Notes on classification of Riemann surfaces

By

Shinji Yamashita

(Communicated by Professor Kusunoki, November 24, 1970)

1. Introduction.

To classify Riemann surfaces (simply, "surfaces") by Hardy classes seems to have long been an open question. Recently Heins solved this problem thoroughly in his Springer lecture note [2, pp. 34-51]. The objective of the present article is to show that surfaces R of class O_{H_p} $(0 or of class <math>O_{AB}$ or of class O_{LA} [2, p. 35] are characterized by a certain topological property of analytic functions on R, where O_{H_p} denotes the totality of surfaces R on which Hardy class $H_p(R)$ contains only constant members. The reader should know what is meant by O_{AB} , O_{AD} and O_{HD} [1, pp. 200 and 198].

A complex-valued harmonic function f on a surface R is said to be open if w=f(P), $P \in R$, carries open subsets of R to those of the w-plane. Given a surface R, we denote by $\mathscr{L}(R)$, $\mathscr{H}_p(R) (0 ,$ $<math>\mathscr{B}(R)$ and $\mathscr{D}(R)$ the classes of open harmonic functions f on R such that $\log^+|f|$ has a harmonic majorant on R, $|f|^p$ has a harmonic majorant on R, f is bounded on R and f has finite Dirichlet integral on R, respectively. We denote by $O_X(X=\mathscr{L}, \mathscr{H}_p, \mathscr{B}, \mathscr{D})$ the class of surfaces R on which X(R) is *empty*. Then we have

(1) $O_{H_p} = O_{\mathscr{F}_p}$ for 0 .

(2) $O_{AB} = O_{\mathscr{B}}$ and $O_{LA} = O_{\mathscr{L}}$.

Shinji Yamashita

where < denotes the strict inclusion.

2. Proofs.

According to Yamaguchi [3, Theorem [1]], for any open harmonic function f=u+iv on $R \in O_{AB}$ there exists a single-valued conjugate u^* of $u \equiv \operatorname{Re} f$ on R such that $\operatorname{Im} f \equiv v = \alpha u + \beta u^* + \gamma$, where α , β and γ are real constants and $\beta \neq 0$. Thus we have

(4)
$$f = \beta g + b u + c$$
 on $R \in O_{AB}$,

where $g=u+iu^*$, $b=1-\beta+i\alpha$ and $c=i\gamma$.

We first prove (1). The inclusion $O_{H_p} \supset O_{\mathscr{H}_p}$ is trivial since nonconstant analytic function is an open map. Assume that there exists $f = u + iv \in \mathscr{H}_p(R)$ for some $R \in O_{H_p} \subset O_{AB}$. Then $|u|^p (\leq |f|^p)$ admits a harmonic majorant on R. By (4) combined with $\beta \neq 0$ and by the well-known inequality [2, p. 10]: $(A+B)^p \leq 2^p (A^p + B^p)$ for $A, B \geq 0$, $0 , we have <math>g \in H_p(R)$, so that g is a complex constant on $R \in O_{H_p}$. Therefore (4) shows that f is not open; this is a contradiction.

The proof of (2) is analogous to that of (1). For the proof of $O_{LA}=O_{\mathscr{L}}$ we use (4) and the inequality: $\log^+(A+B) \leq \log^+A + \log^+B + \log 2$ for $A, B \geq 0$.

To prove (3) we recall Tôki's theorem that there is no inclusion relation between O_{AB} and O_{HD} [1, p. 264]. Assume now that there exists $f = u + iv \in \mathscr{D}(R)$ for some $R \in O_{AB} \subset O_{AD}$. Then, in (4), $g \in AD(R)$ and hence g must be a constant; this contradicts openness of f. Thus we have $O_{AB} \subset O_{\mathscr{D}}$. Assume next that $O_{AB} = O_{\mathscr{D}}$. Then by $O_{HD} \subset O_{\mathscr{D}}$ we have $O_{HD} \subset O_{AB}$; a contradiction to Tôki's theorem.

Tôhoku University

References

[1] L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton, N. J. (1960).

312

- [2] M. Heins, Hardy classes on Riemann surfaces, Lecture Notes in Mathematics, No. 98, Berlin-Heidelberg-New York (1969).
- [3] H. Yamaguchi, Holomorphic functions and open harmonic mappings, J. Math. Kyoto Univ. 9 (1969), 381-391.

.