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A polyharmonic function is a C*" solution, n>>2, of the equation
)] 4"u=0.

We sometimes also use the term n-harmonic to specify the degree.
The object of the present study is a polyharmonic classification of
Riemannian manifolds, i.e. the problem of existence of polyharmonic
functions with various boundedness properties. We shall show that
much of the biharmonic classification theory developed in Nakai-Sario
(4], [5], Sario-Wang-Range [9], and Kwon-Sario-Walsh [2], can be
generalized to the polyharmonic case. The higher degree brings forth
fascinating new versality, as various boundedness conditions can be sepa-
rately imposed on the functions and the iterates of the Laplacian.

In §1 we introduce the quasipolyharmonic classification of Rieman-
nian manifolds based on the equation 4”"u=1, and characterize the
corresponding null classes in terms of the harmonic Green’s function.
Polyharmonic projection and decomposition are the topics of §2. As an
application we find a necessary and sufficient condition for the existence
of a solution of the polyharmonic Dirichlet problem. We also briefly
discuss the classification theory associated with the class of g¢-polyharmo-

nic functions.

The work was sponsored by the U.S. Army Research Office-Durham, Grant
DA-ARO-D-31-124-71-G20, University of California, Los Angeles.
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§1. Quasipolyharmonic classification

1. On a smooth noncompact Riemannian manifold R of dimension
m>>2 with a smooth metric tensor (g;;), the Laplace-Beltrami operator

is

@) 4=~

L &0 & i 0t
Vg i g %! g:1 88 Bui’
where x=(«', .., ™) is a local coordinate system, g=det(gi), and
(g)=(gi)"'. We call a C* function gquasipolyharmonic or n-quasi-

harmonic if it satisfies
d"u=c

with some constant ¢. For the purpose of the classification of mani-

folds, we normalize by setting
(3) Q.={u€ C¥|4"u=1}.

For a given class X of functions we denote by Ox the class of Rieman-
nian manifolds on which there exist no nonconstant functions in X,
and by Xr the class of functions which is mapped into X by a given
operator . We shall characterize the manifolds R & Ogq, x,x, X 4y -1
in terms of the function G,1 determined by the harmonic Green’s func-

tion g(x, y) on R by

4) Gf=SRg(-, nf(ydy for n=1,
and by
(5) G.f=G-Gf for n>1,

where the iteration G...G is taken n times.

2. Positive 4""'f. Let P, B, and D be the classes of nonnega-
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tive functions, bounded functions, and functions with finite Dirichlet in-
tegrals, respectively. We shall write G,f € X to mean G,| f| <oo for
X=P; |supgG,f| <oo for X=B; D(G,f)< oo for X=D; and |supG,f|
<o, D(G,f)<oo for X=C=BND. 1t is known [5] that R¢Oqx
if and only if Gl€ X, and, whenever the integrals are well defined,
D(G,1)=6G(G,_11, G,_11) with

(6) G(fu f=_gle, Pfiofsdxdy,

Theorem 1. A Riemannian wmanifold R belongs to Ogq xp,.p.
if and only if G,1¢ X, where X=P, B, D, or C.

Proof. By the equality 4G,1=G,_11, G,1 € X implies G,1 € Q,XP;...
Pn-1, and therefore R¢Og xp,..P,us-

To prove the converse, consider first the case X=P. Since R¢
Ogq pp,.-P,..1> there exists a function f& Q,PP,...Psm-1. Clearly f is non-
negative superharmonic and thus harmonizable. For any regular sub-
region 2 CR,

(7) f:hj?+Gghff++G,,gl.

Here hf is harmonic on £, continuous on £, equal to f on R—2,
and Gof= SRgg(-, ) f(y)dy with ge(-, +) the harmonic Green’s func-
tion on £, go| R—2=0. By the harmonizability of f, the limit of
Gohs+---+G,ol as >R exists. Since all terms in Gohf;+ - +G,el
are nonnegative, they converge separately as £—R. By the monotone
convergence theorem, G,1=limg_zG,ol.

For X=B, the proof of the existence of G,l is similar to that in
the case X=P. The boundedness of G,1 follows from the boundedness
of f—hi.

In the case X=D, let f €Q,DP;...-Psn-1. For every regular sub-
region 2 CR,
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(8) D(Gohdi+ - +Guol) <D(f)<oo.
Since
9 D(Gohii+ - +Gp_1yghin-15, Grol)

=Go(hds+ - +G_2y0hin-17, Gn_1y21) >0,
we have

or equivalently,

(11) Go(Grol, Gual)<D(f).
The monotone convergence theorem yields

(12) D(G,1)=6G(Gy-11, G,_11) < o0,

The theorem for X=C is a consequence of X=B and X=D.

Corollary. The following inclusion relations are valid:

C 0q,8pP,..Pim1 C
OqerC0q, PP, .Pim1 0q,cP,..Pmr
Oq,ppP,.Pm1 C

3. Denote by h}? the n-harmonic function on £ with 4'h}?=4'f
on R— for i=0, ..., n—1. Consider the class H*=H"(R) of n-

harmonic functions on R, and the class
H™ ={f|limg_gh}? < oo}.

Set hj=limo_rh}’.

Proposition. A Riemannian manifold R belongs to Oq un if and

only if G,l=o0.
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Proof. 1f G,1<oo, then G,1€Q,. On a regular region £, we

have the decomposition
(13) Gil=h¢21+Gagl.

Since G,1=limg.zGnel, limg_ghg?1=0. Therefore G,1€ H"* and R ¢
Oq tn».

Conversely, let f€Q,H"™. By (7) and f€H"*, the limit G,ol
exists, and the proposition follows from the monotone convergence theo-

rem.
Corollary. Og g»+=0q p.p,»-1.

4. Bounded 47! f. Consider a function f€ Q,X 1. Clearly
4" 'f €QX. Thus we have

(14) O¢xCO0¢, % sy

We shall show that the converse is also true for X=P, C, D, or C.

Lemma. For n>1,
(15) 0g,x n-1=0qx

with X=P, B, D, or C.

Proof. Let R¢Q0gx. It is known that Gl1<oo. Since Gl&€C™,
there exists a function f,€ C~ with 4f;=G1 (cf. [3]). Clearly f,€
Q. X,;. By repeating the above process, we can find f3, -, f» € C™ such
that f; €Q; Xz for i>>3. In particular, f,€Q,X-, and Lemma 1

follows.

Theorem 2. A Riemannian manifold R belongs to 0q, x .. ,_ym-2
By if and only if G1¢ B, where X;=P, B, or PN\B, and i=0, .-,

n—2.
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Proof. By Lemma 1, Oqp=0¢,8,..1COQ, XX, 3-8 Conse-
quently REOQ, x X y_yy yu-sB n-s iDLlICS Gle B.

Conversely, if G1€ B then G,1€ B. Theorem 2 follows from G,1¢&
QnXo--'X(n—z)A"-ZBJ"-l-

Corollary.  For X;=P, B, or PN\B, and Y;=X;, D, or C,
00,8P,Pin-1COeB=00,% X (y_py -8 101 COQY 4 ¥ () 4u-2B gu-se
The last inclusion is a consequence of Ogp=04q B,._, CO%YU,.,Y(H_Z)”_2

Bln—l'

5. Bounded Dirichlet finite 4" 'f. We assert:

Theorem 3. A Riemannian manifold R belongs to Oq
Cyu-t If and only if G1¢ C, where Z;=P, B, D or C.

,lZn...Z("_Z) 4n-2

Proof. Since Ogc=00,c,u-1C00, 27 3 gn-2Can-1s REO0Q, 22 1y in-s
C -1 implies Gl € C.
Conversely. if Gl1€ C, then G,1€ B and

(16) D(G11)=G(Gi-11, G_11) <(suprGr-11)*G (1, 1)< oo

for k<n. Thus G,1€Q,Zy---Z_2ysm-2Cyn-1, and Theorem 3 follows.

Corollary. For Z;=P, B, D or C,

17 0qc=0q,2y-2 3 4n-2C gn-1-

§2. Polyharmonic projection and decomposition

6. Denote by M;=M;(R) the class of bounded continuous harmo-
nizable functions on a Riemannian manifold R. We shall show that
every function f&€ Mi=MMy,..-My»- can be written uniquely as v+
g with u an n-harmonic function and g€ N7=NNys---Ng-1. Here N
is the subclass of potentials in M,, that is, functions with null harmo-

nic parts,
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Theorem 4. On every Riemannian manifold R which carries QB-

JSunctions,
(18) 1=H"MI®N;.
Proof. We may write
(19) f=hi+Gahis+ + +Cu1ohfn-1y+GCuod"f

for every regular subregion £ CR. Since R¢Ogp is equivalent with
sup gGl < oo, we have suprGrl<oco and supgGrhges<oco for n >h>1.

By the Lebesgue dominated convergence theorem,
(20) Gud"f=f—(hs+Ghys+ - +Gp_r1hm-y).

Since 4G;g=G;_1g, and G;g€ N; for g€ C~ and all ¢ (cf. [9]), we see
that (f—G,4"f)e H*"M7, and G,4"f € Ni. Therefore f=(f—G,4"f)
+G,4"f is the desired decomposition provided we can prove the uniqu-
eness. Let u€ H"N\NY. Since 4" 'u€ HN\N;, 4" 'u=0 on R. Thus
we have u€ H" 'N7~'. On repeating the above reasoning we conclude
that u=0 on R, and the proof is complete.

We shall call the n-harmonic function u in Theorem 4 the poly-
harmonic projection of f € M7. On Wiener’s harmonic boundary a, it
is clear that u|la=f|a, du|la=4f|a, .., and 4" 'u|la=4"""f]|a.

7. If we restrict the class of polyharmonic functions to M7, then

we have the following direct sum decomposition:

Theorem 5. On a Riemannian manifold R ¢ Ogp every function

fE€H"MY can be written uniquely as
(21) f=u+Gw
with u€ H'B and v€ H" *"'B, n>i>0. Equivalently,

(22) f=hot+Ghi+ - +Gp_r1h,_y
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with h;€ HB.

8. Denote by M;(R)= M, the Royden algebra, consisting of bound-
ed Dirichlet finite Tonelli functions. Set

(23) Mg—_—-MzMZA"'MZAn—l.

Let N(R)=N, be the potential subalgebra of M,, and define N3 in
analogy with M3.

Theorem 6. On a Riemannian manifold R which carries QC-func-

tions,

(24)  M3=H"MI®N3,

Proof. As in the proof of Theorem 5,
f=6Gud"f=h;+Ghss~+ - +Gp_rhsn-ry.
Since
D(Gihsif) =G(G;_1hsis, Gi_rhyis)
< (suprGi-1hysi)’G(1, 1)< oo,

we obtain f—G,4"f € H"M;. In the same manner as in Theorem 5,
we can show that (f—G,4"f)+G,4"f is the desired unique decomposi-
tion of f.

Theorem 7. Let R be a Riemannian manifold which carries QC-

functions. Every f& H"M3 has the unique decomposition
(25) f=u+G,
with uwe€ H'C, and ve H*"~'C for n>i>0. Equivalently,

(26) S=hotGhi+ - +Gyr1hpy
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with h,‘ € HC.

9, The polyharmonic projection and decomposition theorem have
thus been proved for certain subclasses of M; and M,. It is natural to
ask whether the theorems remain true if we suppress the boundedness
condition in the definition of M; and M,. Denote by M3 the class of
continuous harmonizable functions and by M, the class of Tonelli func-

tions with finite Dirichlet integrals. Consider the family
n—1
(27) :"X,=hl:IOMM"(FfY,)xA", i=1, 2, 3,4,

where 7 is the harmonic projection and
(28) F% ={f|G:f € Xi}

with X;=B, X,=C, X3=P, and X;,=D. Define N{x, analogously.

Theorem 8. On an arbitrary hyperbolic Riemannian manifold R,
(29) ix,=H"Mix @ Nix,
for i=1, 2,3, 4.

We note that Mi=M%p if R¢Ogp, and Mij=M3, if R¢ Oqc.

Therefore Theorem 8 is weaker than Theorems 4 and 6. Its proof is

analogous. We also have the following decomposition:

Theorem 9. Let R be an arbitrary hyperbolic Riemannian mani-
fold. Then every feH"M7x, can be written uniquely as

(30) f=u+Gv,
with u € H and v€ H" ! for n>i>0. Equivalently
(31) F=ho+Ghi+-+GCp_thy_y

with h; € H,
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10. Polyharmonic Dirichlet problem. Given bounded continu-
ous functions fo, f1, ---, f»—1 on the Royden harmonic boundary @, the

polyharmonic Dirichlet problem is to find a function z on R with

u€H"CCy..Cyns
(32)

u|B=fo, du|B=f1, An_lu|3=fn—1-

We shall assume that fo, f1, .-, fa—1 can be extended continuously to
functions in Royden’s algebra. Unconditional solvability of the above
problem is not expected, since there are Riemannian manifolds on which
the only n-harmonic functions are constants. Theorem 6 enables us

to show:

Theorem 10. R ¢ Ogc is a necessary and sufficient condition for

problem (32) to have a solution. The solution is unique.

Proof. Let go, g1, ---» gn-1 € M; be the extended functions of fo,
f15 s fu1 respectively. Theorem 6 implies that hg+Gh,+ -+
Gu_1hg, | is the unique solution of (32).

Conversely, consider f,=0, fi=1. There exists a function u €
H*CC, with u|8=0 and 4du|f=1. By the maximum principle, du=1
on R. Thus u €QC, and the proof is complete.

Making use of Wiener’s harmonic boundary a we obtain similarly
(cf. Tanaka [10]):

Theorem 11. Given bounded continuous functions fo, f1, -5 fn-1
on the Wiener harmonic boundary o, R ¢ Ogp is necessary and sufficient
for the existence of a function u € H"BB,...B -1 on R with A”ula———fk,
k=0,1, ..., n—1.

11. Let ¢ be a nonnegative C? function on R. We call a C?*

function u gq-polyharmonic if it satisfies the equation

(33) (4d+qg)'u=0,
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and q-quasipolyharmonic if
(34) (d+¢)"u=ce,

where ¢ is a constant and e, the g-elliptic measure of R (cf. [11]]).
Set

(35) Qqn: llteCan(A_*_q)nu:eq}.

We shall show that the nondegeneracy of a manifold with respect
to Q,u-functions is determined by an operator on the g-harmonic Green’s
function g.(x, y), and the g-elliptic measure e, on R. Consider the

operator G,, defined by

qua:S gq(x, y)eq(y)dy for n=1,
(36) R

Gine;=6G,---Gue, for n>1,

where G,.--G, means iteration n times. Denote by E the class of
functions with finite energy integrals, and set K=FENB. In analogy

with Theorems 1-3 we have:

Theorem 12. Let R be a g-hyperbolic Riemannian manifold.

(i) R¢0q
or K.

xp,..p if and only if Gge,€X for X=P, B, E,

qn

(i) RéOQanBA_"Bln—l if and only if Gue,E B.
(iii) Ré&0q,,xk,. k21 if and only if Gee,€K.

Theorems 4-11, with obvious modifications, also remain valid for

g-polyharmonic functions.
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