

(b) there exists a prime number .p which is a primitive I-th
root and satisfies either the property of (A) or (B) in Proposition 2.
Moreover, in Dickson [1], all the subgroups of SL(2, GF("))/{*+1}
are determined. Hence, by Proposition 2, to check the property (a),
we have only to show the next (a'l)~(a'3):

(a'1) SIB<—(1)_(1)>,

(a'2) there exists a prime number p satisfying the propesty
(A)
and

(a'3) St contains an element of order N[+1.

Let us now consider, for example, the case (i) /=79=[,-[,(in
Q(y/5). For p=31,47, we have ¢s,,=3y/5, cxa=1/5. Hence p=31
(resp. p=47) satisfies (@'2) (resp. (b)). For p=19, we have ¢y5,=
—2. By a simple computation, we have RV (¢)® (=X; say) €51,
i=12 and X®— <_(1)_(1)>.Thus we get G(K(1)/Q) =GL(2, Z/(19))
for i=1,2.

As an example of the case (ii), we choose [=7. For p=3, we
have ¢;,=4/5, for which (a'2) and (b) are satisfied. For p=11, we
have c¢u.=—-3—1/5. We have R"()*(=X)ESs; and X*=

(_(1)_(1’) Thus we get G(K((7))/Q)=(Z/(T))*-SL(2, GF(T)).

Remark 1. In the above example of case (i), we get G(K(1,)/Q)
=G(K1,)/Q) (=GL(2,Z/(]))). However, in general, this iso-
morphism can not be hold.

Remark 2. In the case of I,(11), it is known, for the elliptic
=3¢.q", ¢,=p-+1 mod (5) for every prime number p(Z11). The
corresponding fact, in our case, is found in /=11. Namely, for 11
=L+l L= (4++/5), [,=(4—+/5), we have ¢,,= p+1 mod [, for every
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prime number p(=23).

Remark 3. This was remarked by Prof.G. Shimura. In our

discussions of G(K(I)/Q), we restricted ourselves to the case for the

prime ideal [. However, for the integral ideal a of F, we have

G(K(@/Qc (Z/(C))*IHISL(Z, o/,

where c¢ is the smallest positive integer contained in a. In particular

for a rational prime number / of case (i), we have

(1]
(2]

(3]
[4]
(5]
(6]

GED/Q{M, N)eGL(2,Z/(])
XGL(2, Z/(1))|det M=det N}.

Kyoto University
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