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A  polyharmonic function is a C 2n solution, n > 2, of the equation

(1) zlnu=0.

We sometimes also use the term n-harmonic to specify th e  degree.
The object o f th e  present study is a polyharmonic classification of
Riemannian manifolds, i.e . the problem of existence of polyharmonic
functions with various boundedness properties. W e  s h a l l  show that

much of the biharmonic classification theory developed in Nakai-Sario

[ 4 1  [ 5 1 Sario-Wang-Range [9], and Kwon-Sario-Walsh DJ, can be
generalized to the polyharmonic case. T h e  higher degree brings forth

fascinating new versality, as various boundedness conditions can be sepa-

rately imposed on the functions and the iterates of the Laplacian.

In §1 we introduce the quasipolyharmonic classification of Rieman-

nian manifolds based on  the equation i f  u = 1 , and characterize the
corresponding null classes in terms of the harmonic Green's function.

Polyharmonic projection and decomposition are the topics of § 2. As an

application we find a  necessary and sufficient condition for the existence
of a solution of the polyharmonic Dirichlet problem. W e also briefly
discuss the classification theory associated with the class of q-polyharmo-

nic functions.

The work was sponsored by th e U. S. Army Research Office-Durham, Grant
DA-ARO-D-31-124-71-G20, University of California, Los Angeles.
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§1. Quasipolyharmonic classification

1. On a smooth noncompact Riemannian manifold R  of dimension

m > 2  w ith  a smooth metric tensor (g i i ) ,  the Laplace-Beltrami operator
is

(2)
1  2   a . 2  v_  i f a.
g i=i6x l .J=1 g  g  a x i

where x = (x 1 , • • •, x m ) i s  a local coordinate system, g =  det (g i i ) ,  and

(g U )=  (gu) - 1 . W e  c a ll  a  C 2  function quasipoly harm onic o r  n-quasi-

harmonic i f  it satisfies

t ru = c

with some constant c. For the purpose of the classification of mani-

folds, we normalize by setting

(3) -={u E C 2n I4 n u = 1 }.

For a given class X  of functions we denote by 0x the class o f Rieman-
n ian  manifolds on w hich  there ex ist no nonconstant functions in  X,

and b y  X 7 ' the c lass  o f  functions which is mapped into X  by a  given

operator T. W e shall characterize the manifolds R OQ„xoxi,...x (._,),._i
in terms of the function G 1  determined by the harmonic Green's func-
tion  g (x , y )  on R  by

(4) G f=1R g(• , y )f  (y )d y for n = 1,

and by

(5) Gflf =- G • • •Gf fo r  n >1,

where the iteration G.. .G is  ta k e n  n  times.

2 .  P o s it iv e  4" - 1f. Let P , B , and D  b e  the classes of nonnega-
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tive functions, bounded functions, and functions with finite Dirichlet in-

tegrals, respectively. W e  s h a l l  w r ite  Gn f  E X  to mean G n f < c o  for

X =P; IsupRG,if  <  co  for X = B; D(G nf ) <  00 for X =D ; and IsupRGnf

<oo ,  D(G n f ) <  00  for X = C= B n p .  It is  kn o w n  [ 5 ]  that R c I O0X

if and o n ly  if G1 E X ,  and, whenever the integrals are well defined,
D (G,1) = G(G n  _ 11, Gn _ 1 1 ) with

(6) f2) = R g(x , yV i(x )f2 (y )dxdy.

Theorem 1. A  R iem annian m anifold R  belongs to  0 0.xP,,...P4 .-1
i f  and only  if G n 1çt X , w here X =P, B , D, or C.

Pro o f . By the equality 4Gn1=Gn_11, G n 1 E X implies Gn1 E
and therefore RE40Q„xp,...pj n_i.

To prove the converse, consider first the case X  P .  Since R
there exists a function f  E Qn 1313

4 ... P 4 n- i. Clearly f  is non-
negative superharmonic and thus harmonizable. For any regular sub-
region ..(2 C R,

(7) f  = h 1  G sa ld f  + • • • +Gn i2 1.

H ere hy is harm onic on  D , continuous on  S2, eq u a l to  f  on  R -

and G p f =  g r2 ( •,  y )f (y )d y  w ith  8-12 (• , •) th e  harmonic Green's func-

tion on  D , gD IR —  S 2 = 0 . B y  the harmonizability of f ,  the lim it  of

Ga ld f  + • • • H-G,i 0 1 as S2--->R ex ists . S ince a ll term s in Gpiel f •  •  - F G „ a 1

are nonnegative, they converge separately as S2--÷R. B y the monotone

convergence theorem, Gn 1-=lim,Q _RGn 2 1.
For X = B , the proof of the existence of Gn 1 is sim ilar to  that in

the case X = P .  The boundedness of G n 1 follows from the boundedness

of f  —  hp .
In the case X =D , le t  f  E Q„DP4 ... P A . - 1. For every regular sub-

region D C R,
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(8) D(G9h,lf+ • • • - FG,, i2 1) D(f)<CX D.

Since

(9) D (G s l itY f  + • • • +G(n-i)ahfin-lf , G n 91)

-=G 2(4 +  •  + G  (n -2 ).(2 11:112 n - 1  f G (n - 1 )2 1 )>  0 5

we have

(10) D ( G 1 )  < D ( G a lt si f  + • • • -F G021) D (  f  ) ,

or equivalently,

(11) GD(G21, G 2 1 ) < D ( f ) .

The monotone convergence theorem yields

(12) D (G 1)=G (G n_11, G _ 1 1 )< 00.

The theorem for X = C is a  consequence of X = B  and X = D.

C oro lla ry . The follow ing inclusion relations are v alid:

C  0(4131'4 ...P4 n - 1  C
OQPCOQ„PP4...P4.-1 0Q.CP4...P4n-i•

C C

3 .  Denote by hY2 th e  n-harmonic function on S2 with 4 11172

on R —  S2 fo r i = 0, n  — 1 . Consider th e  class H n  H n ( R )  o f  n-

harmonic functions on R , an d  th e  class

H n *  =  { f I l i m Rh tfi p  < co} .

Set 14= limp_Rh7a .

Proposition. A  R iem annian m anifold R  belongs to 0 Q n H n. i f  and
only  if  G,,1= 0 0  .
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P ro o f . If G„1 < co , then  G n1E Q n. O n  a  regular region 2 ,  we
have the decomposition

(13) = Gnal.

Since Gn 1 = 1ima_,R41 -= O. T h erefo re  G„1 E Hi* a n d  R14
0 Q

Conversely, le t  f  E Q n H " .  B y (7 ) and f  E Hn*, the limit Gn a 1

exists, and the proposition follows from the monotone convergence theo-
rem.

Corollary. 0 Q = 0 Q . p. ..p4 n-i.

4 .  Bounded 4n-
I f .  Consider a  function f  E Q n X j n - i. Clearly

dn - l f E Q X . Thus we have

(14) O Q XCOQ nX4n-l.

We shall show that the converse is also true for X = P, C , D , or C.

Lem m a. F or n > l ,

(15) 0 Q n X , n _i
=  0

0 X

w ith X = P, B , D , or C.

P ro o f . Let R■40Q X . It is known that G1 < co. S in c e  G1 E C - ,

there exists a  function f 2 E C -  w ith  zif 2 = G 1  ( c f .  D i) .  C le a r ly  f 2 E
Q 2 X 4 . By repeating the above process, we can find f 3 , • f „  E C -  such
that f i  E QiX j i - i  fo r i > 3. In particular, fn  E Q n X j n - i ,  and Lemma 1
follows.

Theorem 2. A  Riem annian m anifold R  belongs to 0Q„x„...x
( n - 2 )  4 . - 2

B,„_, if a n d  only  i f  G 1  B , w here X =P, B ,  o r P n B , and i =0 ,
n— 2.
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Proof . B y  L em m a 1, OQB -= 0 Q„B ,_,E 0 Q.x 0...x ( ,,_, ) , -2B ,n_i. Conse-
quently  R O Q „x e...x 13 ,  im plies G1 E B.

Conversely, if  G1 E B  then G„1E B .  Theorem 2 follow s from  G1 E

QnX o" • X 0 _2) ,,,, -2Bi n_i.

Corollary. For X i =P , B ,  o r P n B ,  an d  Y i = X i ,  D , o r C,

0Q.Bp 4 •••B4 ._,COQB =OQ„x u—x ( 2 ) 4 --2B4 0 -1 C °  n Y  0 (n-2) 47? -2B -  l •

T he last inclusion is a  consequence of  O Q B
= -0

Q „ B , , , - 1 C O Q ,,Y 0 . . .Y  ( „ _ 2 )4 1 , -2

B4  - i •

5 .  Bounded Dirichlet finite "1" f .  W e assert:

Theorem  3. A  R iem annian m anifold R  belongs to 0 Q„z o ...z ( „ 2 ) 4 ,-2
, ,  if  an d  only  i f  G 1  C ,  where Z i = P ,  B ,  D  or C.

Pro o f . Since 0 Q c = 0 Q . C , „  I C O Q „ Z o . - Z ( „ _ 2 ) 4 7 1 - 2 C  e n - 1 3  R  
0

O n Z o ... Z

C 4 - , implies G1 E C.
Conversely. if G1 E C , then Gk 1 E B  and

(16) D (G k l)=G (G k _11 , Gk_11)<(supRGk_11) 2 G(1, 1)< 00

for k  < n .  Thus G n 1 E QnZ o•-Z (,-2)4.-2C4.-1, and Theorem 3 follows.

Corollary. For Z = P ,  B , D  o r C,

(17) 0
Q c

= 0
Q Z o•••Z ( 7,_ 2 )4 7 ,-2 C ,in -1 .

§ 2. Polyharm onic projection and decomposition

6 .  Denote by =M 1 ( R )  the class o f bounded continuous harmo-

nizable functions o n  a  Riemannian manifold R. W e shall show that

every function f  E M n
i = J . - 1 can be written uniquely as u +

g  with u an n-harmonic function and g e  N n
i = NiNi4•• .N 4 . - 1. Here Ni

is the subclass o f  potentials in M i. , that is, functions with null harmo-

nic parts.
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Theorem 4 .  O n every Riemannian manifold R  which carries QB-

functions,

(18) =HnMji.EDN'I.

P ro o f .  We may write

(19) f  = Gsdhff + • • • + Gna

fo r every regular subregion .S2 ( R .  Since _1? , 0 0 3  is equivalent with

sup R G1 < c>o, we have sup RGk l < 00 and sup R Gk li i i k f  <  co for n 1.
By the Lebesgue dominated convergence theorem,

(20) G n  zr f = f — (h f  G h  f  +  •  •  • AO -1  f ) .

Since dGi g=-G i _ i g, and Gi gE N 1 fo r  g E  C -  and  all i  (cf. [91 ), we see

th a t  ( f  —Gn zinf) E H n M 7 , and Gn Zinf E N . T h e re fo re  f = (f — G n zInf)

+ G7,4 7  is the desired decomposition provided we can prove the uniqu-

eness. L et u E Hu n N 7 . Since zln- l u E kin 0 on R .  Thus

we have u E  Hn - i N n
i

- 1 . On repeating the above reasoning we conclude

that u 0 o n  R , and the proof is complete.

W e shall call th e  n-harmonic function u  in  Theorem 4 the poly-

harmonic projection of f  E M .  O n  Wiener's harmonic boundary a ,  it

is clear that u a = f  la, d u  = zif la, • • • , and  zln- l u  a= dn- l f  la.

7 .  If we restrict the class of polyharmonic functions to M7, then

we h ave  th e  following direct sum decomposition :

Theorem 5 .  O n  a  Riemannian manifold RE4 OQB every function

f  E WW1' can be written uniquely as

(21) f= u + G iv

with u E H i B and  v E B , n >  i>  O. Equivalently,

(22) f  = h o + G h i+  • • + G n_ihn-i
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with h i  E HB.

8 .  Denote by M2(R)=M2 the Royden algebra, consisting of bound-
ed Dirichlet finite Tonelli functions. Set

(23) Mit=M2M24•..M244-1.

Let N 2 (R )=- N2 b e  the potential subalgebra o f M 2, and define N 3  in

analogy with M .

Theorem 6 .  O n a  Riemannian manifold R which carries QC-func-

tions,

(24) M12' = Hn i1V2i EDN '2' .

P ro o f .  As in the proof of Theorem 5,

f —G n zln f =h f  G 114 f +  • • • +  G77_ 1 11,4 4-1.f.

Since

D(G ikp f ) = C(Gi_ 1 h4 1 , G•_ 1h4 1 )

<(supRG i-iheif) 2 G(1, 1)< co,

we obtain f— G „4 n f E lln iln  In the same manner as in Theorem 5,

we can show that (f  —Gn zinf)-1-G„ilnf is  the desired unique decomposi-

tion of f .

Theorem 7 .  Let R  be a  Riemannian manifold which carries QC-

functions. Every f  E H M  h a s  the unique decomposition

(25) f =u+Giv,

with u E H i C, and v E H n — i - 1 C f o r  n> i> O. Equivalently,

(26) f  --=- ho +Ghl+ • • • +
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with h i E HC.

9 .  The polyharmonic projection and decomposition theorem have

thus been proved for certain subclasses of Mi. and M 2 .  It is natural to

ask whether the theorems remain true i f  we suppress the boundedness

condition in the definition of M 1 and M 2 .  Denote by M 3  the class of

continuous harmonizable functions and by 1114 the class of Tonelli func-

tions with finite Dirichlet integrals. Consider the family

n-1
(27) m 7 x , ,  l lm , ,k ( Fkx ,)„,k, i = 1, 2, 3, 4,

k=o

where it is the harmonic projection and

(28) I Gkf E Xi}

with X i, B ,  X 2.= C, X 3= P, and X 4= D .  Define N7x, analogously.

Theorem 8 .  O n  an  arbitrary hyperbolic Riemannian manifold R,

(29) M7x,=IPM7x, ED N7x,

f o r i 1, 2, 3, 4.

W e note that M7==-M7 B  i f  R  ,“ ; 1
Q B, and ./1V2

z •-= M 'L  i f  R 0 0 .

Therefore Theorem 8 is weaker than Theorems 4 an d  6 . Its proof is

analogous. We also have the following decomposition:

Theorem 9 .  L et R  be a n  arbitrary hyperbolic Riemannian mani-
fold. Then every f E Hn M7 x can be written uniquely as

(30) f  =  u  Go),

with u E H i  an d  v E H ' i - 1  f o r  n >  i> 0 .  Equivalently

(31) f = h 0 +Gh i + • • • +Gn _i li n _i

with h i E H.
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1 0 . P o ly h a rm o n ic  Dirichlet p r o b l e m .  Given bounded continu-

ous functions f o ,  f i ,  • • • ,  f n _ i  on the Royden harmonic boundary g ,  the

polyharmonic Dirichlet problem is to find a  function u  on R  with

u E H"CC 4 .
(32)

u  d3= fo , du I g = f i ,  d " - i u  1 /9=fn_i.

We shall assume that f o ,  f i ,  • • • ,  f n - i  can be extended continuously to

functions in  Royden's algebra. Unconditional solvability of the above

problem is not expected, since there are Riemannian manifolds on which

the only n -harmonic functions are constants. Theorem 6  enables us

to show :

T h e o r e m  1 0 .  R  0 0 c  is  a  necessary and  sufficient condition for
problem (32 ) to  hav e a solution. T he solution is  unique.

Proof. L e t  go, g i ,  • • • , E M 2  be the extended functions of f o ,

f i ,  • •  • ,  f n - i  respectively. Theorem 6  im plies that hg o + Ghg l +  •  •  •  +

is the unique solution of (32).
Conversely, consider f a =0, f i = 1 .  There exists a  function u E

H 2 CC4 w ith  u ig = o  and d u = 1. By the maximum principle, 4u 1

on R .  Thus u EQC, and the proof is complete.

Making use of Wiener's harmonic boundary a  we obtain similarly

(cf. Tanaka DOD :

T h e o re m  1 1 .  Given bounded continuous functions fo ,  f i ,  . "  f n - i

on the W iener harmonic boundary a, R OQB is necessary and sufficient
for the ex istence of  a function u E HnB/3 4 ....134 .-1 on R  with 4 4  f
k = 0 , 1 , • .., n -1 .

1 1 .  Let q  b e  a  nonnegative C 2 function on  R .  W e ca ll a  C 2 n
function u q-polyharm onic i f  it satisfies the equation

(33) ( 4 - 1 - q ) n u = 0 ,
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and q-quasipolyharmonic if

(34) (d + q )n a = ce ,,

w h ere  c  i s  a constant and e , the (]-elliptic m easure o f R  (cf. [11 111).
Set

(35) Qan= E C 2 n 1(4+ q )n u = e q l.

W e  sh a ll show  th a t  the nondegeneracy o f a  m an ifo ld  w ith  respect
to Q q n -functions is determined by an  operator on the q-harmonic Green's
function g q (x ,  y ) ,  and  the q -e llip tic  measure e ,  o n  R .  Consider the
operator G q defined  by

(36) {Ggeg
=  g q (x , y )e ,(y )d y

Ga n ea =-G ,- 'Go., for n > 1,

R
for n = 1,

w here G,•••Gq m ean s ite ra tio n  a  times. D e n o t e  b y  E  th e  c la ss  of
functions w ith finite energy integrals, an d  se t K = E n B .  In  analogy

with Theorems 1-3 we have :

Theorem 1 2 .  L e t R  be a  q-hyperbolic R iem annian manifold.

(i) R(4 OQ p , . . . p 4 , - 1  i f  an d  only  i f  Gq n e, E X  f o r  X=-P, B, E,

or K .

(ii) R  O Q  q .BB,...B 4 . - 1  i f  an d  o n ly  if  Gg eg EB.

(iii) R ,4 00,7 7 2 K K 4 ...K 4 n - 1  i f  an d  o n ly  if  Gg e g EK.

Theorems 4-11, with obvious modifications, a lso  rem ain  valid  for
q-polyharmonic functions.
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