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§1. Introduction

We consider the mixed problems for the first order hyperbolic

systems in a quarter space, t>0, x>0, y €R"";

% w(t)=Lu(t)+f(2)

D Ju(0)=g
Bu(t) | x=0:h:

where L:Aai—l-”‘;“lB 9 +K, 4, B; and K are Nx N matrices and
x

i=1 jW

B is a [ x N matrix.

The aim of this article is to derive energy inequalities of the
solutions for the mixed problems (1.1).

We assume as follows;
A.I) The coefficients of (L, B) are independent of ¢, sufficiently smooth
with respect to (x, ¥) in R” and constant outside a compact set in R".
The coefficients of L are real valued and A is non singular.
A.II) is strictly hyperbolic, that is, A+ 2 B;y; has only real distinct
eigen values for (x, y) €R”, (§,7)€R”, (§, 7)5=0. Hence

M(x, y; 2, 7)=A"'(A—iZB;y,), ReA>0, € R*!

has not real eigen values. Let %k of eigen values have negative real

parts. Then we can find a smooth NX N matrix U(x, y: 4, 7) homo-
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geneous of degree zero with respect to (4, %) such that for (x, y) €R”",
7€R", Re2 >0, (4, 7) %0,

|U(x, 32 24, )| 1U M=, y: 4, 7)| < const.,
and

U x, y: 4, ) M(x, v: A, ) U(x, y: &, 7)

<M1(x3 )’1 /{a 77) * >
0 My(x, y: 2, 7) ,

where M,(resp. M) is a k  k(resp.(N—k)x (N—k)) matrix which has
only eigen values with negative (resp. positive) real parts. Let decom-
pose U=(U,, U;), where U (resp. U;) is a Nxk(resp. Nx(N—k))
matrix.
A.III) (L, B) satisfies the uniform Lopatinski’s condition, that is, =k
and the ! x [ matrix (B(y)-U.(0, y; 4, 7)) is non singular for y€ R™1,
7€R" ! Red =0, |A|%+ |7|2=1.

Moreover we assume
A.IV) A=A(x) is independent of y in R*7%.

Then we have

Theorem. Assume A.I, A.II, A.IIl and A.IV. Let u(¢) belong
to &9(H'(R%)) and &}(L*(R”)). Then there exist positive constants C
and 4, such that

i
I|e""u(t)|lz+go/z!}e Hruls) 4 <e (s, 0)>*ds

=CH{

t
gt L e i <t >2ash
for t =0, £ = uo. (Notation is explained in the next section.)

§2. Notation

R”(C*): n-dimensional real (complex) Euclidian space.
R%: the set {(x, y); x>0, yeR" '},
Hs(R")(H*(R%)): the space of functions of which s times derivatives are

square integrable in R”(R%).
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&%(E): the space of functions of which p times derivatives are continu-
ous in E with respect to ¢.

( , ): the inner product in LZ(R?").

<, >: the inner product in L%(R"™1).

(<+>): the norm of L*(R*)(L%(R""1)).

[4, B]: the commutator of two operators 4 and B.

uo: the extension of u in L%*(R") such that

{u(x, ), for x>0
for x <0.

uo(x, y):

a(§, 7): the Fourier transform of u(x, y), x €R', yeR*™!

i(¢, 77)=Se""5”'y"’u(x, y)dxdy.
#(y): the Fourier transform of u(y), yeR"™!
ﬁ(v)=Se"'"”u(y) dy.
Li(I; E): the space of functions u(t) which satisfy
f Jlerru@lzai<eo,
where I is (0, o) or (— oo, ) and x is real number.

§3. Stationary problems and Adjoint problems

Let us consider the following boundary value problem with a pa-
rameter 4, ReA>0, in the half space R%:
(A=L)yv=f in R%

(3.1)
Bv|,_o=h in R*1,

The basic apriori estimate of the solution of (2.1) has been

obtained by O. K. Kreiss [4] as follows;

Lemma 3.1. Assume that A.1, A.Il and A.1ll are valid. Let v
be in H'(R%). Then there exists a positive comstant sy such that it



452 Kunihiko Kajitani

holds for any A with Rel=u= po
(3.2) Allol2+ <v(0)>? < const. (%||f||2+ <h>*).

We shall obtain the existence of the solution to the problem (2.1)
by use of the estimate (3.2). For this purpose we consider the adjoint
problem of (3.1);

(A—L*NYw=¢ in R%
(3.1)*
Blw|x=0:¢ in Rn_l)

where L™ is the formal adjoint of L and B’ is a (N—[)x N matrix
of which kernel is the complement of (4(0, y) Ker B(y)) in C”.

Lamma 3.2. If (L, B) satisfies the assumptions A.1, A1l and
A.1lL, so does (L, B).

Moreover the following Green’s formula holds;

Lemma 3.3. Let v and w be in H'(R%). There exist a IX N
matrix C and (N—1)N matrix C' such that

(3.3) (A=Lyv, w)— (v, (v —L*)w)

=< Bv(0), Cw(0)>+ <Cv(0), Bw(0)>,
and

(3.4) < v(0)><const. (<Bv(0)>+<Cv(0)>)
3.4
<w(0)><const. (<Bw(0)>+<Cw(0)>).

The above two lemmas shall be proved in the appendix. From

Lemma 3.2 and 3.3 we have as the corollary of Lemma 3.1;

Lemma 3.1.% Let w be in H'(R"). There exists a positive

constant ¥ such that it holds for any complex number N\ with
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Re\ = u=> uf,
B*  alwll+ <w(0)>*Seonst. (. llpl+ <p>?).

Let f and h be in L*(R%) and L?*(R""') respectively. Then we
say that v in L%(R%) is a weak solution of (3.1), if it holds

(3'5) (f’ w)—(v, (X—L(*))W): <h: C,W(O)>,

for all w in H'(R%) with Bw(0)=0.
In order to prove the existence of weak solution of (3.1), we need

an essential lemma given by Lax and Phillips [5]. We denote by
HY(R*1) the dual space of H(R"™ ).

Lemma 3.5. Let v be a weak solution of (2.1). Then v(x)
belongs to &(H *(R""Y)) and

lim Bv(x)=h in H '(R"*1).

2-+0

Proof. Denote by p.(y) a mollifier in R, We write v,=pg*v.

Since v satisfies (3.5), We have

(A—Lyv=f

in distribution sense in R%. Hence v, belongs to H'(R”) and satisfies

v (AT ek 2 B o]
O =1 ) 3| B2 —f.
A i Ve A ZBJ ayj vet+ j ayj s Oe |V fé)
where f.=p:*f. Since A is non singular, we have for almost every y,

ve(x) —ve(x)= S;A*Kl——ZBjaiyj) v5+2|:B,'3(§/T , pe] v—fc-} dx.

Hence we have
<ve(x)—ve(x") > H-1me-y

<const. | x— x| (||vel|>+ [lo[|2+ | fel|?).
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This shows that v.(x) belongs to &%(H '(R"')) for any ¢>0. And
for any ¢ ¢’>0 and every x>0

<ve(x) —ve(x) >H-1rr-yy

< const. (|[ve—ve >+ 1| fe—ferll>+ 1l ge — gerll?) s

where g.=2 [Bj-éi}—, 05] v. Since it holds g. converges to zero in
f)
L*(R%) for €0, v(x) converges to v(x) uniformly in &(H '(R*™1)).

Moreover by Green’s formula, we obtain
(fes w)—(ve, A —LH)w)
=(ge, w)+ < Ave(0), w(0)>
=(ge, w)+ <Bv(0), Cw(0)>.
Hence taking ¢ — 0, we obtain from (3.5)
< Bv(0)—h, C'w(0)>=0
for all w in HYR?) with B'w(0)=0. In view of (3.4), we obtain
Bv(0)=h (c.f. Appendix). q.ed.

As the corollary of the above lemma we have

Lemma 3.6. If v is a weak solution of (3.1), then v satisfies the
inequality (3.2).

Proof. Let put ve=p%v. Then v, satisfies

{(A_L)'Ue:fe‘*‘cev
B‘UG(O) =h. +Hev(0)s

where Ce:A[A“</I—Z'B,«—a%>, pe], H.=[p0:, B]. fe=Ape+(A7'f)
J

and h.=pexh. Since v. is in H'(R%), we have

(3.6)  sllvell” + <ve(0)>*
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< const. {—ﬂl——(||fe||2+||cev||2>+ <he>P+ <Hev<0>>2}.

From the fact that v is in L?(R%) and »(0) in H '(R""!) it follows
that ||C.v||°—>0 and <H,v(0)>%—>0 for ¢—0 respectively. Taking

e—0 in (3.6), our assertion is proved. q.e.d.

Theorem 3.1. Assume that A.1, A.Il and A.11l are valid. Then
for any f in L*(R%) and h in L*(R"™') there exists uniquely the weak
solution v of (3.1) which satisfies the inequality (3.2).

Proof. We first consider the homogeneous boundary condition,
that is, A=0. We denote by 2(L™) the graph norm closure of the
set {we H*(R%); B'w(0)=0}. Then 2(L™) is a Hilbert space with
the inner product

lllldzen = (v —L¥)w, (A —L*)w).

Since |(f, W—L*)w) || FIIl0—L*)w|| for any we 2(L™), by Riez
theorem we can find g in 2(L™) such that

(fa (l _L(*)) W)=(g, w)Q(L(*))

Hence if we put v=(\—L™)g, v is a weak solution of (3.1) with
h=0. We next consider the case h5=0. Let {h,} in C;(R""!) be the

sequence such that
<hy—h>—0(n— o).
Then we can find ¢, in H'(R%) such that
Boa(0)=h,
Let v, be a weak solution of
(A—=L)v,=f—@A—L) ¢,
Bv,;(0)=0.

Then v,=¢,+v, is a weak solution of (3.1) with A, and satisfies
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(3.2). Hence taking n— oo, v, converges and it’s limit v is a weak
solution of (3.1). The uniqueness of the weak solution is assured
by Lemma 3.6.

We next investigate the regularity of the weak solution of (3.1).

Theorem 3.2. Assume that A.1, A.1l and A.11l are valid. Then
for any f in H™(R%) and h in H™(R"™') there exists a solution v in
H™(R%) of (3.1) which satisfies

(3.7) ﬂnvn,znti 121%<Di(0) > b i
1t+7=

gconst.{ i I/IIZj(%IIfIIZ-,-+ <h>72n—j)} ,

j=0

Jor = pw>0.

Proof. It suffices to prove that our statement in case m=1
holds. We shall show that D, v belongs to L*(R%)(j=1, ..., n—1).
From the fact that A4 is non singular it follows that D,v is in L%(R%).
Let us put Vo='(D,v, ..., Dy v). Then Vo(x) is in #AH*(R*1)),
because v(x) is in #Y(H'(R""')) by Lemma 3.5, and V,(x) satisfies

{(/l —LV,=F in distribution sense
BV (0)=H in H™*(R"),

where
Y B;
- n-1
I=[ 4.9 o —a—+(A—a—(A‘lB,~))
“ Jox 4 0y; 0y
0 4 0 B
0 -1 a -1
K A——(AT'K)v+A———(47'f)
On On
+ .'l 0 b ) F= E b]
) )
0 K A -1 A
Ty (A vt d g (A7)
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6 yl

/B 0
: , B= ‘. .
9 9 0 B
it <ay,,_1 B) o(0).

In the other hand, we can show analogously to the proof of Theorem
3.1 that there exists a weak solution ¥ in L?(R%) such that

0 h (%) Bw(0)

(A—LyV=F
{B V(0)=H,
and satisfies
(3.8) LIV |2+ <V (0)>2 < const. (—;—||F||2+ <H>?).

Our assertion is that V, is equal to V. We put W=V—-V, We
define A4, such that
, -1
Ax”——(lll —-A}') 23

where 4, is a Laplacian in R""'. Then we can see easily that A, W

is in L?(R") and satisfies in a weak sense
{(/I—E)Ax W=F,
BAx W(0)=Hx s

where F,= 4| 4, A—I(A—EB,-—O%_ | and H,=C4,, BIF). Hence
i
we have by (3.8)

(3.9)  ull W |2+ < AW (0)>* < const. (%nmm <H>?).

On the other hand we can show easily that
| F5|| < const. || A W[,

and

< Hy,>=< const. I}1—|<Ax W(0)>.
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Hence there exists a constant #; such that for x> u, we have A, W=0.
This completes our assertion. And (3.8) implies (3.7) with m=1.
g.e.d.

Remark. Theorem 3.1 and 3.2 are valid for the adjoint problem
B.1)*

§4. Energy Inequalities.

To derive the energy inequality of a solution u(t) of the mixed
problem (1.1), we shall use the solution of the adjoint problem of (1.1).
This idea is introduced by R. Sakamoto who treated the single higher
order hyperbolic equations [7]. In this section we impose the assump-
tions A.I, A.II, A.III and A.IV stated in the introduction.

Let u(¢) be in L2((0, o); H'(R®)) and gt_u(z) in L2((0, o0);
L%*(R%)) for #>0. Let ¢(¢t) be equal to u(t) for t >0 and to zero
for t<0 and ¢(¢) be equal to Cu(t, 0) for t >0 and to zero for ¢<0.
Here C is composed in Lemma 3.2. Then we can find ¢,(t) in
CF(RE*Y) and ¢,(t)=¢a(t, y) in C3(R") such that

2a() > (1) in Li((— oo, 00); LA(RY)),

and
Ga() > ¢()  in LE((— o0, 00); LA(R"1)).

Then we have

Proposition 4.1. For ¢,(t) and (.(t) there exists functions v,(t)
such that

D 0u(e) is in L2,((— 00, 00); HA(RD) and 2 0,(t) in L2,((— o, );
L%(R%)) and satisfies
—aaTvn(t)=—L*vn(t)—ﬂe_z"'%(t) in RY

B/’U,,(t, 0)=e—2"'¢n(t) in R”—la
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for t€(—o0, ) and u>p,>0, where L* is a formal adjoint of L.
i) It holds for pu>pu,>0,

(™ llem v+ <er'u,(e, 0)>de

<const.g” tlle 0|12+ < e pu(e)>2ds,
iii) and

oI < const.|~_alle ™ gaIP+ < e g,(0)>d.

Proof. Let ¢,(1) and ¢,(1) be Lapace transforms of ¢,(¢) and
¢a(t) respectively, that is,
@,,(Z)ZS_ e_’”¢n(t)dt>
and
</3(/1)=Sm e ™M, (t)dt,
where A=u-+io, p>0.
Then we note that

(4.1) [ loaiizas={" ol ds
and
(4.2) (" <huw>rao={" <erg,>2an

Let w,(1) be the solution which satisfies
(4.3) A—=LP)w, ()= —up,(2)  in R%,
Buw, (1, 0)=¢,(2) in R*1,

It follows from Theorem 3.1 and 3.2 that w,(1) is sufficiently smooth

and satisfies

(4.4) ﬂHwn(l)Hz"' <wa(4, 0)>2
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< const. (#l|@x(DII*+ <Pu(2)>?) .
We define v,(t) as follow for u= u,,
v,,(t)=—1—S“ e w,(2)do,
27 J)-w

where A=u+io0.
Noting that

Ol O

and

S e”t

we obtain i) from (4.3). And integration of (4.4) with respect to ¢

aat 'vn(t)” Zd[ = gianan(o”zdo.,

implies ii). To prove iii) we need introduce the symmetrizer of the

operator L.

Lemma 4.1. Suppose that a(x, y; &, 7)=A+ ZB,n, has only
real distinct eigen values for (x, y) ER”, (&, ) €R”, (6 7)5#=0. Then
there exists the matrix r(x, y; &, 1) which has the following properties:

i) r(x, y; & 9) is a symmetric and positive definite matrix homo-
geneous of degree zero with respect to (£, 7),

i) (ra) (x, y; & 7) is symmetric.

iii) r(x, y;§,0) is independent of & (denote by ro(x, y)),

iv) r(x, y; &, ) is sufficiently smooth for (x, y) ER”, (&, ) ER”,
(&, 770 and for any «, j, Df;Df,‘r(x, y; &€, 1) is analytic with respect

to & in a strip
Im¢|<0l7l, 750,

where 0 is a positive constant.

We decompose r(x, y; §, 7)=r(x, y; & 1) —ro(x, y)+ro(x, y) and
write r1(x, y; &, 7)=r(x, y; & 7)—ro(x, y). Let be R and R, singular
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integral operators with it’s symbol r(x, y; &, 7) and ri(x, y; &, 7) re-
spectively. Let u be in L2(R%) and u, is equal to z for x>0 and to

zero for x>0.

Lemma 4.2, There exists a partition of unity {a;} in R” such
that Y,a%=1 and for u € L*(R%)

(4.5) 5 @R+ RN aguo, ) Z0ull%,

J

where 0 is a positive constant and R* is the adjoint operator of R.

We write
H=1 S o;(R+R* H=- R
T 5 a;(R+ R*)a;, 1= 2iaiRia;
and
H, =% > a(R*—R)a;.
J
Then it is obivous that Hju, and Hyu, are in H'(R,) for u € H'(R%).

Hence integration by part gives

Lemma 4.2. For ue H(R%) it holds
(4.6) (H(Lu)o, u)+(Huo, Lu)
=((HL+L®H)uo, u)— <(4*rou)(0), u(0)>

— 2Re < (A*H, u0)(0), u(0)> — 2Re < (A*H, u0) (0), 1(0)>

Remark. We note that it holds for u € H'(R")
4.7 < (Hyuo)(0)>2%<const. ||Hzuol||%1zm < const. ||u||?
Furthermore we can estimate roughly
<(Hyuo) (0)>2 <L const. |||} g,

because the symbol ri(x, y; &, 7) has the following estimate for any
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multi integer (j, @)

(4.8) | DI Djri(x, y; & 7)| < const.

H
3

for £#0, 7€R"™', (x, y) €R". And it follows from ii) in Lemma 3.1
that

(4.9) |(HL+ LH) u,|| < const. ||u||.

The proof of iii) of Proposition 4.1; since wv,(¢t) satisfies i), we

have

(Hv,(0)0, 02(0)) = — S:% (He v,(1)o, e*,(1))de

=S:{2Re e (H(L*v,(t))0, v4(2)) — 24 (He* v,(t)o, e v,(t))
—2uRe(Heu(t)o, va(t))} dt.
According to Lemma 3.2, (4.7) and (4.9), we have
(410)  (Hoa(0)o, 0a(0)) const. | llera, DI+ e o, (DI

+ <e*v,(t, 0)> %+ <e*(Hyv,(t)o) (0)>%} de,

for #>#0>0. The main point of this article is the proof given in
the next section that for u> x>0,

(4.11) S:<eﬂ'(m 0u(£)0) (0)> 2 dt

gconst-{Sl{ﬂlle"'vn(t)”z + tlle™ @, (2)]]?

+ <e*vu(t, 0)>2} dt}.

The assumption A.IV) shall be used in order to derive this estimate.
From (4.5), (4.10), (4.11) and the estimate ii) it follows that the
estimate iii) holds. q.e.d.

Theorem 4.1. Assume that A.1, A.Il, A.IIl and A.IV are valid.
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Then these exists a constant py such that it holds for u(t), a solution
of (L.1) which is in LE((0, 0); H'(R)) and ’aaz_ w(e) in L2((0, 00):
LYR%)) for any u>> to,

(4.12) S:ﬂne-ﬂ'u(ouu <eMu(t, 0)>2ds

gconst.{||g|l2+S:—Z—Ile""f(t)||2+ <e Mh(t)>tdt}

Proof. Let v,(t) be a solution of the adjoint problem stated in

Proposition 4.1. Then according to Lemma 3.3, we have

(5 8) 00 00) (0, ()

= (g, v,,(O))+S:<Bu(t, 0), C'ua(z, 0)>
+ < Cu(t, 0), B'v,(¢, 0)>dt.
By i) in Proposition 4.1, we obtain
[ e u@), e o) +e Cutt, 0), e p,(0)> de
= (& va(O)+ | (f (), e0,))

— < e Mh(2), e C'v,(t, 0)>dt

Hence, when we take n— oo, by use of Schwarz inequality, ii) and

iii), we have
[ alle @I+ < e cu, 0)>2ds

<const. {llgl*+{ - lle FOI+ <e (o) > e}

+—;—S:ﬂ||e—ﬂ'u(t)||2+<e-m Culz, 0)>2dL.

This estimate and (3.4) imply (4.12). g.ed.

Remark. In the case of the homogeneous initial data, that is,
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g=0, the estimate (4.12) was derived by O.K. Kreiss [4].

Thorem 4.2. Under assumptions of Theorem 4.1, there exists a

constant po>0 such that for p>>
(4.13) l]e""u(t)llzgconst.{||g||2+S:%||e"“‘f(s)llz+ <e""h(s)>2ds}
for t in [0, o).

Proof. By the same way as the proof of iii) in Proposition 4.1,

we have

(4.14)  (Hu ™ u(t)o, e u(2)) — (Hu(0)o, u(0))

=S'ﬁ— (He** u(s)o, e=*u(s))ds

00s

= S;ZRe(He"‘s(Lu(s))o, e **u(s))+2Re(He *°f(s)o, e “ u(s))ds
—ZﬂS;(He““u(s)o, e *u(s))ds

o
gconst.go/llle""‘u(t)Hz+% lle=#s F(&) |2+ < e ulz, 0)>?

+ < e **(Hyu(s)o) (0)>2ds.

Then it holds
(4.15) ["<ertmun @ >
<const g+ ale )
+—271|e‘“’f(t>||2+ <etult, 0)>2dt}.

The main point of this article is to prove this inequality together
with (4.11). It’s proof shall be given in the next section. From (4.5),
(4.14) and (4.15), we have

|I<e—~'u(z)||2<00“5t'{Ilgllz+S:r“”e"”u(t)llz+717||e"“f(8>“2 \
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+ <e *uls, 0)>2ds} .

This and (4.12) imply (4.13). q.e.d.

Noting that for ¢<t, the solution u(¢) of (1.1) is independent of
f(t) and h(t) for ¢>¢o, we can obtain our main theorem stated in the

introduction from Theorem 4.1 and 4‘.2.

§5. Estimates of Mean Boundary Values

We shall prove the estimates (4.11) and (4.15). To do so we

shall make use of the method which was introduced by Friedrichs and
Lax [17].

5.1 The case of constant coefficients. Here we assume that

the coefficients of L are constant and that L is strictly hyperbolic. Let
u(e) be in LE(0, 02); H'(RD) and 2 u(2) in LE(0, e); L*(RY) for
#>0. And u(t) satisfies

(5.1) D w=Lu@®+f@®)  for 1>0,

where f(¢) is in L2((0, o0); L*(R%)).

Then we have

Theorem 5.1. Assume that the symbol ri(¢&,n) is homogeneous of
degree zero with respect to (£, ) in R”, analytic function of & in a strip
[Imé&|<0|9|, 50, and satisfies

(5.2) [r1(€, 7)| < const. —Z—I Sor £0.
Then it holds
(5.3) S:<e""(R1u(t)o)(0)>2dt

gconst.{||g||2+g —;—||e""f(t)||2-l—,Ll”e""u(t)“2

o
0
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+ <e *u(e, O)>2dt},

for u(t) satisfying (5.1), where g=u(0).

Proof. We denote by w»(1) the Laplace transform of u(t), that
is, RedA=u>0,

v(l)=gue‘”u(t)dt.
0
Then we can write

G4 Rio@) O, N=ghss| eni@ oA, & ) dedr,

where 9(4, &, y) stands for the Fourier transform of v(1), which is
equal to v(d) for x>0 and to zero for x<0. Hence #(4, &, ) is
analytic with respect to ¢ in Imé&<0. By assumption ri(§, 7) is
analytic in a strip |Imé&|<d|y|. So we may shift the line of integra-
tion with respect to ¢ in (5.4) into the complex plane, that is,

65 ( nemiaemde=|  nE e,

where 0<m<d7.

Lemma 5.1. ([1], [3]) There exists a positive constant k such
that

i) for |2|<2k|y| there exists a m=m(A, 5) in the range

(5.6) 2l <m <),
such that
(5.7) |(A—ia (&, 7))~'| < const. L

[&]°
for & with Im&é=—m(4, 5), where a (&, 7)= A+ 2 B;vy;,
ii) for |l|2—§—]77|, M2, 9)= A" (A—iXB;%;) has distinct eigen values
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&4, (=1, .-, N) and satisfies

|Re; (4, 7)| <const. 4,

for j=1,..., N.
In view of ii) we have

Lemma 5.2. There exists a NXN matrix S(A, ) homogeneous
of degree zero and symmetric positive definite such that S(A,0) is a

constant matrizx (=S,) and

(5.8) |Re (S(4, P M2, 7))| <const. 4,

for 121=>%-17].

By virtue of Lemma 5.1 and 5.2 we can estimate (5.5). We
assume |A|<k|y|. Since v(4,§&,y) satisfies

(2_13(69 77)) U(l, £, 77)=§(5, 77) +f(l) £, 77)+AT7(}\) 0, 77):

where g(¢, 7) is the Fourier transform of g(x, ¥)o, f(4,§,7%) is the
Fourier-Laplace transform of f(¢, x, ¥)o and #(4, 0, ) is the Fourier
transform of v(4, 0, y) with respect to y, we have by virtue of i) in

Lemma 5.1 for Imé=—m

A 1 A 7, ~
(5°9) |v(}~s 5) 77)' <C0n5t'|_$|‘{ I g(f, 77)' + |(f(}*) 53 77)' + Iv(l, 0’ 77) I}'
N
We denote by Rjv(2)o(0, 7) the Fourier transform of R;v(4)0(0, )
with respect to y. Then by virtue of (5.2), (5.9) and Schwarz

inequality, we have for |A|<k|y],

N 2
610) 1RO =[(  nemo & nae

gconst.lnlg _m|f1(l, &, n)|2d¢

Im§=
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<eonst {1 {12 1P+ 17 6 01+ 153 0,1

Hence we obtain

G0 { TR0, 1) 2o <const {[ 1 46, ) %de

1 ~ 2
17 6 tagdo+ {104, 0, )1 do}.

We next assume |A|>k|y|. We denote by ¥(4, x, 7) the Fourier
transform of »(4, x, y) with respect to y. Then ¥(4, x, 7) satisfies

Lo, 2 )= MG, )P, 3 )+ A7E G )+ Ty 5, 7).
Hence we have
(5~12) S(l, 77) b(i) 0) 77)'1\)(1) 0) 77)

= _S:_I;ix_{e—zsl’ll’S(l’ 77)17(1) X, 7)'5(1) Xy 77)} dx

=2017|{ e S U, A, %, )5 7 M

—2Re{ e S (4, 1) M(&, )24, %, 7)- 50 = D

—2Re{e 2152, 1) 4@ x, )+ Ay 2, 1), %, D

Since S(4, 7) is symmetric and positive definite, we have

|v(2, 2, 7)|* <const. (S(4, %, n)B(4, x, 7)-v(4, x, 7).

Hence by virtue of (5.8) and (5.12) we obtain

5.13) 191 { 1e73(2, %, 9)|2dx
< const. {ReS:e"z‘s"’"‘S(l, NAE (%, 7) (4, x, 9)dx

1 3 2 ~
+ (TG 1 3, |
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+15(, 0, w1, for [2]=klnl.

Considering that S(4, 0) is a constant matrix, that it holds

|S(A, 7)— S(2, 0)| < const. %l
and that

LST)(/I x 77)d(]'=L g(x,7)

27[ b b 2 b bl
we have

(5.14) ReglmmdoS"e-”'v'fS(x, ) A7 5 Cx, )58, 7y ) dee

0

gconst.{g;‘lg(x, 7| idx+ |77|Sl

+§ e—ZSIle
IMZkIg|

Noting that

dag" le=™*5(2, x, 7)| *da
0

M<Ekigl

|1 g 115G, 7, )| dods}.

const.g e 28Inlx
Nizhlgl

2| 18Gem | 19, %, )| doda

<l2lf o je i, s
2 Jnizkin o Jo

+const-S:|§(x, 7)|*dn,

we obtain by (5.13), (5.14) and (5.10)
(5.15) ol do{ leeaa, 5, ) 2
zklgl Jo
gconst.{g:l g(x,7)|*dx
+ {217 2 1+ 130, 2, P dod

+§ 15(2, 0, 77)|2da}.
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Hence if we decompose

o N
(" <Rio@o@>2as=( _ anf1R5C0000, 7)7ds

gconst.g dﬁ{lﬁlg do‘g”|e"”"b(l, x,7)|2dx
Rn-1 IVl

0

11§ aofT1etna(, 5, ) Pdal,

IMNZEln]

in view of (5.11) and (5.15) we obtain (5.3). q.ed.

Corollary 5.1. Let v(¢) be in L2, ((—oo, oo): H'(R%)) and
%—v(t) in L2,((— oo, 00): L*(R™)) for u>0. If for o(t) in
L2 ,((— o0, o0): L%(R%)), v(t) satisfies for t € (— oo, co)

(5.16) % o()= —LPu(t)+ o)  in R,

it follows that it holds

(" <eRin@ >t <const. {|” ulerw I

+—/1[||e"'¢(t)|lz+ <e*u(t, 0)>2dt}.

5.2 The case of variable coeflicients. Here we assume that
the coefficients of L are constant outside a compact set in R* and A4
is independent of y in R”"!. Let R be a pseudo differential operator
with it’s symbol r(x, y; &, %) which is homogeneous of degree zero
with respect to (¢, 7) and is independent of (x, y) outside a compact
set in R”. Moreover we assume that r(x, y; &, %) is sufficiently smooth,
(& 7)5=0, and that D,’;D;'r(x, y; &€, 1) are analytic with respect to &
in |Im¢&|<d|y|, 0>0 and satisfy

(5.17) | DD r(x, y; & 1) < Cia

Ll
¢

for all (j, a).
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Then we have

Theorem 5.2. Let u(t) be in L0, 0); H'(R%)) and %—u(t)

in L3((0, 0o); L*(R%)) for p#>0. If u(t) satisfies (5.1) for t>0, it
follows that there exists a positive number pu, such that

(5.18) S:<e""‘(Ru(t)o(0)>2dt

<oonst.{lgl1*+ { - lle# FO)I+ alleu o)

+ <e*u(t, 0)>Zdt},

for u> u,.

Proof. Since the symbol of R is independent of (x, y) outside a

compact set in R”, we can decompose
R=R,+R.,

where the symbol of R. is independent of (x, y) and the symbol
ri(x, y: €,7) of Ry has a compact support in R” with respect to (x, y).
Hence it is sufficient to prove (5.18) for R,. Moreover we assume
without generality that the support of u(z) is in B(0, y,)={(x, y) in
R™: |x]24 | y— 50| 2 <67}

Let Q; be the j-th path in R”"! and p,; be the distance of Q; from
the origin such that for %, 7" in Q;

(5.19) [7—7"|<eln|

and Z%— is convergent.
i

Then we can construct a Garding-type partition unity such that,

(ctf. [1]))

Lemma 5.3. There exists a set of C*(R*™") functions py(y) where
the support of pi(y) lies in Q; and such that for n €R"!
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and
20 D p: const.
(5.20) | Do) | < T

where constant is independent of j.

We denote by p;(D,) the pseudo differential operator with symbol
pi(n). Then pi(D,) are bounded, real symmetric operators and satisfy

2piDy)=1.
We denote by v(d) the Laplace transform of u(t). We write

(5.21)  <(Riv(1)o(0)>2= ; <(pi(Dy) R1v(2)0) (0)>*

=2 <(R1v;(2)0) (0)>24 2 <(C;v(A)0) (0) >,
where
vi(D)=pi(Dy)v(2) and C;=[R,, pi(D,)].

Then we have

Lemma 5.4. It holds for all j

(5.22) < C;u(2)o(0)>? < const. DL (D2
i

N
Proof. We denote by C;v,(0,%) the Fourier transform of

(Cjv0)(0, y) with respect to y. Then we can express
N
(5.23) C;v(0,7)
=—217Sm_,dv7’g_“f1(71—77’= & 1) (pin") —ps() 04, &, 7)d§,
where

Pp—7": & 7)= S e 0=r (0, y: &, 7)) dy,

Rn-1
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which is analytic with respect to ¢ in |Im¢|<d|%’| and in view of
(5.17) satisfies for ¢ with |Im¢|<0|%'|,

5.04 —'t &, const. |7 )
( ) [P(p—7": & ﬂ)ls(lv_ﬂll_*_l)rwl [€]

Hence by virtue of (5.20) we have for y' €Q;,

1 1
=7 |+D" [&]+o;

(5.25) [t(n—7": & 7)) (pi(n) — pi(n"))| < const. 4

with |Imé&|=0]%"|. On the other hand, since #,(y—7’; &, %) is analytic
in |Im¢&|<d|%'| and 9(4, &, ¥') is analytic in Im&<0, we may sift a
line of integration of (5.23) into the complex plane, that is,

(5.26) S:.f‘(” =75 & 7)0(4, & 7)dé

( W=7’ & 1)k, & 7)) dE.
Imé=-351y|

Therefore applying Hausdorff-Young’s inequality to (5.23), we obtain
(5.22) by mean of (5.25). q.e.d.

We shall estimate the first term in the right side of (5.21). To
do so, we must give two different arguments for |4|<kp; and for

[ 2| >ko;.

Lemma 5.5. It holds for |A|<ko;
(5.27)  <Ryv;(2)(0)>?

<eonst. {1 (gl + DI+ I@IH+ ek 0>},

where g;= pi(D,)g and fi(X) are the Laplace transforms of p;,(D,)f(t).

Proof. Let 7 be in Q;. Then we put m;=m(4, 7*”). Since we
have [2|<2k|7'| for [2]|<ko; and for y in Q; f1(n—7"; & 7) is
anlaytic in |Imé&|<(m;. Hence we can express
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i~ 1 ’ a /. N 2 ’
R O D= dr' (|  n—'s &m0/ &, 1)

Imé=—m;

Therefore we can estimate by virtue of (5.24)

(5.28) < Ryu;(2)e(0)>2 < const. m,.gl <o, &)>2de.

m§=—my

Applying the operator p;(D,) to the relation A—L)yv(A)=g+f(4A), we

can write
(5.29) (A—=L)vi(A)=h;(2)

where h;=p;(D,)(g+f ())+C’v() and where C’ is the commutator
of p;(Dy) and L.

Define the operator L; as
L= A(0) 2+ 5 B0, y) 11,
and denote its difference from L by M;
M;=L—L;.
Then we have
(5.30) || M; vl < const. {(e? 03+ Dl wjll> + 14,11} .

For, by definition of M;, we write

Myv;=(A(x)— AO) 2 v+ T(Bilx, H—Bi(0, y0)) % o

+ D80, 30 (50— i) vt Ko

Since v; satisfies

0 41— 0 o 4-1p
2 v=4 (x B K)v, Ak,

we can write

(5.31) M,.v,:(A(x)—A(O)){A-l(A—zB, aay : —K) vj—A‘lh,}
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0
+ 22 (Bi(x, y)—Bi(0, y0)) T Y
e

+ X B,(0, yo)(ai——iv”) v;+ Kv;.
n

Since the support of v;(x, y) is sufficiently small, | 4(x)—A4(0)| <e and

| B;—By(0, y0)| <e. Hence for [A|<2kp; the norm of the first term

and the second term in (5.31) is not greater than const. (ep;||v;||+||A;]).

And the norm of the third term is estimated by const. €p;||v;|| from

(5.19). Hence we have (5.30).

The relation (5.29) can be rewritted
(5.32) (A—L;)v;=M;v;+h;.

We take it’s Fourier transform with respect to x, we have

(5:33)  (A—ia(&, 71")o,(4 )= ;1) (&) + A(E)+ 4(0) (4, 0),
where a(g, 77(j))=A(0)$+ZI:B,(O, o). According to (i) of Lemma
5.1, for any ¢ there exists m(Z, 7¥), %Bln”’lgm(l, 79 <o |9 P

such that

(5.34) |(A—ia(&, 7))~ | < const. % ,

for all & with Imé=—m(4, %) and |1|<kpo,. Noting that
(5.35) % 0; <m; < 00j,
we obtain from (5.33) and (5.34) for Im¢= —m; and |1|<kp;
A 2 1 T 2 r 2
(56.36) <94, &)>*<const. v (K M;vi(6) >+ <hi(&)>?)
j

1

e

<o,(4, 0)> 2}.
Noting that

S L dégconst.# s

Img=-m, |€]* 0;
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and

(5.37) S[ . <1’>,-(E)>2d€=S:<e‘”’j"vj(x)>zdx,
mé=—my

we obtain by (5.36)

(5.38) SI o <D, > di <const. eS <o,2, &)>2de
mé=—my

Imf=—mj
. 1 2 1 2
+ const. \—5-||Aj]|* + ——<w;(4, 0)>?,
0j 0;
for |21 <kp;. For & with const.eg——;— (5.37) implies

(5.40) oy <oy, §)>?de Lconst. e+ <oa, 0>,
J

which and (5.28) lead us to (5.27) in view of (5.35) and of the fact
that |[|h]|<conmst. (|| g/l + 1| /5D +1lv(D)]). By integration of (5.27)
with respect to ¢=Im4, we have

(5.41) <(Ryv;(2)0)(0)>2do

SlMSkpl

2, (7 1 2 2

<const. {lgil*+{” L ALAWDIP+I@I
+ <oy, 0)>2da}.

Next we must consider the argument for |A1|>>kp;. In view of
(5.28) and (5.37), we have

(5.42) < (Ryv;(A))(0)>2<const. m,S: <e ™% v;(4, x)>idx.
Lemma 5.6. There exists a positive po such that

(5.43) m,-S do<e ™ vi(4, x)>%dx
IN2kp,

<const. {llgl*+ [ I AN+ allo @I+ <o, >*do
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+ 2 (olrdo o de<e s, 2> da)
m; Py

IN<k

for u> uo.

Proof. The equation (5.29) can be rewritten

0

(5.44) o

1)]'=M(X, Dy) U]+h/

where M2, Dy)=A‘1(/l— me,%) and k= g+ f,() +C;v(2), and
!

where g;= p;(47 g), fi(A)= p,(f(A)+Kv(2)) and C;=[M(4, D,), p;(D,)].

According to (ii) of Lemma 5.1, there exists a Nx N matrix s(x, y; 4, 7)

which is homogeneous of degree zero, symmetric, positive definite and
satisfies

(5.45) IRes(x, y; 4, 7)-M(x, y; 4, 7)| <const. x

for |l|2—é—l7y|. We define the pseudo differential operator S(4, D,)
with it’s symbol s(x, y; 4, 7). Since s(x, y; 4, %) is symmetric and
positive definite, we have for v(x, y) which support is sufficiently small,
(5.46) ((S+ S*) v, v) >const. ||v||?,
where S* is the adjoint operator of S(4, D,).

Since v;(4) satisfies (5.44), we have

(5-47) < (S+ S*) vf(l> 0)) v!’(la 0) >

= _S:%{e—2m1x<(8+ S*)‘Uj(l, x), 'Uj(l, x)>}dx
=2mjg:<(5+ S*)e—mjxvj(l’ x), e ™*p(A, %)> dx

— 2ReS:e'2'”f’< (S+S*)Mv;, v;>dx

—2ReS e (S+ S¥)hy, v,> dix

0

— 2ReS:e‘2"‘f’< (S+ S*) v, v;>dx.
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In view of (5.45), we obtain

2Reg:<S+ S*) Me "*v;(A, x), e "Fv (A, x)>dx

< const. ,ag:<e""/" v;(4, x)>%dx,
for |A|>kp;. Hence from this, (4.46) and (5.47) it follows that

(5.48) ij do’Sm<e_"'f’|r vj(4, x)>%dx
Mzkp,  Jo

"ot < (S+ Sy, v;> dx

lk|2kijO

< const. {ZReS

+S:<v,~(/l, 0>+ allu(R)|[*da}.

By definition of h;, we can write

e 2mE(S+ S*)hj, v;(A, x)>dx

0

2ReS
= 2ReS:e'2”‘f"(< (S+S5%)g), vi(4, )>
+<(S+ S§*) fi (D), vi(4, x) >+ <(S+ 8*) C;v(2), v;>)dx.
Since by assumption A is independent of y, it follows that
Ci:[M(}\, Dy)a Pj(Dy)]

=428 2, 0]

are bounded. Hence we have by Schwarz inequality
(5.49) const.g Ree 2"* < (S+ S*) Cjv, v;>dx
0

gi m,-gm< e " vi(A, x)>%dx +Const.L [lw;(D)])2.
4 0 m;

We note that s(x, y; 4, 0) is independent of 4. Denote it by So. Since

s(x, y; 4, 7) is homogeneous of degree zero, it satisfies

_77_|.
A

ls(x, ya l’ ﬂ)'—S(x, ya l) O)ISCO‘lSt-
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Hence we have

< (S—So)v;> < const. %l—<v,->.

Moreover since s(x, y; 4,%) is symmetric, the norm of the difference

S —S8* is not greater than const.—l— Hence we have

1l

(5.50)  const. {ReS dO'S:e‘z’”f" <(S+S*) g, vi(A, x)> dx}

|)\.|2ka

gconst.{g do‘S”Re e M < So gy, v;) A, %) > dx
Mzkp,  JO

+S|xlzkp,dag |l| <g,><v,(/l %>

0

I—pl-l eI gi> <> dx}.
Considering that
A it as,

we obtain

- —2mx . .
S|x|zkpdeSoRee #L S gj, vi(A)>dx
= RS:Re e Sogjy Agi>da
= —2myx . )
+Sxx|s»p,dUSORee < So gy vi(A)>dx

gconst.{llngz'ijS do‘S <e "Fpi(A, x))zdx}.
IM<Skpy 0
From this, (5.48), (5.49) and (5.50), it follows that

ij dO'S”e"”/"vj(l, x)>%dx
IMzkp, 0

<const. {1117+ |- LADIP + Al + -2 o] do
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+p,~$ do‘S:<e"”f"vj(/l, x)>2dx}

(M<kp,

+—1— m,-S dO'S”< e "2, x)>2dx,
2 II2kp; 0

which implies (5.43). q.e.d.

In view of (5.40), we obtain our assertion (5.18) from (5.41),
(5.42) and (5.43). This completes Theorem 5.2.

The analogous result for the solution of the adjoint problem holds,
that is,

Corollary 5.2. Let the symbol r, satisfy the same assumptions as
Theorem 5.2. Then for v(t) which have the same properties as Corollary
5.1 it holds

(" <er®iv@0 0> e

gconst.{g —2—Ile"'(o(t)llz-l-/llle“’v(t)llz—i-<e"'v(t, 0)>2dz}.

Appendix

Here we shall prove Lemma 3.2 and 3.3. Let us consider the

following differential equation with parameters (4, ), Re1>0, 7y €R",

) dix u(x)=MQ, pu(x)+f(x)

Bu(0)=g,

where M(4, 79)=A'(A—iZB;7;,). We may assume without generality

that 4 has the form
A, 0
A= ,
0 A4,

where A;(4;) has only negative (positive) eigen values. Hence U(4, 0)
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becomes the unit matrix. Here U(4, ) is the matrix constructed in

the introduction, that is,
Ml(l, 77) *
U, n) MQA, ) UQR, 1)= ,

0 Mz(l, 77)

where M;(M;) has only eigen values with negative (positive) real parts.
If B satisfies the Lopatinski’s condition, i.e, det(B.U(4, 5))50 for
(A4, 7), ReA>0, |2|%+ |7|*=1, B has the form B=(B,, B;), detB;#0.
In fact, we have BU;(4,0)=B; since U(4,0) is the unit matrix.
Hence we may assume that B has the form (I, B;), where I, is the
[ x 1 unit matrix. Let B’ be a (N—I)x N matrix of which kernel is

the orthogonal complement of (AKer B) in C¥. Then we have

Lemma A.l. B’ has the following form,
(A.2) B'=(—(4,B; A3Y)*, I,_)).

Proof. Assume that B’ has the form A.2). Let » be in CV.
Decompose v="'(vy, v3), v; €C’, v,€CN~!, We prove that KerB’' is

equal to (4.KerB)*. Let v be in Ker B’ and u in KerB, that is,

vo=(A4;B; A3)*v; and u;=—Bsu;. Then we have
<Au, v>=<Ayuy, 1>+ < Ayu,, v3>
=—<A1Byuz, v1 >+ <Asuz, (A1 By A7) v1>
=0,

for all u in KerB. Hence v belongs to (A4:-KerB)'. Let » be in
(AKer B)*. Then we can write for all u€KerB

0=<Adu, v>=<uz, Afvo— (41 B3)*v1>.
The above formula holds for all us; in CY!. Hence v belongs to

Ker B’.

Lemma A.2. There exist matrices C and C’ such that
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(4.3.) < Au, v>=<Bu, Cv>+<Cu, B'v>,

for u, v in CV.

Proof. We can write
<Au,v>=<A4diu, >+ <A4su;, v2>
= <(Bu—Bjus), Afv1> + < Asuz, (B'v+(A4B24;1)*v,) >
=< Bu, A¥v1>+ < Asu;, B'v>.

Putting C'=(4%, 0) and C=(0, 4;), we have the formula (A.3).
q.e.d.

/ *
Since the Nx N matrices (g)=<g’§z> and (g’>:(§§ I}\?_{), where Bj

= — (A, B; A;1)*, are non singular, we obtain (3.4).
Here we assume that A¢£+42B;7; has real distinct eigen values

and A and B; are real. Then we have

Lemma A.3. [1] If and only if B satisfies the wuniform
Lopatinski’s condition that is, det(B-U,(X, 7))5=0 for (4, %), Red >0,
|22+ |9|2=1, it follows that there exists the unique solution u(x) of
(A.1) for all (,7), Re A>0, and satisfies

(4.4) ﬂS:|u(x)|2dx+ lu(O)Ichonst.{S:%lf(x)lde+ 1%},

for all £=Rel>0.

We prove that B’ satisfies the uniform Lopatinski’s condition by use of
Lemma A.3. Let us consider the adjoint equation

o) = — (AN OFiZBE ) o(x)+ ()
(4.1)* ¥

B'v(0)=h.

Lemma A4. If and only if u(x) of u(x) of the solution of (A.l)
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satisfies (A.4), it follows that it holds for v(x) of the solution of (A.1)*

a5) 1o Pdx+ 10O P eonst {-L{ 1o 12+ 1917
for all (1, 3), ReA=u>0.
Proof. From (A.3) we have

(A.6) S:<Af(x), v(x)>dx—5:< u(x), A p(x)>dx

=—<g Cv(0)>—<Cu(0), p>.

We put Af(x)=uv(x) and g=C'v(0). Then u(x) satisfies by virtve
of (A.4),

(A7) ,US: lu(x) | 2dx + | (0) | 2< copst. (S:ﬂ]v(x) |2dx+ [C’v(0)|2>.

From (A.8) we obtain
A 1o P dxt €)1

=S:< u(x), A*¥e(x)>dx— <Cu(0, ¢ >.
Hence in view of (A.7) we have by Schwarz’s inequality
A 1o P dz+ | Co©) P <constd| o) Pdx+ 1917,

which and (3.4) imply (A.5). g.e.d.

Kyoro UNIVERSITY
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