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O. In trod u c tion . L e t k  be an algebraically closed field of charac-

teristic p ,  let G be a connected algebraic linear group defined over k

and let a be a k-rational point of G. In  [2], Exposé V, A. Grothen-

dieck constructed the algebraic fundamental group 71-1 (G , a ) which is

defined in the following fashion: L e t E t(G ) be the category o f finite

etale coverings o f  G  and let F  b e  a covariant functor from  Et(G )

to the category o f finite sets which assigns to X  E  Et(G ) the set F (X )
of k-rational points over a. T h en  F  is strictly prorepresentable.

Namely there exists an inverse system {Pi, in  E t(G ) with

surjection q ji : Pi for j >  i  such that F (X )= -   lim  Hom G (P i, X ).
iEz.'

Then  7ri (G , a) = lim  Aut G (Pi). M ore  precisely, the inverse system

has a cofinal subsystem consisting of Galois etale coverings,

where by a Galois etale covering we mean a  finite etale covering X

over G  with group of G-automorphisms Aut G (X )  o f  X  such that the

order of Aut c (X )  is equal to the rank o f the covering.

I f  a' is another h-rational point of G , 71- 1 (G , a ') is then isomorphic

to v i (G, a). W ith  the unit point e o f  G  fo r a, w e  ca ll 77-1 (G  , e ) the

algebraic fundamental group o f G  and denote it simply by 7r i (G).

When k  is  the complex number field  C  and G h  is  the analytic

space associated with G, v i (G ) is then the profinite completion of the

topological fundamental group o f  G h  (cf. M , Artin and B. M azur,
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Etale homotopy, Springer Lecture Notes in Mathematics, No. 100).

When the characteristic p  of k is positive and when 77-1 (G )  =   lim Gi

with finite groups G i (i Z + ) ,  w e denote by 71 ,-f.p (G ) the comple-

tion lirn Gi, i .p  of the maximal quotient G i , $  p  of Gi such that the order

of is  prime to p .

Our first main result is

THEOREM 1. Let k be an a lg eb ra ica l ly  c lo s ed  f i e ld  of ch a ra c t e r is t i c
p  and let G b e  a c o n n e c t e d  a l g e b r a i c  l in e a r  g r o u p  d e f in e d  o v e r  k .  I f
p =  0, ir i (G ) i s  a b e l i a n .  I f  p  0 , 7 1-Lip(G) is  a b e lia n .

When k  is the complex number field C, Theorem 1 follows from

P.A . Sm ith  [5], where it is shown that the topological fundamental

group o f G h is abelian. However Smith's method is too topological.

Hence it cannot be extended to the positive characteristic ca se . So

we present an algebraic proof of Theorem 1. Roughly speaking, our

proof runs as follows: L e t  U  be the unipotent radical of G, let P  he

the associated reductive group, let T  be a maximal torus o f P ,  let R
be the root system of P  with respect to T, let R + (resp. R_) be a positive

(resp. negative) root system of R, once fixed in R and let P r ( rE R ± U R )

be one parameter subgroup o f P  corresponding to a  root r. Then

there exists an affine open set DR *  (a  gross cell) in P  such that DR ,  is
isomorphic to fl Pr X  T X  LI P r where the product is taken following

reR_ reR,

an appropriate order fixed in  R +  and R .  O n  th e  other hand, T  is

considered a maximal torus of G and the pull back o f DR , is  an affine
open dense set in G which is a direct product DR ,X  U .  Since U  is

isomorphic to an affine space, the pull back o f S2R +  is  a product o f T

with an affine space.

The results to be shown are the following: (1) 7ri ( T )  is  abelian.

(2) The canonical homomorphism 7r i ( T)--)-7r i (G ) induced from the re-

striction map Et(G)—›- Et(T) is surjective. These results provide a proof

of Theorem 1. To prove (2), it suffices to show that if X  is a connected
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Galois etale covering o f G, the restriction of X  on  T  is connected too.

Th is is shown as follows: Assume X T  is not connected. Then by

induction on 2 card(R + ) ±dim (U), one shows that X  restricted on a

sub-product of Q R , X U is not connected. The final step of induction

is that XI,s2R+xu is not connected. Taking the closure o f each com-

ponent of Xi DR + xu  in X , X  is not connected. This is a contradiction.

For a finite abelian group F(resp. a finite abelian group of order

prime to p  if p  I  0), the set of all Galois etale coverings of G with group

F  up to isomorphisms is an abelian group denoted by Fli(G, F ) .  The

set of all extensions of G  by F  up to isomorphisms, Extl(G, F ) ,  is an

abelian group too. W ith these notations, w e have

THEOREM 2. L e t  G  a n d  F  b e  a s  a b o v e .  T h e n  w e  h a v e

{ H om g r (rri(G ), F) i f  p = 0
F-11 (G,

Homgr (7ri,$ p(G), F )  i f  p  I  O.

Th is result leads us to  a  complete determination o f  71-1 ( G )  (or

77. 1,-Fp(G)). Let b e  th e  associated semi-simple group o f  G , i.e.

G/rad(G) and let r be the dimension of the torus part of the radical

o f G .  Then we have

THEOREM 3. 77- 1(G ) (7 1,$2,(G) f  p  I O) ( x E x t l ( G  ,  Gm ).
H e r e  2  i s  t h e  p r o f in i t e  c o m p le t io n  o f  Z.

1. T h e  p ro o f o f  Theorem  1. W e shall begin  w ith

LEMMA 1. L et k  b e  a n  a lg e b r a i c a l ly  c lo s e d  f i e ld  o f  ch a ra c t e r is t i c
0, l e t  A '  b e  t h e  a f f in e  l i n e  a n d  le t  G m ,k  = A 1 — (0). T h en  w e  h a v e :

(1 ) L et X  b e  a  c o n n e c t e d  G a lo is c o v e r in g  o f G m ,k w i th  g r o u p  F .  X  is
th e n  i s o m o r p h i c  t o  Gm,k a n d  a f t e r  a n  a p p r o p r ia t e  c h a n g e  o f  p a ram e-
t e r s  in  X  and  G m ,k  ( th e  b a se  s c h em e ) ,  t h e  b a s e  map q: X— >G m ,k  is
t h e  m u l t ip l i c a t i o n  b y  s o m e  p o s i t i v e  i n t e g e r  n .  H e n c e  F  Z I n Z .
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(2 ) L e t  X  be a  connected G alois etale cov ering o f  A ' w ith  g ro u p  F.
T h e n  F  (1 ) . T h e re f o re  th e re  is  no non-triv ial etale cov ering of  A".

PROOF. We prove (1). (2) is proved in a similar fashion. Embed

A ' into /3 '  canonically. Since X  is affine and of dimension 1, we can

embed X  into a non-singular complete curve C of genus g .  The base

map q: X — ›-G m ,k  is extended to a morphism 7r Moreover

since F  acts on  C  as birational P-automorphisms, F  acts on C  as

biregular En-automorphisms. L e t  So = 7 - 1 ( (0 )) and Sc.= 7- 1 ((co)).
Then F  acts transitively on the sets So and S .  Therefore each point

of S o (resp. So„) has the same ramification index e (resp. e'). Let m =
card (S 0 )  an d  le t m ' = card (S ,0). N oting that C  has n o  ramified

points other than points of S o and S  o ve r  /3 ', one applies the Riemann-

Hurvitz formula to  I T :

2 (g -1 )= 2 n (0 -1 )+  m(e —1) + m' (e' —1)

where n  is the order of F ,  m e  m ' e ' = n  and m ,  m ' > 1 .  Therefore

g = 0, m  m ' =  1  and e =  e '  = n .  Then C—(50 U Sc.) G m ,k . Let

Gm,k Spec(k[t, t ---1 ] )  w ith  a n  indeterminate t. T h e  base map

q : X —> G m  ,k  is  g iven  by an invertible element o f  k[t , t - - 9 ,  say atn.
Now by a parameter change t - - >- a l 'n t  in X , q  is the multiplication

by n. q.e.d.

REMARK 1. In case of the positive characteristic, the Riemann-

Hurwitz formula holds true if a  function field K  is a  finite separable

extension of a rational field of dimension 1 and if all ramification indices

are prime to the characteristic p. Therefore Lemma 1 is valid if the

order of F  is prime to p  since e and e ' are prime to p .  (Note that m e=

m 'e' =n.)

LEMMA 2. L e t k  be a f ie ld  o f  characteristic p  a n d  le t  X  be a

Galois etale covering o f  A ' w ith  group  F .  A ssum e the order o f  F  is

p rim e  to p  f  p  is positive. T h e n  th e re  e x is ts  a f inite etale k -algebra
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R  s u c h  t h a t  X  A lx  S p e c ( R ) . F  acts on R  and the action of F  on

X  is  g iv en  f rom  an action of F  on Spec(R).

PROOF. (I) The case where p = 0 .  L e t -k  be an algebraic closure

o f k ,  le t  Al =  Spec (k[t] )  and let X =  Spec (A ). Then X 7-  =  X (N

is a Galois etale covering of Ai with group F .  In virtue of Lemma 1,

(2 ) , X k  is split, i.e. X k  A k i E  E  A t  and F  permutes the
card (F )

components. In  other words, A k=  A k [t ]( )  .  k [t] = C)n k [t]

(a direct sum o f -k-algebras), where n =c ard ( F ) .  Look at the following

commutative diagram,

A  (— C)n--[t]

J
k [t ]   >  k [ t ]

k [t] has a k-rational derivation D  with D(t) = 1. This derivation

is locally nilpotent, i.e. for every element a of k[t], there exists an integer

/  such that Dm(a) =  0  fo r  a ll m  >  / .  Since A  is e ta le  over k[t],
D  is extended uniquely to a derivation .f) on A .  (Let F  act on a der-
ivation D '  on  A  b y  (f D ' ) ( a ) =  f - 1 DV a) fo r  a E A  and for f E F .

-.6  is then F-invariant with this F -a c t io n .)  On the other hand, D  is

extended uniquely to a  k-triv ia l derivation D  o n  -k[t]. T h e  same

arguments apply to b and b to extend them onto A k .  Both extensions

coincide on A k .  Denote it by D '. D '  acts on each component k[t]
in the same way as 15 does on k[t].*) Hence D ' is locally nilpotent.
Then b is locally nilpotent on A , since A  is canonically embedded in
A k and D ' is the extension of b .  Moreover A  has the element t which
satisfy -D (t) =  I. T h en  w e  k n ow  th a t A = R [t] with R —  a A I
D (a)= O }  (cf. [3 ], Lemma 2). The remaining assertions are easy to
prove.

*) Let D  be a derivation on a k-algebra C and let e be an idempotent of C. Then D
O. In d eed , D(e 2 )= 2e D (e)= D (e) . Hence e D (e)= (1— e)D (e) , where e D (e) = (1— e) D (e)
=0. T h e n  D e = e D(e) (1 —  e)D(e)=0
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(II) The case where p O. W e  use the same notations as in (I).

k [t] has a  k-triv ia l iterative infinite higher derivation D  = { D ili?o
with D i ( x ) = 1 .  D  is locally nilpotent in k [t], i.e. fo r  any element a
of k[t], D i(a) = 0  for all / » 0 .  D  is extended uniquely to a  -k-trivial
iterative infinite higher derivation i5  =- on  -k [t] and i5  is  in

turn uniquely extended to a i-trivial iterative infinite higher derivation
D '= { D 1,1 }i 3O o n  A k .  N o te  that any iterative infinite higher der-

ivation kills idempotent elements. D ' is locally nilpotent.

We can assum e is a quasi-Galois extension of k  with Galois group

6 .  A n  element y  o f 63 acts on D ' by W (d) T 'D 'i (rd) for dE A k.
Then D ' is 6-invariant. Note that 6  acts on  A k  -= A  O k  via the

canonical 6-action on  k. Hence the ring o f 6-invariants in  A k  i S

A k i = A O k '  with k ' = (k ) 6  k '  is  a  purely inseparable algebraic

extension of k.
L e t  a '  b e  a n  element o f  A v .  T h en  rD 'i (a') = 7 - 1  D'i (r a') =

D 'i ( a ')  f o r  a ll y E  6 . Namely D  ( a ')  is 6-invariant.

Therefore D 'i (Ak , ) A  k f  for all i > 0. S in c e  D '=  i s  l o c a l l y

nilpotent on A e ,  D ' defines an action of G a,k i on  Spec(A k , ). Now

we apply Lemma 2  o f [3]. Since H i (Ga,k , , A  ic, ) 0 Z  = 1 -1 1 (Gadc, A k )

= 0 , the action of Ga,k ,  on S p ec (A e) is free and there exists a quotient

o f  Spec(Ak , )  by G a , k i .  L e t b '  be the subring  o f  A k /  consisting of
elements killed by T h e n  Spec(bp is the quotient of S pec(A 0
by G ad e  and A e = b 1 t] .

Let b =  A l t A .  Then b  is separable over k. On the other hand,

O k '  and b '  is separable over k'. T h i s  means that i f  bo is the

subring o f all separable elements in b ' over k ,  then b 0 b a n d  b '=

bo O k ' .  Since A  is the set of all separable elements of A lc ,  over k[t],

one has bo O E A . It is now easy to see that A -=bo [t]. q . e . d .

The algebraic fundamental group of a torus is shown to be abelian
in the following

PROPOSITION 1. Let k  be an algebraically closed field of characteristic
p ,  l e t  T  be a  torus def ined ov er k a n d  l e t  X  be a connected Galois etale
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c o v e r in g  o f  T  w i t h  g r o u p  F .  T h en  F  i s  ab e lian , X  i s  a  t o r u s  and

a f t e r  an  a p p ro p r ia te  change of  p a r a m e t e r s  in  X  and  T , the  base  m ap

q : i s  a hom om orphism  of  tori.

PR O O F . (I) The case where p = 0 .  An induction argument on

the order n of F reduces the proof of Proposition 1 to prove the following :

(1) When with a prime number a ,  Proposition 1 is true.

(2) I f  F  is  a non-commutative simple group, (1).

Since k  is algebraically closed, T  is a  split torus. H e n c e  T  has

a  decomposition T =G m , k x T ',  where T ' is a  torus with dim( T ') =

dim( T ) - 1 .  L e t  K  be the function field of T ' .  T h e n  X K = XX
T'

Spec(k) is  a  connected Galois etale covering of Gm ,K with group F.

Let k  be an algebraic closure o f K  and let 6  be the Galois group of

K  over K .  In virtue o f Lemma 1, (1), X k =G m ,i - IL .  .  II  Gm,k . Let

X 0  be the first component and let 6 0 be the stabilizer group*) o f Xo,
i.e . 6 0 = iy E 61 yX 0 g  X 0 1. L o o k  a t  th e  follow ing commutative

diagram,

X  K  — *  K  —  G  k 11  Gm ,

1g
X 0

Gm ,k  4 —  G m ,k

After an appropriate change of parameters in X 0 and Gm s  below,

one can assume the restriction of the base map q  on X 0 is  the multi-

plication by some positive integer Z. L e t  X 0 =  Spec Ck [t, t - 1 1) and

let G m , zç=  S pec(k [t i , t - 1 ]). Furthermore, once obtained th e  above

splitting o f X k , one can assume k  is a finite normal extension of K .

Hence 6  is a finite g ro u p . Then there exists a quotient scheme X 0 /6 0

whose structure we shall give more explicitly.

6(resp. ( 0)  acts on G m ,K  Spec(K[ti , t - ]), trivially on  t i  and

via the canonical 6-action on A. F o r  any element y of 6 0 ,  Tt is of the

fo rm  atm  w ith  a F  k  and  m E Z. H ow ever r( ti)  =  ti. Hence

*) 0  acts on XI? v ia  the canonical action of 0 on k .
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a itim = ti, whence m = 1  and a  is a  / - th  root o f the u n ity . This im-

plies an existence of a multiplicative character so :  6 0 -* {the /-th roots

of the unity} such that t=yo(y )t for all y E 6 0 .
Let a r t - r +  ± a s t s  be any elem ent of

k [ t ,  t - 1 ]  with a_ r , ao, ..., a 8 ]?.f( . I f  this element is 6 0 -invariant,

we know from the 6 0 -action given explicitly that each term should be

6 0 -invariant. Let at i ' be a 630 -invariant element o f k [ t ,  r i ]  with the

least positive degree with respect to t. Then the set of 630 -invariants

in  k [t,  is  L [(atl'), (ate) -
1 ] w ith  L -= (k ) o .  and i t  is  the affine

algebra of X 0 /6 0 .

[t, t--1] has rank  f  X card(63/630 ) a s  a  fin ite L [(ate), (ate) - 9
algebra, while, on  the other hand, it should be < ca rd (6 3 /6 0 )  since

6 0  acts freely on X .  T h is  sh o w s  that / ' = 1 .  Therefore X 0 /6 0 =
Spec(L[(at), (at) -

1 ]). A fter a  parameter change t - ›- a t  in  X 0 ,  we

may assume X 0 /630 =Spec(L [t, t - 1 ]).

L e t (ei)i<k r  b e  a ll idempotent elements in  the affine algebra of

X i  which correspond to connected components of X R . 6  acts transi-

tively on  ( e i ) i ‘ k r  s in ce  X K  is connected. L e t  a le i + ...-k a r e r  b e  a

6-invariant element in the affine algebra of X .  I f  re i = e i  for some

yE  6 , then  7a 1 =  ai. H ence th e  above elem ent is  o f  th e  form

E  i( a ) f ( e i )  with aE  L [t, t -
1 ]. Conversely any element o f this type

'-f 133/1740
is - in va r ia n t. Let L '= {  E  (T" A) (i e ;  AE L} and let t' =  E  ( 7 t)(e1).

77E0/0 0r 0 3 / 0 0
T h en  L'[t' , i s  K -isom orphic  t o  L [t, t - I  a n d  X R /6

t' 1 ) .  The base map q : X I( Gm ,K = Spec (K [t, t - 1) is
g iven  by t t ' l  and  a  natural injection K r -  »L '. H e re a fte r  t  is
a  parameter o f Gm ,K  below.

N ow  F  acts on  X K  as follows : there exists a multiplicative

character tk : F—» {the / - t h  roots o f the unity} such that f t '= 0 ( f ) t '

for all f  E  F .  F  acts on L ' as K -a u to m o rp h ism s. W ith  a  similar

argument, one knows that L 'F = K  and that there exists an  element

fo  of F  such that / ' ( f o )  is  a primitive /- th  root of the unity. Namely

0 is surjective.
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First of all, consider the second case. If F  is non-commutative

and simple, I must be 1  since qi is surjective. Then X K is isomorphic

to Spec(L '[t, t - 1 ]). Let Y  be the closure in X  o f a  L '-ra tio n a l point

t' t  = 1  of X K . The affine algebra o f Y  is the integral closure of

the affine algebra o f  T ' in L '. T h e n  Y  XI (t=mx T ,  and in fact, Y

coincides with XI ( t-o x r ,  s in ce X I (t=mxr ,  is connected. Then by

induction on dim (T ),

Consider the first case. Let Y  be the closure in X  of a L '-rational

point t '= 1  of X K . Y is a connected component o f XI (t=uxr ,  which

has just l  connected components. Y  is  a  connected Galois etale

covering o f  T ' with group F o = I m ( F - - ) .  G a l( L '/ K ) ) .  /  might be 1.

If so , F o = F .  I f  / /   1 , /  = a =  the order o f  F. B y  induction on

d im ( T ) ,  Y  is a torus and after an appropriate change of parameters,

the base map Y—> (t=1) is a  hom om orphism  of tori.

I f  1= 1 , then X Gm  k X Y . H en ce  X  is a torus. I f  F o = (1),
k

then X  Spec(k[t', . Again X  is a torus. Finally assume
IC

that 1  1 1  and F o = F .  One can assume that T '= S p e c (k [ t 2 ,

t n , G il]) and Y =  S p e c (k [ t , t 1 ,  t3 , •••, tn, / 7 ] )  with t2  and

n = d im ( T ) .  F  Z la Z  acts on 6  t 3 , t n  by f t =0 '( f ) t ,  f  t 3 = t 3 ,
f t n ---tn  for all f  F ,  where 0 ' is a multiplicative character o f F  onto

{ L-th roots of the unity}. Now make the following change of pa-

rameters in  X K = Spec (L '[t' , t' 1 ]) w ith  L ' = k (6  t 3 , . t n )  : ( t ',  6
t3 , tn) (t" t' , t ,  t3 , tn )  i f  0 O'r . Then t "  is  F -
invariant, X  K  Spec (L ' [t"  , t"  ])  and G m , x  =  Spec (K  [t" , 1"'J).
Thus this case is reduced to the case where 1= 1 .

(II) The case where p 1 0 .  With the same notation as in (I), there

exist an integer r  and a finite separable extension L  of K P - r  such that

Gm,KP - r  0  L .  I f  T ' = Spec (k[t2, ty1, tn , G il),  let T " - r )

KP- r
=  Spec (k[tf -r .3  t r

, ]) Then K P - r  is the function field

o f T ' ( P- r ) .

If ?  is a non-commutative simple group, / = 1  and F  acts regularly

on L , hence on the integral closure o f k [t r r , , tyP- r  , tr ,  G P - r ]  in
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L  whose spectrum is X  x  T ' ( 2 ) - ' )
 ( t ,  =1)X T P —r . Induction on dim( T )

T '

shows that (1).
Consider the case where F  Z l a Z  with a prime number a. I f

1 = 1 , w e finish the proof by the same argument as a b o ve . If

Gal(L/KP - r)) is not trivial, one can assume that L --- k ( ( t r r)a - i
, k ( t r  ,  t 3 , t n ) P  after a n  appropriate change of

parameters in T '. S ince the function field of X  K  is the set of all separable

elements in  the function field of X K P- r  over K ( t )  and since t',
t 3 , tn  are all separable over K ( t ) ,  the function field of X  K  is k(t' ,

t ', t 3 , ta), in  which the integral closure o f  K [t, t - 1 ] is k[t' , t' 1 0

K (t 1
2

- 1 ). Then X  K =  Spec(k[t', t ' K(t12-1))• This case is reduced

to  the case 1 = 1 .  I f  F,S=(0), the proof is a little modification of the

case where F,;  I  0. q.e.d.

A s  stated in Introduction, we shall prove

LEMMA 3. Let k  b e  an a lg e b r a i c a l ly  c lo s e d  f i e ld  of ch a ra c t e r is t i c
p .  I f  p  1  0, w e  a s su m e  the o r d e r  of F  is prim e to p .  Let X  b e a con -
n e c t e d  Galois etale  c o v e r in g  o f G  w i th  g r o u p  F .  T h en  the restriction

o f X  on a m a x im a l t o r u s  T  is  co n n e c ted  to o .

PROOF. Assuming the contrary, we shall derive a contradiction.

Assume the restriction X T  is not connected. Take the root system

R , a positive (resp. negative) root system R+ (resp. R _) and the gross

cell Q R . =  II P r X  7' X  I I  P r  a s  indicated in Introduction. Write
rER_ rER,

QR, X U  simply in  th e  fo rm  S2R . =  T X A ' X  ... X  Al. Let V =
2 card(R d m (U )

T X A ' x x  A ' be a sub-product o f  D R . X U, i . e . r < 2  card (R ± )

+dim ( U ) .  Assuming that X v  is not connected, we shall show that

X v
, w ith  V '-=V x  A' is not connected either.

Let K  be the function field of V  and let X  ' =  XI I. ,  X A I .  T h e n

X '  is a Galois etale covering of Al,„ with group F .  Due to Lemma 2,
there exists a  finite eta le  K -algebra  R  such that X '  Al x Spec (R )
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and that the action of F  on X '  comes from an action of F  on R .  Let

B  be the integral closure o f th e affine algebra o f  V  in  R. Then

S p ec (B )= X  v  a n d  XI v , =A t X X v . Since XI v  is not connected,

X ! v . / is not connected either. Therefore by induction on 2 card(R ± )

+ dim( U ) , XI,QR ,x u  is  not connected . Then  X  is not connected.

This is a contradiction. q.e.d.

Thus we have finished the proof o f Theorem 1.

2. The proof o f Theorems 2 and 3. Our next aim  is to give a

complete determination o f the algebraic fundamental group 77-1(G) (or

77-1 ,-fp (G)) of a connected algebraic linear group G .  We need the follow-

ing Lemma 4  in  order to prove Theorem 2.

LEMMA 4. Let k b e  an a lg e b r a i c a l ly  c lo s e d  f i e ld  of ch a ra c t e r is t i c

p , le t  G  b e  a  c o n n e c t e d  a lg e b r a i c  l in e a r  g r o u p  d e f in e d  o v e r  k, let G(k)

be the g r o u p  of k-rational p o in ts  of G and let F be a f i n i t e  abelian g r o u p .

One a s s u m e s  the o r d e r  o f F  i s  p r im e  t o  p i f  p  I  O. D en o t e  b y  Ext'

(G (k), F) the o rd in a r y  extension g r o u p  of G(k) ( co n s id e r ed  as an ab stra ct

group) b y  F .  T h e n  w e  have injective homomorphisms of abelian g r o u p s ,

Ex -0(G, F )  F i l ( G  F )    Extl(G(k), F ).

PROOF. O is  a  canonical homomorphism which regards an ex-

tension as an e ta le  covering . Its  in jectiv ity is  ea sy  to  see . p  is  a

homomorphism defined as follows: F irst o f a ll, Fli(G, F )  is a  finite

abelian group in virtue o f Lemma 6  in [4]. The group o f k-rational
points G(k) acts on 11-1(G, F ) in the following way; for g  G (k )  and for

a class [X ]  o f H'-(G, F ), 0 [X ]  is the class obtained from a base change

r g : r g  being the right translation by g .  This action of G(k)
on  1-11(G, F )  is algebraic and therefore trivial since G(k) is connected

(with its k-Zariski topology) and H'(G, F )  is a  finite set. L e t  o-g be

a  morphism defined from a commutative diagram,
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F  x  X  z i i i  X  — ■  G

T iF x a g
tcr,

t r g

F  x  X  i i i i  X G

Then for any g , g ' E G (k ), o g a c r 1 E Aut '(X ) ;  the group o f auto-
morphisms of the Galois etale covering X .  Au .CX) is indeed isomor-
phic to F  (cf. [4]). L e t  r ( g ,  g ' )= a g g

, cri; ° V .  Then we have

r ( g ,  g 'g " ) ( o - g r ( g ' ,  g " ) g i 1 ) =  T (gg' , g")T (g, g')

where a g T ( g ' , g " ) c r i l= r ( g ' ,  g " ) ,  for the action of G (k ) on F  defined
by g f=  cr g f c r i i  is trivial since this action is algebraic and G (k) is con-

nected. T h u s  r ( g ,  g ' )  defines a 2-cocycle Z 2 (G (k), F ). Hence it

defines an element p ([X ] )  of Ext 1 (G(k), F ) .  The homomorphism p  is

an application which assigns X [X ]) to [X ].
Suppose p ( [X ] )  be trivial. Then there exists an application

G (k)--÷  F  such that r ( g ,  g ' )=  p , ( g g ' ) p , ( g ) - 1 p ,(g ') - 1 -. Let o ig  =

Then  cr'g g
,  c r ' g  cr'g  ,  fo r  g ,  g' E G(k). T h e  same argument with k

replaced by a universal domain Q over k  shows that o-'g  defines an

algebraic action of G  on X .  Take any k-rational point x  of X .  The
orbit G x of x  defines a section from G  to X .  Therefore X  is split.
Thus p  is injective. q.e.d.

We can now prove

THEOREM 2. L et k be an a lg eb ra ica l ly  c lo s ed  f i e ld  o f ch a ra c t e r is t i c
p ,  le t G  b e  a  c o n n e c t e d  a l g e b r a i c  l i n e a r  g r o u p  d e f in e d  o v e r  k  and let
F  b e  a f i n i t e  a b e l ia n  g r o u p .  I f  p   I  0, assum e the o r d e r  of  F  is  p r im e
to  p . T h e n  w e  have,

{ H o m g ,(7 1 (G ) , F )  i f  p= 0 .
Extl(G, F )= H 1 (G , F )=

H om g r (7ri , p ( G ) ,  F )  i f  p 10.

P R O O F . Let e  be the unit element o f G  and let l e and r e be
morphisms defined by
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g E G ( e x g ) E G x G

r e :  g E G ( g x e ) E G x G .

Then we have an isomorphism,

Ext'(G(k) x G(k), F)
l X t _ Extl(G(k), F ) x  Ext1 (G(k), F).

Moreover we have a commutative diagram,

fil(G x G, F) /*xr* H i(G , F)x  I-11 (G , F)

Ext1 (G(k) x G (k ), F)  X r E x t l ( G ( k ) ,  F )x  Exe(G(k), F).

Therefore F1'(G x G, F)   H i(G  , F)x  I-11 (G ,  F )  i s  injective.
Since I t x r :  is surjective, /: X7.' is an isomorphism. Namely two

Galois etale coverings of Gx  G  with group F  are isomorphic to each

other if and only i f  they are so on (e) x G and G x (e).

L e t i n  (resp. pc) be the multiplication of G  (resp. F ) .  Given a

Galois etale covering X  of G with group F ,  we have two Galois etale
coverings m *(X ) and 1.4(X  x X ) o f  G x G  with group F .  They are

easily shown to be isomorphic on (e) x G and Gx (e) . Hence they are

isomorphic to each other on  Gx  G .  Thus we have a  morphism y :

X  x X  p , * (X  x X )  m *(X ) -÷ X  which commutes a diagram,

Fx  X

Fx m * (X )

Fx p , * (X  x  X )

( F x F ) x ( X x  X )

X G

îm
m * ( X ) G x G

1.1,*(XX X )  - ±  G x G

-t8

X x X G x G .
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Let x o be an element of X over the unit element e of G .  We can assume

i) satisfies 2.,(xo X xo) = xo . T h e n  2 . is  associative, i. e. ii x  l x =  lx X 1 i

and 2.,(x, x0) =2.,(xo , x )=  x  for all point x  o f X .  Under these condi-

tions, X  is an algebraic group with the multiplication a n d  with the

unit element xo . The base map q :  X  G  is  a homomorphism of

algebraic groups. Thus the homomorphism O of Lemma 4 is surjective.

The second isomorphism in Theorem 2 is almost trivial from the

definition o f  i (G ) and 72-1,i,p(G). q.e.d.

REMARK 2. (Due to M . M aruyam a) If the order of F  is a power

o f th e  characteristic p ,  Theorem  2 ceases to be valid. L e t  p= 2
and let E  be an elliptic curve of Hasse invariant O. C o n s id e r  E  as

an abelian variety of dimension I, taking a point e  as the point of unity.

Then E  has no 2-division point. Consider an automorphism of E ;
a — a. Let X  be the quotient variety of E by this action of ZI2Z.
Then X-(the image of e )  is the affine line A ,  and E - (e) is a Galois etale

covering o f A ,  w ith  group Z I2 Z . However, since the function field

of an algebraic linear group should be rational, E -(e) is never isomorphic

to  an algebraic linear g rou p . Thus Extl(A I, ZI2Z) 1-11(,4 1 , ZI2Z).

Due to Theorem 2, we can give a complete determination of 7 1 (G)

(or 72-1,3p (G ) ) .  Th is is shown in

THEOREM 3. L e t k  b e  a n  a l g e b r a i c a l l y  c l o s e d  f i e l d  o f  ch a ra c-

t e r i s t i c  p  a n d  le t  G  b e  a  c o n n e c t e d  a l g e b r a i c  l i n e a r  g r o u p  d e f i n e d

o v e r  k . L e t  r  b e  th e  d im e n s i o n  o f  th e  t o r u s  p a r t  o f  th e  rad ic al
o f  G  a n d  le t  G  b e  th e  a s s o c ia t e d  s em i - s im p l e  g r o u p  o f  G. T h e n

i (G )  ( o r  7T p ( G ) p  I( i ) r  x Ext' (G , Gm ) ( o r  (±IZ p )r x Ex -0-

(G , Gm )  i f  p  I  0), w h e r e  Z  i s  the p r o f i n i t e  c o m p le t i o n  o f  Z  an d  ± p

i s  the p - a d i c  c o m p le t io n  o f  Z.

P R O O F . L e t  U  be the unipotent radical of G , le t  T =rad(G)/U ,

le t P  = G IU  and le t G = Glrad(G) = PIT . L e t  G  be a  simply con-
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nected semi-simple algebraic linear group over 0 which is an isogeny

with kernel F o .

L e t  0 —* F—>. G' L  G  0  b e  an  extension  o f G  b y  a  finite

abelian group F ,  where the order of F  is prime to p  if p O. One can

assume G ' is connected. L e t  U '  b e  the unipotent radical of G '.

Then the restriction of 7r o n  U ' is  an isomorphism, since Ker(7r1 u
, )

=  U' FIF = (0). Hence 7r induces an isogeny f r  from the associated

reductive group P '= G '/ U ' o f  G ' to  P  with Ker fr = F .  This implies

71-1(G )  (or 77.1,4 p(G) i f  p  0 ) is isomorphic to 77-1( P )  (or 71 ,+p ( P )  if

p  I  0). Thus one can assume G  is reductive.

L e t  0/=-G x  0  and look a t a commutative diagram,

T G G

T -  

I
d

Fo   F 0 .

Consider the derived group der(0' 0 )  of the neutral component 0' 0 o f

0 ' which is a simi-simple algebraic group and which is normal in 0'.

The projection 0'--> .0  restricted on  der(0 '°) is a  separable isogeny,

hence it is an isomorphism since 0  is simply connected. T h u s  0'-=

Tx d .  d  has no connected Galois etale covering (cf. [4]). Therefore

a Galois etale covering o f d ' comes from a Galois etale covering o f T.
This implies an exact sequence

0  — > ir i ( T ) 77-1(G) F 0

where one replaces 77-1 ( T )  and 7r i ( G )  by 77-1 ,4,p (T ) and r-1 ,4. 2,(G ) if p
I  O. In  virtue of Proposition 1, v i ( T )=± ' r  (o r 7r , p (T ) ----(±14 ,) r

if p  0).

T h e  above sequence o f  fundamental groups is split exact. In

fact, let T ' be a maximal torus of G such that T'13 T .  Then T " = T 'I T

is a maximal torus of G and T' -2---- T x T " .  Then the argument which
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proved that 7r1(T)—>77- 1 (G ) is surjective applies to the present situation

in  order to obtain the following exact commutative diagram,

7 1 ( T ) 71-1(T ') — ± 71- 1 ( T " ) 0

0 ---+  71- 1 ( T ) 77-1(G) — *  7 7 - 1 ( )= F 00

where K  is the kernel of the surjection 77-1( T " )- -> F 0 , i  and j  are the

canonical injections and where 771 ( )  should be replaced by 71-1 ,4 p ( )

if p  I  O. S in c e  r i ( T ) i d  (or 77.1 ,4.p ( T)._--:-__- (k/k‘ p )d  if p  I  0 ) fo r  any

torus group T  with d-=-dim T, there exists a homomorphism ei: 771(T')
—>77-1 ( T )  such that = 1 , , ,T ,  a n d  K e r  e ' D K .  Therefore e,

gives rise to a homomorphism e :  i (G) r i ( T )  such that e . i - 1 1 ( ,•
T h ere fo re  w e  ge t 7ri(G )= -----'7ri(T) X F o  (o r  77-1, p (G )--='77- i,l-p (T ) X  Fo
if p / 0 ) ,  where F 0 -7--- - Ext 1 (G , Gm) (c f .  [4 ]). q.e.d.

A s  a  corollary of Theorem 2 , we can prove

PROPOSITION 2. L et k be an a lg e b r a i c a l l y  c l o s e d  f i e ld  o f  ch a ra c-
t e r i s t i c  p  an d  le t G  b e a c o n n e c t e d  a lg e b r a i c  l in e a r  g r o u p  d e f in e d  o v e r
k. T h en  w e  hav e isom orp h ism s,

E xe (G , G Hi (G , Gm) P i c (G ) .

W hen p   1 0 , the  a b o v e  is o m o rp h ism s  are  s t i l l  v a l id  e x c e p t  o n  the p - th
com pon en ts .

PRO O F. For a  positive integer n ,  consider an exact sequence,
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0 ZInZ — ■ Gm
xn  Gm O .

From this, we have an exact commutative diagram,

0 —■ C (G ) — ÷  H l(G , Z InZ ) nPic(G) 0

0 Homgr(G, Gm ) n E x t l ( G ,  Z InZ ) nExti(G, Gm ) --+  0

(See [4] for the notation.) C (G )  is actually isomorphic to Hom g r (G,

Gm ) ,  fo r  any invertible regular function o n  a  connected algebraic

group G is a rational character of G up to a non-zero constant. (See,

fo r  example, H. Sumihiro, J. M ath . K yo to  Univ., 11 (1971), p.

542 .) The assertion of Proposition 2  follows immediately from this

diagram. q.e.d.

M ATH EM ATIC S  D EPARTM EN T

KYOTO U N IV E R S IT Y

Added  in P ro o f:  T h e  proof o f  Theorem 3 is incomplete.

Theorem should be read as follows: L e t T  be the torus part of the

radical of G .  Then we get an exact sequence

0 77-1(T ) Tri(G) Ext(G, Gm ) --)• 0

where 7r1 ( ) is replaced by 7 1 ,1.23( )  i f  p 0  and where 77-1( T)- - ---kr

(or 77-1 ,,k p( T)---- (±1± p )r).
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