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1. Introduction

In this paper we will use the results of Sullivan [10], Stasheff
9], and Peterson and Toda [8] concerning the classifying spaces
BSPL and BSF to obtain some further results concerning H*(BSPL)*
and the p-torsion in 2%F, the oriented PL-cobordism ring. Since some
of these results are computational in nature, we will often only give
an outline of the proof.

Let J,.:BSPL—BSF be the natural map. Let g, H"(BSF)
be the Wu class (r=2p—2 throughout). Our first main result is
that J#(Bg)#0 if i>p+1. (It is easy to show that J#(Bg;)=0
if £<<p). Our other main result is a computation of the p-torsion
of 2% in dimensions <Cp’7. In particular, we show that there is a
PL-manifold M of dimension (2p+1)r—1 of order p* in 25" such
that pM is not detected by any ordinary characteristic numbers.
Finally, we make a few conjectures concerning H*(MSPL).

2. H*(BSPL)

Sullivan [10] has proved that BSPL is of the same mod p
homotopy type as BSO X BCoker J, where B Coker J is a space

1) Partially supported by a Fulbright Fellowship.
2) All cohomology groups in this paper have coefficients Zp, p an odd prime,
unless otherwise stated.
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such that =,(BCoker J)=p-torsion of
Coker(J : ns (BSO)—n,(BSF)).

The proof of this has not appeared so we make a few remarks on
the proof. Sullivan shows that there exists a map BSPL—BSO
which is onto mod p. BCoker J is defined to be the fibre of this
map. It is known (e.g. by Adams, Anderson, Peterson and Sullivan)

that BSO is of the same mod p homotopy type as Y X Y’, where

p-1_4
_|(Z i=0(») ;R . v
(YY) = {0 otherwise and Y'= il_'ll 2Y(Y). Also, Sullivan [11] proves

that F/PL;BSO. Map BSOXxBCoker J—BSPL as follows:
BSO x BCokerJ—Y X Y'x BCoker J—>BSPLXF/PL x BCoker [
—BSPL X BSPLXxBSPL—-BSPL and the composition is a homotopy
equivalence. Note that BSO Xpt.—~BSPL is not the usual map of
BSO—-BSPL. Also, H*(BCoker J) has a Z,basis, in dimensions
<2pr—2 consisting of &, pé;, &'Be; and pS'Re;, by direct compu-
tation, where & is the image under BCoker J L. BSPLI*S BSF of
e H"'(BSF).

Theorem 2.1. j*J:i(q,) =upe;, where n#0(p).

Proof. Let f:S”'—BCoker J be a map corresponding to g,
in 7,-.(S). Let g:S8"'U,e”—>BCoker J be an extension of f.
Let @ :Ker(29*—pSL")—Coker * be an unstable secondary opera-
tion defined on classes of dimenion # by the relation

PrE(2PIR—BP) = — 21— BPr — ( g - g) Prig— — gpr

which is zero on classes of dimension <<#. In the first lemma of
§6 of [9], Stasheff shows the following relation in H”(BSF): one
can choose @ such that q,=i0(q,)+ npe;, where 2#£0(p). Clearly,
g¥j*J(0(g)) =0 with zero indeterminacy. To show »#0(p), it
is enough to show g*j*J#(q,)#0. Let X be the Thom space of
Jerjg : S 'U,e”">BSF(N). Then X=S"U,e"""'UJe"'*, and
2] =B, (see proposition 4.5 of [13]). By the main result of [3],
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on H¥(Y), P*=3a0;+ pf¥, where 0, and ¥ are secondary operations,
nZ0(p), dimae,>1, and ¥ detects B,. Thus, in H*(X), we have
P(U)=g*j*Jsi(q,) - U=pp¥(U)=pg*(Be,)- U which proves the
theorem.

Corollary 2.2. J:(Bg,..) #O.

Proof. By theorem 2.1, j*J%(q,) =¢,. But P'q,=pq,1—Bq:"
d»—q1° Bq,, hence j* JrL(Bgp1) = ppP pe:+ 0= P e, #0 as JrL(Rg.) =0
and so JA(Bg;)=0, i<<p by the relation P'Bq;=iBq:.1—q.Bq; (see
(9D).

Corollary 2.3. [J#£(Bg)+#0 if i>p+1.

Proof. Let «:H*(BSPL)—»H*(BSPL)YQH*(BSPL) be the
diagonal map. Since Jr(q;) =3¢,8q;-;, the corollary follows by in-
duction using corollary 2. 2.

In preparation for the next section, we note the following
corollary of 2.2. Let 6: A—=H*(MSPL) be defined by 6(a) =a(U).
One might conjecture that 6(Q.) =0, where @ are the Milnor
elements [6]. 0(Q,)=Q,(U)=0 and 0(Q,) =]k (Bq,) - U=0.

Corollary 2.4. 6(Q.)+0.

Proof. By proposition 3.1 of [8], 0(Q.) =]k (Bq,.) U with
A#0. Now apply corollary 2. 2.

3. of

In this section we state our results on 24" We first note that
corollary 2.2 shows that the first lemma on p. 32 of [12] is incorrect,
so the calculations of the 3-torsion of 24" in [12] are incorrect.
However, the answers in [12] are correct.

Peterson and Toda [8] have proved H*(BSF)=Z,[q.1QE(Bq;)
®C, where C is (pr—2)-connected. In the range we will work in
it is not difficult to show that H*(BCoker J)=C as an algebra

over . In fact, one conjectures that this is true in all dimensions.
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(Note however that theorem 2.1 shows that the map Jt:Z,[q:]
QRE(Bg,)RC—H*(BSO) x H*(BCoker J) is not as simple as one
might expect.) Furthermore, Stasheff [9] has computed C explicitly
in dimensions <<(p*+1)r—1 and has shown the following result.”

Theorem. 3.1. In dim.<<(p*+1)r—1, Cis a free commutative
algebra with truncation of height p on genevators {a(e.)}, where
{a} runs through an additive base of A/ AP, 2P*PR—PR),
and e, Be., and B.(e,- (Be))?), where e C* and e =C" .

Sullivan [10] shows that the spliting BSPL;BSO x BCoker J
respects the universal bundle and hence MSPL;MSONMCoker J.
(This is not hard when p=3, but more difficult if p>3.) Hence,
H*(MSPL)=~H*(MSO)QH*(MCoker J). To compute =, (MSPL)
~0% (by Williamson [12]), we wish to compute H*(MSPL) as a
module over ./ and apply the Adams spectral sequence. Now
H*(MSO) =3' (see [1]), where A=A/ JE, and E=E(Q, @, Q.,
--.) is the exterior algebra on the Milnor elements Q,& A® '+ +rtr+t
The results of [1] show that the 4-module structure of 'ARQN
depends only on the E-module structure of N and further that
Ext a(AQN, Z,)=Ext:(N, Z,). Hence we must compute H*(M
Coker J) as an E-module. Corollary 2.4 shows that @.(U) = pus%"pe,
-U, with ##0(p). Using this result, theorem 3. 1, and direct compu-
tation, we obtain the following theorem.

Theorem 3.2. In dimensions <(p*+1)r—1, as module over
A, H¥*(MSPL) is isomorphic to a divect sum of copies of a module
M plus copies of A/ AR, plus a free module, where M has four
generators, dim X,=0, dim X;=pr—1, dim X,=2pr—1 dim X,
=@2p+1Dr—1, with relations Q,(X,)=0, @ (X,)=0 &.(X,)
=QQ: (X)), and Qo(X:) +Q(X:)+Q.(X,)=0. Let p=3 for con-
venience in stating specific rvesults. Let {y.-U} be an ' -basis
for H*(MSO). Then the generators for the modules M are

3) Recently, May [4] and Milgram [5] have made great progress towards deter-
mining H*(BSF) and one hopes that the results in this section can be generalized.
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quadruples (Xo=y«-U, Xi=Ys-€,-U, Xo=ya(1-pe'—P%,)-U, X,
=9yq- (Pte,—e,- P'Bey) - U), the generators for copies of A/ AQ, are
e.(Be)? U and B.(ei- (Be)?*-U), and genmerators for copies of A are
Pe,- U, Pte,- U, e,-Pe,- U, e,- U, e,P%;- U, and e,- P'e,- U.

It is not difficult to construct Ext a(H*(MSPL), Z,) and to
note that all differentials must be zero for dimensional reasons in
the range of dimensions under discussion except a differential from
t—s=36 to {—s=35. From this we obtain the following theorem.

Theorem 3.3. In dimensions <<(p*+1)r—1, we have that
(@5 /torsion)RQZ, is a polynomial ring. Let p=3 as above. In
dimensions <39, the 3-torsion of Q)" is given by the following
table:

Generators Dimension Order Detected by
Mo x M™ 11+dim M. 3 Yo'y
M. x M 23+dim M, 3 Yo Pe,
M, x M2 23 +dim My 3 Yo €1 B
M. x MY 27+dim M, 9 Yo (Ples—e,- P'Re;)
Mz x M7 27+ dim M, 3 Yo Ple
M 34 3 e-Pe,
MF 35 3 e
i 35 3 e B,
i 35 9 e;- (Bey)?
M*® 38 3 e Pley

Here M, are elements in QF detected by y.. The dimensions such
M. appear in are 0, 8, 12, 16, 20, 24, 24, 24 in the range under
discussion.

Easy computation shows that e,- (Be,)* gives an element of order
9 in H¥*(MSPL; Z,) which detects all multiples of M. However
Pe,—e,-P'Re, is only of order 3 and we have the following corollary.

Corollary 3.4. In dimensions <26, all elements in 2 are
detected by ordinary characteristic classes. There is an MY of
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order 9 such that 3MY is not detected by an ordinary charac-
teristic class.

Proof. Since all elements of 2-torsion are detected by ordinary

characteristic classes [2], just look at the above table.

(11
£z]
[31]
(41
51
L61
L71
L8l
[9]
[10]
(11]
(12]

[13]
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