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1. Introduction

In this paper we will use the results of Sullivan [10], Stasheff

[9], and Peterson and Toda [8] concerning the classifying spaces

BSPL and BSF to obtain some further results concerning H*(BSPL)"
and the P-torsion in SnL , the oriented PL-cobordism ring. Since some
of these results are computational in nature, we will often only give
an outline of the proof.

Let Jp,:BSPL—>BSF be the natural m ap. Let q,E1-1-(BSF)
be the Wu class ( r= 2 p - 2  throughout). Our first main result is

that Jpt(Oq,) * 0  if (It is easy to show that Jpt(Oqi ) =0
if i < p ) .  Our other main result is a computation of the P-torsion
of ..(41' in dimensions < P r .  In particular, we show that there is a
PL-manifold M  of dimension (2P+1)r —1 of order p 2  in 2 7 "  such

that pm  is not detected by any ordinary characteristic numbers.
Finally, we make a few conjectures concerning H*(MSPL).

2. H*(BSPL)

Sullivan [10] has proved that B S PL  is  o f th e  same mod p

homotopy type as BSO X BCoker J ,  where B  Coker J  is  a  space

1) Partially supported by a  Fulbright Fellowship.
2) A ll cohomology groups in  this paper have coefficients zp, p an odd prime,

unless otherwise stated.
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such that 7r(BCoker J )  =p-torsion o f

Coker ( J  : n* (B S 0 ) —>n* (B S F ) ) .

The proof o f this has not appeared so we make a few remarks on
the proof. Sullivan shows that there exists a map BSPL—>BSO
which is onto mod p .  BCoker J  is defined to be the fibre of this
m ap. It is known (e.g. by Adams, Anderson, Peterson and Sullivan)
that B S O is of the same mod p  homotopy type as Y x  Y ', where

7 r , (  y )  =
rwise

(Z
P  - 1

and Y '= SP` ( Y). Also, Sullivan [11] proves10 othe 
th a t  F/ PL ;B S O . M a p  BSO x B Coker J— >BSPL a s  follows:
BSOx B Coker J—> Y x  Y' x B Coker J—>BSPLx F / PL x B Coker J
— >BSPLxBSPLxBSPL— >BSPL and the composition is a homotopy
equivalence. Note that BSOxpt.— >BSPL is not the usual map of
BSO— >BSPL. Also, H*(BCoker J )  has a Zp-basis, in dimensions
<2pr —2 consisting of 9 ) 1 3 - e i  and [39) 1 t3Pi ,  by direct compu-

tation, where i s  the image under BCoker J ±>BSPLI-1- >B S F of
e, E 11P r - 1 (B S F ) .

Theorem 2.1. j*J4(qp)= tiA , where 1.1 0(P)•

P ro o f .  Let f :  S" '- BCoker J  be a  map corresponding to
in  7r,_2 (S ).  Let g : U  - - > B  Coker J  be an extension of f .
Let 0  Ker(2g' 2 i9- 0 1 )—>Coker 2 P - 2  be an unstable secondary opera-
tion defined on classes of dimenion r  by the relation

— 2D - 2 (22 10— g3[3 ') = — 2T P - 18— iag)P-1
b

).D-1 fi
P - 3

which is zero on classes of dimension < r .  In the first lemma of
§6 o f  19], Stasheff shows the following relation in HP' (BS F ) :  one
can choose e such that qp--- 20(q 1 )  it8e1 , where 0 (p ) .  C le a r ly ,
g*/*Jp*L (0(q 1)) =0  w ith  zero indeterminacy. To show tt O (P ), it
is enough to show g*j*Jp(qp) 0. Let X  be the Thom space of

L L ig  : S ' - 1 U p F(N ). T h en  X = S" U U  P  and

[h] =j  (see  proposition 4.5 o f  [1 3 ]).  By the main result o f  [3],
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on FIN ( Y ), » = a ø ,  where 0, and r  are secondary operations,

tt O (P), dim a,> 1 , and V  detects 19,. Thus, in H* (X ) ,  we have
T P(U)=g*j*JA (qp)•U=ItOr ( U) = pg* (fie i )  •  U  which proves the
theorem.

Corollary 2 .  2 .  JA (pqp„)

Pro o f . By theorem 2. 1, j*Jp1(qp)= -ei . But Og'iqp=(3q„,—Oq i

-qp—qi •i3q,,, hence j * jpt (fiqp+i) =4 2 106+ 0 =fifig.)106. 0 as jpt(oqi) =0
and so Jp1,(0q,)= 0 , I p  by the relation TiOq i =i0q,, i —qi 0 q , (see
[9 ]).

Corollary 2 .  3 .  JA(jqq,) if i >P +1 .

Pro o f . Let qr : H* (BS PL)—.11* (BS PL )O H * (BS P L )  be the
diagonal map. Since 4r(q i ) =14 ,0q 1 ,  the corollary follows by in-
duction using corollary 2. 2.

In  preparation fo r  th e  next section, w e  note the following
corollary of 2 . 2 . Let 0 : A— .H* (MS P L )  be defined by e(a)=a(U ).
One might conjecture that 0 ( Q ,)  0 ,  where Q ,  are the Milnor
elements [ 6 ] .  0 (Q0 ) = Q 0 ( U )  0  and 0(Q1 ) =Jp*L(Oqi)- U=0.

Corollary 2. 4. e(Q 2 ) * 0 .

P r o o f .  By proposition 3. 1  o f  [ 8 ] ,  e(Q2)=JA (A riqp,1)•U with
0. Now apply corollary 2. 2.

3 .  2 1 :,;,L

In this section we state our results on QP*1'• We first note that
corollary 2. 2 shows that the first lemma on p. 32 of [12] is incorrect,
so the calculations of the 3-torsion of S 2 ' in  [1 2 ]  are incorrect.
However, the answers in  [1 2 ] are correct.

Peterson and T oda [8 ] have proved H* (BS F) , Z [q ]O E (f iq ,)
O C, where C  is  (pr-2)-connected . In the range we will work in
it is not difficult to show that H*(BCoker as an algebra
over A . In fact, one conjectures that this is true in all dimensions.
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(Note however that theorem 2. 1 shows that the map Jpt : Zp[qd
O E (q 1) 0C—>H*(BSO) x H*(BCoker J )  is not as simple as one
might expect.) Furthermore, Stasheff [9] has computed C explicitly
in dimensions < (p2+ 1)r —1  and has shown the following result' )

Theorem. 3.1. I n  dim.<(pz+l)r —1, C is a free commutative
algebra with truncation o f  height p  o n  generators {a(e 1 ) } ,  where
{ a}  runs through an  add itiv e  base  o f  ,A 1 1 (g 3 ', 2.TP21 [3-2 'n 3 ),
and e,, 8e2, and  t32(e1 . (0e1) 2 ) ,  where e,E and er E

Sullivan [10] shows that the spliting BSPLP3S0xBCoker J

respects the universal bundle and hence MSPL;MS0 A MCoker J.
(This is not hard when P=3, but more difficult i f  P >  3 . )  Hence,
H* (MS H* (MSO) OH* (MCoker J ) .  To compute n* (M SPL)

(by Williamson [12] ), we wish to compute H *(M S P L ) as a
module over ,A  and apply the Adams spectral sequence. N o w
H* ( M S0)= E ',1  (see [1] ), where ',A =  / ,A k , and E= E(Q0, Q1, Q21

••  • )  is the exterior algebra on the Milnor elements Q,EA ( P- 1 +
The results of [1 ] show that the <_4-module structure of ',/O N
depends only on the E-module structure of N  and further that
ExtA( 1 ON, Zi,). Hence we must compute H* ( M
Coker J )  as an E-module. Corollary 2. 4 shows that Q2(U)-- --//0 1 A
•U, with ,u 0(P). Using this result, theorem 3. 1, and direct compu-
tation, we obtain the following theorem.

Theorem 3.2. In  d im en sio n s  < (p 2 +1)r —1 , as m odule over
H* (M SPL ) is isomorphic to a direct sum of copies of  a module

M  plus copies o f  ,A/AQ0 plus a f ree m odule, where M  has f our
generators, dim X 0 =0, d im  Xi —Pr —1, dim X 2 = 2 p r  — 1  dim X,

(2p+ 1)r  — 1 , w ith  re latio n s  Q0(X0)=0, Q1(X0)=0 ,  Q 2  ( X 0 )

=Q0Q1(X1), an d  Q0(X3)+Q1(X2)+Q2(X1)=0. Let p = 3 f o r  con-
venience i n  stating specif ic results. L e t  {ya•U} be an  ',A-basis
f o r  H * (M S 0 ) .  T hen th e  generators f o r th e  m o d u le s  M  are

3 )  Recently, May [4 ] and M ilgram [5] have made great progress towards deter-
mining II* (B S F) and one hopes that the results in  this section can be generalized.
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quadruples (X 0  = U ,  X 1  = y a  e 1 U, X 2 = a  (e1 je t  -  P̂3e1) U , X 3

=y  ( ^ P 4 e -  e1 f l e 1) U), the generators for copies of  A/..AQ0 are
e1 (fle1) 2 U  an d  j32 (e1 ( je 1) 2 . U), and generators for copies of  A  are
P̂3e1 • U, P 4 e1 • U, e1• ̂ ?3e1 U, e2 U, e 1 9^P3e1 U , and e 1 9?4e1 U.

It is not difficult to construct  Ext j ( H *  (MSPL), Z )  and to
note that all differentials must be zero for dimensional reasons in
the range of dimensions under discussion except a differential from
t—s=36 to t—s=35. From this we obtain the following theorem.

Theorem 3.3. In dimensions < ( p 2 +1 )r -1 , w e hav e that
(S /torsion) ® Z  is a po ly nom ial ring . L e t p  =  3  as abov e. In
dimensions < 3 9 , the 3-torsion of  S2.L is giv en by  the follow ing
table:

Generators Dimension Order Detected by
M x M " 11+dimM 3 y e 2
M  X  M 3 23 + dim M 3 y
M aX M 3 23+dimMa 3
M  X  M 1

2 T 27 + dim Ma 9 (P4e1 -  e1Pf ie1)
Ma x M 7 27 + dim M 3 y  .  .P4 e1

M 1 4 34 3 e1P 3 e1

M1
3 5 35 3 e2

M 5 35 3 e1
M 5 35 9 e1(fie1)2
M 3 8 38 3 e1 9e1

Here Ma are elements in .Q detected by  y . The dim ensions such
M a appear in  are 0, 8, 12, 16, 20, 24, 24, 24 in the range under
discussion.

Easy computation shows that e1 (fie 1) 2 gives an element of order
9 in H 35 (MSPL; Z q ) which detects all multiples of MI 5. However
P4 e1  -  e1 P 2fie1 is  only of order 3 and we have the following corollary.

Corollary 3. 4. In dim ensions  ^ 2 6 ,  all e lem ents in  Q  are
detected by  ordinary  characteristic classes. T here is an M 7 o f
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order 9  such  that 3M ," is not detected by  an  ordinary charac-
teristic class.

Pro o f . Since all elements of 2-torsion are detected by ordinary
characteristic classes [2] , just look at the above table.
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