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Introduction

In his paper [12] von Neumann showed that unitary equivalence
of flows implies their metrical equivalence in the case of ergodic
flows with discrete spectra. More precisely, if two one-parameter
groups of unitary operators induced by two ergodic flows have
discrete spectra and are unitarily equivalent, then these flows are
metrically equivalent. Moreover they can be realized ‘“‘canonically”
as rotations on compact abelian groups.

Up to the present time many results are obtained with regard
to the set of eigenvalues, which forms an additive subgroup of real
numbers, and eigenfunctions. However this does not finish the
investigation of the eigenvalues, eigenfunctions, discrete spectrum,
and etc., if we consider the flows (¢,) on the manifolds M generated
by the differential equations on them. For instance, we do not know
even whether the ranks of the additive groups of eigenvalues of
(¢,) are finite or not. [1], [2].

In this paper we consider the case when flow (¢,) is ergodic
and the manifold M is compact, then we can consider M as the
total space of a locally trivial smooth fibre space, whose base space
is a torus and fibres are submanifolds of M, and moreover ¢, is
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fibre-preserving (§2). Especially, if (¢,) has discrete spectrum, then
M is diffeomorphic to a torus and (¢,) can be regarded as the well
known quasi-periodic motion on it (§3). These results show the
relationship between the spectral types of flows and the structures
of manifolds on which the flows are defined. In §4 we discuss some
generalizations of §3 and some characterizations of quasi-periodic
motion. In §5 we generalize the notion of eigenfunctions by intro-
ducing the concept of oscillatory functions.

I wish to thank to Professors H. Yoshizawa, Y. Shikata and H.
Totoki for their valuable suggestions.

§1. Preliminaries from ergodic theory

In this § we briefly enumerate necessary definitions and theorems
from the ergedic thecry. For details refer to [5], [8], [9] and
[11].

Definition A. A flow is the triple (M, #,¢,) of a probability
space M with measure x and a one-parameter group of transforma-
tions ¢, of M which preserve the measure n. We assume the

measurability of (¢,) with respect to “time” /.

A flow (¢,) induces naturally a one-parameter group of unitary
operators {U,} on the Hilbert space H=L*(M, ») of complex valued
square summable functions defined on M:

(U.f)(x)=f(ex), for feH.

By the decompcsition theorem of Stone, these U, have the
following spectral resolution:

l]‘___ SezmudE(l) ,
where {E(1)} is a resolution of identity of H.

Definition B. Let H®=(E(A)—E(G—-0))H. We call 4 an
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eigenvalue of the flow (¢,) when dim A®»>0 and an element of
H® an eigenfunction of the flow (¢,). The fact that 2 is an
eigenvalue is equivalent with the existence of such fi€H, f,#0
that

U.fr=e7"f, for all ¢

Definition C. A flow (¢,) is called ergodic, when the condition
n{p, ASA} =0 for all ¢
implies #(A)=0 or x(A4)=1.

Theorem A. A flow (¢,) is ergodic iff 2=0 is a simple
eigenvalue.

Theorem B. Let (¢,) be an ergodic flow on a probability
space (M, p), A be the set of eigenvalues of the flow (¢,) and H®

be the set of eigenfunctions which belong to the eigenvalue A
Then

(1) 4 is an additive subgroup of the real number group R.

(i) If fre H® then |f.|=constant a.e..

(ili) For all 2 A there exist o€ H® such that ¢,/¢.=% .,
lexl =1, and >/ k=0 (keZ) implies T1]_¢5i=1.

(iv) Let H,=>DH® and B,=B(H,) be the smallest Borel

AEA

algebra which makes the elements of H, measurable, then
H,=1*(%,).

§2. Fibre structure

We introduce a fibre structure on manifold from the given flow.
First we shall give definitions of some fundamental notions.

Definition 1. Classical flow or classical dynamical system

1) We denote the symmetric difference of two sets 4 and B with AOB:
A©B=AUB—-ANB
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means the triple (M, s, ¢,) formed by a C~-manifold M, a finite
measure 2 on M defined by a positive continuous density (we assume
#(M)=1) and a one-parameter group (¢,) of diffeomorphisms of M
which preserve the measure u.

Definition 2. Let (M, u,¢,) and (N, ¢,) be classical flows.
(M, n, ¢.) is CPisomorphic to (N,v, ¢,) as classical flows, when
there exists C*-diffeomorphism vr: M— N such that +rop, =@,y for
all ¢, and ¥ (x)=v. We denote it by:

(M, 11, ¢) = (N, v, ¢.)
CD

Now let us give the definition of quasi-periodic motion which
will be necessary for our theorems.

Definition 3. Let T"=R"/Z"={(x,, -, x,); £,€ER mod 1 i=1,
2, -+, n} be the n-dimensional torus with the usual Lebesgue measure,
dm=dx,--dx,. Jacobi flow with frequencies o, -**, w, is a classical
flow (T, m,r,) where (4r,) is the one-parameter group of transfor-
mations defined by,

Y X =%, +wt, mod 1, i=1, -, n.

Lemma. An orbit of Jacobi flow with frequencies o, -, w.
is everywhere dense on T", if and only if ., -, 0., are linearly
independent over Z, i.e. ko + -+ ko,=0 for keZ implies k,=
o=k =0.

In this case we call this Jacobi flow a quasi-periodic motion.

We can prove easily this lemma with the help of theorem A.
It is also easy to prove it directly.

Let (M, u,¢,) be a classical flow and 4°* be the set of eigen-

values of (¢,) whose eigenfunctions are C*-differentiable.

*) A¢ forms an additive subgroup of 4. cf theorem B, in 1



Classical flows with discrete spectra 59

Theorem 1. Let (M, u,¢,) be a classical ergodic flow and M
be compact. If i, -, 34 (p=1) are linearly independent over
Z, then we can consider M as the total space of a locally trivial
C** smooth fibve space, whose base space is an r-dimensioaal torus
T and whose fibres are C*-submanifolds of M of codimension r
and numbers of their connected components are finite. The flow
(¢,) is fibre-preserving and the flow which is naturally induced on
the base space T’ is quasi-periodic motion with frequencies i, -+, 2,.
In addition, the fibves can be assumed to be connected, in this case,
however, the frequencies of the induced flow on the base T  are
different from A, -, 4,.

Remark. In theorem 1, the assumption of the ergodicity of
the flow (¢,) can be weakened. In fact the existence of only one
orbit which is everywhere dense in M is sufficient. We note that
if (¢,) is ergodic, then almost all orbits are everywhere dense in M.

In proving theorem 1, it is essential to prove the following
fundamental lemma.

Fundamental lemma. Under the assumptions of theorvem 1,
let fi, -, f, be differentiable eigenfunctions of class C*(p=1)
which belong to the eigenvalues 1, ---, 2,4 respectively. Then
df, -, df PeT*(M) are linearly independent everywhere.

Proof of fundamental lemma: the proof will be devided into
three parts:

Step 1. As f;(x)(j=1, -+, 7) are continuous and eigenfunctions
of the ergodic flow (¢,),

| f;(x)| =constant (say, =1),
* fi(x)=er""Nf,(x) for all xeM and t.

*) Though fj are complex valued, however, as will be seen in step 1 of the
proof, we can put f;(x)=e>03® @;(x)ER/Z, so we write df; in the place of d;.
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Now let us define the mappings P. and the sets M,(a), 1<Fk
<, as following:

Po: M—>T'=T" x~—(fi(x),, fui(x))
where T={ZeC; |z|=1}

M(a)=P;' (e) M, a=(ay, -, a,) € T*.
We define the flow (Y}) on T* as follows:
\1’/’:; T*—T*: (al’ "‘,ax)“‘—)(ezmma{l, -~-,e2"”"*a,,).

That is, flow (y}) is a quasi-periodic motion with frequencies
A, % on T% The following diagramm is obviously commutative:

M- m

|7 . P

o LI

As M is compact and the orbit of « is everywhere dense in
T* from lemma, P, is onto mapping.

Step 2. Let us assume that dfy, ---, df, are linearly independent
everywhere, i.e. the mapping P, is full rank everywhere on M.

Then as is well known, the sets M,(a) become C’-submanifolds
of codimension k. Moreover, for any a,€ T* there exists some
neighbourhood U,C T* of &, and we can define a structure of direct
product in M,(U;)=P:*(U,)C M, i.e. there exists a diffeomorphism
"

to: Uy X Mi(ay) —> M.(U,)

such that
tw({a} X M(a,)) =M,(a) for any acU,.

This shows the local triviality. It is known, but for the com-
pleteness we will show it.

For instance, this can be shown as follows: We define a
Riemannian metric in M. Let N(M,) be normal bundle of M,
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=M.,(a,). This bundle is a trivial bundle because of the linear
independence of df, -+, df.. As is known in the theory of Kieman-
nian geometry, there exists some open neighbourhood V of M, in
N(M,) and C*'-embedding,

Expy,: V->M,

such that, for any vector L& V, Expy, (L) is the terminal point of
the geodesic arc ! of M, whose initial vector is L and ||| =]|L].
(Expy, is called exponential mapping at M, and Exp,, (V) tubular
neighbourhood of M,.)

Let N,=Expy,(N(M,).NV), x& M,, where N(M,), is fibre of
N(M,) on x. If we take the neighborhood U, of a, in T* suffi-

ciently small, then the following mapping ¢ is one to one:

w: Uy X Mi(a)—M,(U,): (a, x)—~—>M(a)N.,.

1

& is obviously C*'-differentiable, and rank of ¢’

is equal to dim M
on M,(a,). Therefore, by taking U, less if necessary, ¢ is a C* -
diffeomorphism. That is to show.

we have now verified that (M, P,, T*, M,) is a local trivial
C**.smooth fibre space over T*, whose fibres are C*-submanifolds of
M. See for details R. L. Bishop & R. J. Crittenden [3], S. T. Hu
[6] and N. Steenrod [10], Par I

Next we show that the number of connected components of
fibre M, is finite. Let M be the space which is obtained by regard-
ing each connected component of fibres to be one point. Naturally
M becomes a manifold. (f1, =+, f» are the local coordinates of it!)
Moreover this space is obviously a covering space of the torus T*.
So there exist certain integers zi, -, Z,, 2, %0, -+, z,%, m <k, and

M%R/,lzx X R/, X R,

As the flow (¢,) preserves the connected components of fibres, it

induces naturally a flow (@) on M:

(777 M_ﬁﬂ: (xl, ey x,,)w—>(x1+/ht, ey, x,,+/1,.t) .
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If m<<K, then this will contradict to the ergodicity of the flow (¢,).
Therefore m=k. This shows that the number of connected com-
ponents of M, is finite:

#(Mk)=21>< b XZ,,,.

Step 3. Now by induction we will prove that dfi, -, df, are
linearly independent everywhere. It is clear that df,; is linearly
independent everywhere, so it is sufficient to prove the linear indepen-
dence of df,, -+, df,,» under the assumption of linear independence
of dfi, -+, df..

Let us assume that df.,, is linearly dependent to df,, -:-, df, at
point x,€M. Then as ¢, are diffeomorphisms of M and the eigen-
functions satisfy the property (*) in step 1, so df.. is linearly
dererdent to df, ---, df, at every point ¢, x, M. Namely df,.,. is
linearly deperdent to df, -+, df, on the closure of orbit which pass
through the point x,, C.,:

Cx(,: U ¢1xn CM.

—co(t Joo

This shows that when we consider the function f,,, as a func-
tion on M,(a), every point of C, M. (a) is a critical point of fi,:.
Therefore by the well-known theorem of Sard, the measure of the
set fi1(C.,,NM,(a)) in T' is zero. By the lemma and compactness
of C,,, P.:(C.))=T"", so fu(C.,,NM,(a))=T". But it is obviously
a contradiction. This was to be proven. q.e.d.

The proof of theorem 1 is contained in the proof of the fun-
damental lemma.

Corollary. Under the assumptions of theorvem 1, A is finitely

generated and rank of A°<dimension of M.

§3 The case of discrete spectrum

In this § , we consider the special case when the flow has a
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discrete spectrum (pure point spectrum).

Theorem 2. Let (M, pn,¢.) be classical evgodic flow and M
be compact. If the flow (¢,) has discrete spectrum and all the
eigenfunctions arve C°-differentiable (p=1) i.e. )\%@HW:LZ(M, w,
then (M, u, ¢.) ts C*-isomorphic to a quasi-periodic motion (T', m,
\Jr,) as classical flows;

(M) Iy ¢’r)?‘:—:<T", mv ‘\P‘I),

where n=dim M.

Proof: As is seen in the proof of fundamental lemma, it is
sufficient to prove that, rank of A4°=dim M.

Let 7 be the rank of 4°, and 4, :*, 4, € 4° linearly independent
over Z. Let fi(x), -+, f.(x) be C*-differentiable eigenfunctions belong-
ing to 4, -+, 4, respectively. Now let 4 be any eigenvalue €4° and
f. be a differentiable eigenfunction which belongs to A.

As r is the rank of 4°, so A, 4, '+, A, are linearly derendent
over Z, ie.

3k+#0, ky, -, k. eZ,
such that
k=k+-+k,aA,.

By theorem B, (iii) in §1, we can assume
Falx)=ri(x)---fr(x).

From the continuity of f,(x), it must be constant on every
connected component of fibre M,(«). By the assumption, {f.; 1€ 4%}
forms a C.O.N.S. of L*(M, ). Therefore, if dim M,(a) =dim M—v»
>0, it obviously contradicts to the theorem B, (iv). It is also easy
to prove it directly. q.e.d.

§4. Some remarks and conjecture

Can we replace the assumption of differentiability of eigenfunc-
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tions by the one of continuity? The author has not succeeded in
verifiing it, but it is very likely that it is correct. We will show
the partial solution for it, though it is far from the complete
solution.

In this cqnnection, we remark that if this conjecture is verified,
then we will have the following interesting result as a corollary of
it and a theorem of von Neumann and Halmos. (von Neumann and
Halmos [13] p. 349 Theorem 6.) As a matter of fact, this result
can be easily proven, if we use a theorem of Lie groups: “a compact
group is a Lie group” and the above mentioned theorem. But we
will give the proof for the completeness.

Theorem 3. (von Neumann-Halmos) Let (M, p, ¢,) be a clas-
sical evgodic flow. If we can define the metric d(x,y), compa-
tible with the original topology of M, such that, for which M .is
complete and the flow (¢.) is equi-continuous with respect to ¢, i.e.

ve>0, 36>0, d(x,y)<<d implies
d(px, 0,9)<e for all t,
then (M, n,¢,) is C’-isomorphic to a quasi-periodic motion (T", m,
yr,) as classical flows;
(M, 1, 0)==(T", m, 40),

where n=dim M.

Proof: First we prove that we can define a multiplication on
M so that it becomes (with the original topology of M) a compact
abelian group and (¢,) is a rotaion, i.e. 3{x,}: one-paremeter group
of M such that
ox=x,-x for vxeM.

Now we show that we can assume that (¢,) is isometric with
respect to d. For, if we define the new metric d’(x,y) by

d’(x, y) =sup {min(1, d(e. %, ¢.3))},
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then (¢,) is isometric with respect of d’:
d'(x,y)=d' (¢.x,9.3) for all t.

(It is clear d and d’ define the same topology on M.)

As the flow (¢,) is isometric, ergodic and preserving the measure
u, it is easy to prove that M is totally bounded. By the way, M
is complete so M is compact.

Next we show M is abelian group. Let take a point x, such
that N= L'J%xo is dense in M. For x=x,=0¢x,, y=x.€N, we

define p(x,y)=x,..€N and r(x)=x_,&N. Then,

d(p(x,¥), p(x, ¥))=d(Xsps, Xirssr)
<d(Xies, Xipe) TA(X sty Xirysr)
=d(x,, x,)+d(x,, x,)
=d(y,y) +d(x, x1),
d(r(x), r(¥))=d(x-, x-,)
=d(Xorpirss Xosirrs)
=d(y, x),

where x'=x,,y=x,N.

This shows p(x,y) and #(x) are uniformly continuous on NX N
and N respectively. But NXN and N are everywhere dense in
MxM and M respectively, therefore p(x,y) and 7(x) each has a
unique continuous extension, to M XM and M respectively. We
define for every x, yeM, x-y=p(x,y) and x'=7r(x); it is clear
that with these definitions M becomes an abelian topological group.
If we define p'(x, y)=¢,y for any x=x,& N and arbitrary y, then
p’(x,y) is a continuous extension of the original p(x,y) and there-
fore v, y=x,-y.

We have now proven that M is a compact abelian group and
(¢,) is a rotation. As is known in the theoiy of Lie groups, there
exists an isomorphism #: M—T". If we define (34r,) by yr,=hop,oh™
and m’ by m’=h(u), then from the ergodicity of (yr,) which follows
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from the ergodicity of (¢,) it is easy to prove that (T, m’', ) is
a quasi-periodic motion. q.e.d.

Using this theorem 3, we prove the next.

Theorem 4. Let (M, u,¢,) be classical evgodic flow and M be
compact. If the flow (¢,) has discrete spectrum and all the
eigenfunctions are continuous, in addition, if they separate M
i.e. for any x, yEM, x+Y, there exists some continuous eigenfunc-
tion fr(x) such that fi(x)#f1(y); then (M, u, ¢,) is C’-isomorphic
to a quasi-periodic motion (T, m,r,) as classical flows:

(M: ﬂ) ¢l>ﬁ<T’,) m» lll’:‘))
where n=dim M.

Proof: From the assumptions there exist continuous eigenfunc-
tions fi, f2, ***, fa, -+ which belong to eigenvalues 4,4z, **, 4, ==+
respectively and form C.O.N.S. of L*(M, p).

Let define a metric d by

d(x, ) =S5 | [ =L, xyEM.

Now the topology defined by this metric d is Hausdorff by the
assumption. As M is compact, so this topology is equivalent with
the original one. Therefore, if we show that the flow () is
isometric with respect to this metric d, then we get theorem 4

from theorem 3.
d(0.5,0.9) =S5 | [.(00) = [.(0.9)
=S [T () —fu ()]

=d(x,y).

This is to be proven. q.e.d.
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§5. Generalization of the concept of eigenfunctions

In this §, we will give a generalization of the concept of
(differentiable) eigenfunctions.

It is clear that if f(x) is an eigenfunction, then f(x)=f(y)
implies f(p.x)=f (¢, y) for all ¢.

Definition 4. Let (M, 2 ¢,) be a classical flow, and f: M—C
be a complex valued function. We call f(x) oscillatory function
of the flow (¢,), if f(x)=f(y) implies f(¢,x)=f(¢,y) for all £. In
this case the flow (¢,) is said to be oscillated with respect to f(x).

Definition 5. Let (M, #, ¢,) be a classical flow and f: M—C be
a complex valued function. We call f(x) an essentially eigen-func-
tion, if there exists a homeomorphism % of C such that hof is an

eigen-function of the flow (¢,). Then we can show

Theorem 5. A non-constant differentiable oscillatory function
of a classical ergodic flow (¢,) is an essentially eigen-function,
hence the flow (¢,) has a non-constant eigen-function.

It is an almost direct corollary of the well-known Poincaré-
Bendixson theorem, (see for details, Coddington and Levinson [4])
if we refer to the following well-known theorem of the ergodic

theory. So we omit the proof.

Theorem C. (Hopf [7] p. 29) Let (M, » ¢,) be a classical
ergodic flow, then almost all orbits of the flow (¢,) are everywhere
dense on M.

Concluding this paper, we want to emphasize the importance of

the concept of the flow homorphism.

Definition 6. Let (M, ¢,) and (N, ) be classical flows. We



68 Toshio Niwa

call the differentiable mapping f of M into N flow homeomorphism,
if +rof =foo, for all ¢.

In theorem 1 and 2, the quasi-periodic motion on a torus plays
the role of (N, 4r,), and in theorem 5, N is C=R>

We note that theorem 1, 2, 3 and 4 for the case when the (¢,)
is a discrete flow, i.e. (¢") generated by one diffeomorphism ¢ which

preserves the measure p can be verified analogously.
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