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1. Introduction.

To classify Riemann surfaces (simply, “surfaces’) by Hardy classes
seems to have long been an open question. Recently Heins solved this
problem thoroughly in his Springer lecture note [ 2, pp. 34-51]. The
objective of the present article is to show that surfaces R of class OHp
(0<p<oo) or of class Oyp or of class Ors [ 2, p. 35] are characterized
by a certain topological property of analytic functions on R, where Oy,
denotes the totality of surfaces R on which Hardy class H,(R) contains
only constant members. The reader should know what is meant by
Oap, O4p and Omp [1, pp. 200 and 1987

A complex-valued harmonic function f on a surface R is said to
be open if w=f(P), PE R, carries open subsets of R to those of the
w-plane. Given a surface R, we denote by ZL(R), #,(R)(0< p< o),
#(R) and 2(R) the classes of open harmonic functions f on R such
that log*|f| has a harmonic majorant on R, |f|? has a harmonic
majorant on R, f is bounded on R and j has finite Dirichlet integral
on R, respectively. We denote by Ox(X=2, #,, #, 2) the class of
surfaces R on which X(R) is empty. Then we have

(1) 0n,=0s, for 0<p<oco.

2) 04.5=0g and O0pa=0_2.
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3 048<09C0ap,

where < denotes the strict inclusion.

2. Proofs.

According to Yamaguchi [ 3, Theorem [I]], for any open harmonic
function f=u+iv on REO,p there exists a single-valued conjugate u*
of u=Re fon R such that Im f=y=au+Bu*+7, where @, 8 and 7

are real constants and f0. Thus we have

4) f=B8g+bu+c on REOys

where g=u+iu* b=1—fF+ia and c=iy.

We first prove (1). The inclusion 011,,)02',, is trivial since non-
constant analytic function is an open map. Assume that there exists
f=u+ive#y(R) for some RE€Oy, COsp. Then |u|?(X|f]?) admits
a harmonic majorant on R. By (4) combined with B0 and by the
well-known inequality [2, p. 10]: (A+ B)? <2?(A4?+ B?) for A, B0,
0<p<eoo, we have g€ H,(R), so that g is a complex constant on
Re€O0y, Therefore (4) shows that f is not open; this is a contradic-
tion,

The proof of (2) is analogous to that of (1). For the proof of
014=0¢ we use (4) and the inequality: log"™(4d+ B)<log*4+log*B
+log 2 for A, B=0.

To prove (3) we recall Toki's theorem that there is no inclusion
relation between Oup and Oyp [ 1, p. 264 ]. Assume now that there ex-
ists f=u+iv€ 2(R) for some R€0ypOap. Then, in (4), g€ AD(R)
and hence g must be a constant; this contradicts openness of f. Thus
we have Oap(0g. Assume next that Oap=0g. Then by OxpCOg

we have OypCOyup; a contradiction to Toki’s theorem.
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