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0. Introduction. Iet £ be an algebraically closed field of charac-
teristic p, let G be a connected algebraic linear group defined over £
and let @ be a 4-rational point of G. In [2], Exposé V, A. Grothen-
dieck constructed the algebraic fundamental group (G, @) which is
defined in the following fashion: Let Et(G) be the category of finite
etale coverings of G and let / be a covariant functor from Et(G)
to the category of finite sets which assigns to X & Et(G) the set #(X)
of A-rational points over . Then /F is strictly prorepresentable.
Namely there exists an inverse system {Py, ¢5i}i,7ez* in Et(G) with
surjection ¢j; : Pj— P; for 7> 7 such that F(X)zlim* Home(#;, X).

i€z

Then m(G, @) =1lim Aute(P;). More precisely, the inverse system
“iez+

{Pi}icz+ has a cofinal subsystem consisting of Galois etale coverings,
where by a Galois etale covering we mean a finite etale covering X
over G with group of G-automorphisms Autc(X) of X such that the
order of Autg(X) is equal to the rank of the covering.

If @’ is another £-rational point of G, m(G, @') is then isomorphic
to m(G, @). With the unit point ¢ of G for @, we call m(G,e) the
algebraic fundamental group of G and denote it simply by m=(G).

When £ is the complex number field C and G" is the analytic
space associated with G, m1(G) is then the profinite completion of the

topological fundamental group of G (cf. M. Artin and B. Mazur,
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Etale homotopy, Springer Lecture Notes in Mathematics, No. 100).
When the characteristic p of £ is positive and when m,(G)=1im G;
“iez*
with finite groups G; (& Z*), we denote by m,45(G) the comple-
tion lim Gjy,+p of the maximal quotient G +p of G4 such that the order
‘iez*
of Gi+p is prime to p.

Our first main result is

THEOREM 1. Let & be an algebraically closed field of characteristic
p and let G be a connected algebraic linear group defined over k. If
=0, m(G) is abelian. If p50, m,4p(G) is abelian.

When £ is the complex number field C, Theorem 1 follows from
P.A. Smith [5], where it is shown that the topological fundamental
group of G" is abelian. However Smith’s method is too topological.
Hence it cannot be extended to the positive characteristic case. So
we present an algebraic proof of Theorem 1. Roughly speaking, our
proof runs as follows: Let U be the unipotent radical of G, let P be
the associated reductive group, let 7" be a maximal torus of P, let R
be the root system of £ with respect to 7, let Ry(resp. R-) be a positive
(resp. negative) root system of &, once fixed in R and let P(reERUR-)
be one parameter subgroup of P corresponding to a root ». Then
there exists an affine open set £z, (a gross cell) in 2 such that £, is

isomorphic to [| PrX T'X [| Pr where the product is taken following
rER_ rER,

an appropriate order fixed in R+ and R-. On the other hand, 7 is
considered a maximal torus of G and the pull back of Q¢, is an affine
open dense set in G which is a direct product ‘QRJIE U. Since U is
isomorphic to an affine space, the pull back of 2, is a product of 7°
with an affine space.

The results to be shown are the following: (1) m(7") is abelian.
(2) The canonical homomorphism 7(7)—m(G) induced from the re-
striction map Et(G)— Et(7) is surjective. These results provide a proof

of Theorem 1. To prove (2), it suffices to show that if X is a connected
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Galois etale covering of G, the restriction of X on 7 is connected too.
This is shown as follows: Assume X7 is not connected. Then by
induction on 2 card(R4)+dim(U), one shows that X restricted on a
sub-product of 2z, X U is not connected. The final step of induction
is that X|g,,xv is not connected. Taking the closure of each com-
ponent of X|gp.xv in X, X is not connected. This is a contradiction.
For a finite abelian group F(resp. a finite abelian group of order
prime to p if p=£0), the set of all Galois etale coverings of G with group
F up to isomorphisms is an abelian group denoted by HY(G, ). The
set of all extensions of G by F up to isomorphisms, Ext}(G, F), is an

abelian group too. With these notations, we have

THEOREM 2. Let G and F be as above. Then we have

Homygy (mi(G), F) #f p=0
Homygr (m1,1p(G), ) if  p70.

HY(G, F)=Ext!(G, F)=

This result leads us to a complete determination of m(G) (or
m,1p(G)). Let G be the associated semi-simple group of G, i..
G[rad(G) and let » be the dimension of the torus part of the radical
of G. Then we have

THEOREM 3. m(G) (m+p(G) f paéO)%(Z)’XExtl(G_, Gm).
Here Z is the profinite completion of Z.

1. The proof of Theorem 1. We shall begin with

LEMMA 1. Let k be an algebraically closed field of characteristic
0, let Al be the affine line and let G,y =A'—(0). Then we have:
(1) Let X be a connected Galois covering of Gp,x with group F. X is
then isomorvphic to Gm,x and after an appropriate change of parame-
ters in X and Gum,i (the base scheme), the base map q: X—>Gpx s
the multiplication by some positive integer n. Hence F=Z[nZ.
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(2) Let X be a connected Galois etale covering of A' with group F.
Then F=(l). Therefore there is no non-trivial etale covering of Al.

PRrROOF. We prove (1). (2) is proved in a similar fashion. Embed
Al into P! canonically. Since X is affine and of dimension 1, we can
embed X into a non-singular complete curve C of genus g. The base
map ¢ : X—>Gur is extended to a morphism 7 : C— P!. Moreover
since / acts on C as birational P!-automorphisms, # acts on C as
biregular P!-automorphisms. Let So=#"1((0)) and S.=7m"1((0)).
Then F acts transitively on the sets So and S.. Therefore each point
of Sp (resp. S.) has the same ramification index ¢ (resp. ¢’). Let m=
card(So) and let ' =card(S.). Noting that C has no ramified
points other than points of .So and S, over P!, one applies the Riemann-

Hurvitz formula to 7 : C— P!,
2(g—1D)=2n0—1)+m(e—1)+m'(c'—1)

where # is the order of #, me=m'e’=n and m, m'>1. Therefore
g=0,m=m'=1 and e=¢'=n. Then C—(SoUSw)=GCGn,r. Let
Gm,x = Spec(£[¢, t71]) with an indeterminate ¢ The base map
¢:X—>Gnpy is given by an invertible element of £[¢, £71], say az”.
Now by a parameter change #——al""¢ in X, ¢ is the multiplication

by 7. q.ed.

REMARK 1. In case of the positive characteristic, the Riemann-
Hurwitz formula holds true if a function field X is a finite separable
extension of a rational field of dimension 1 and if all ramification indices
are prime to the characteristic p. Therefore Lemma 1 is valid if the
order of F is prime to p since ¢ and ¢’ are prime to p. (Note that me=

m'e'=n.)

LEMMA 2. Let k be a field of characteristic p and let X be a
Galois etale covering of A' with group F. Assume the ovder of F is
prime to p if p is positive. Then there exists a finite etale k-algebra
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R such that X=A'XSpec(R). F acts on R and the action of F on
k
X is given from an action of F on Spec(R).

PrOOF. (I) The case where p=0. Let £ be an algebraic closure
of 4, let A'=Spec(#[¢]) and let X =Spec(A4). Then Xj =X(%/;‘
is a Galois etale covering of A} with group #. In virtue of Lemma 1,
(2), X; is split, ie. Xp=A} 1l A} ]l ...A; and F permutes the

N il S

card (F) _ _ ~ -
components. In other words, A=A Q~=£[t]D ... D 4[t] = D"4[]
k ;—\n’—/
(a direct sum of 4-algebras), where z=card(#). Look at the following
commutative diagram,

A
J
A[2]

S A=O"HY]

NN

R~

.,

[z

£[¢] has a k-rational derivation D with D(#)=1. This derivation

—

is locally nilpotent, i.e. for every element a of £[#], there exists an integer
/ such that D™(a@)=0 for all m>/ Since A is etale over £[Z],
D is extended uniquely to a derivation D on 4. (Let F act on a der-
ivation D’ on A4 by (fD')a) =1"D'(fa) for acA and for fEF.
D is then F-invariant with this F-action.) On the other hand, D is
extended uniquely to a A-trivial derivation D on £[f]. The same
arguments apply to D and D to extend them onto Aj. Both extensions
coincide on A;. Denote it by D’. D’ acts on each component A[#]
in the same way as D does on £[£].¥) Hence D’ is locally nilpotent.
Then D is locally nilpotent on A4, since A4 is canonically embedded in
Ay and D’ is the extension of D. Moreover A has the element # which
satisfy 15(5‘)= 1. Then we know that A4 = R[¢] with R={aEA4]|
D(a)=0} (cf. [3], Lemma 2). The remaining assertions are easy to

prove.

*)  Let D be a derivation on a 4-algebra C and let ¢ be an idempotent of C. Then D(e)=
0. Indeed, D(e?)=2¢D(e)=2D(e). Hence eD(e)=(1—e)D(e), where eD(e)=(1—e)D(e)
=0. Then De=eD(e)+ (1—e)D(e)=0.
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(IT) The case where p==0. We use the same notations as in (I).
#[¢] has a A-trivial iterative infinite higher derivation D = {D;}is0
with Dy(x)=1. D is locally nilpotent in £[#], i.e. for any element a
of A#], Di(@) =0 for all />0. D is extended uniquely to a A-trivial
iterative infinite higher derivation D = {D;}4s0 on £[#] and D is in
turn uniquely extended to a A-trivial iterative infinite higher derivation
D'={Di}iz0o on Ajp. Note that any iterative infinite higher der-
ivation kills idempotent elements. D’ is locally nilpotent.

We can assume £ is a quasi-Galois extension of 4 with Galois group
®&. An element y of & acts on D’ by 7Dj(a) =7"D;(7a) for ac A4;.
Then D' is @-invariant. Note that & acts on A=A ®#% via the
canonical G-action on 4. Hence the ring of @-invariantks in Ay is
A=A R % with £/ =(4)8. £’ is a purely inseparable algebraic
extensionkof k.

Let &' be an element of Ay. Then 7Dj(a")=7"Dy(7a’) =
"' Di(a")= Dj(a’) for all ye®. Namely Dj(a") is G-invariant.
Therefore Dj(Ay)S Ay for all :>0. Since D'={Dj}is0 is locally
nilpotent on Ays, D’ defines an action of Gy on Spec(Ays). Now
we apply Lemma 2 of [3]. Since A Y(Gq,x, Ak/)(&é:Hl(Ga,k, Azx)
=0, the action of G4, on Spec(Ay) is free and thekre exists a quotient
of Spec(Ar’) by G, Let b’ be the subring of Ay consisting of
elements killed by D’| 4. Then Spec(db’) is the quotient of Spec(Ay/)
by G and Apr=0'[Z].

Let b= A[tA. Then b is separable over 4. On the other hand,
b'=p®4" and v’ is separable over £. This means that if b is the
subrinkg of all separable elements in b’ over £, then by=b and b'=
bo(kg,é'. Since A is the set of all separable elements of 4/ over £[¢],

one has ppC 4. It is now easy to see that 4=by[7]. q.e.d.

The algebraic fundamental group of a torus is shown to be abelian
in the following

PROPOSITION 1. Let k be an algebraically closed field of characteristic
p, let T be a torus defined over k and let X be a connected Galois etale
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covering of T with group F. Then F is abelian, X is a torus and
after an appropriate change of parvameters in X and T, the base map

q: X—>T is a homomorphism of tori.

PrROOF. (I) The case where p=0. An induction argument on
the order # of # reduces the proof of Proposition 1 to prove the following :

(1) When F= Z|aZ with a prime number @, Proposition 1 is true.

(2) If F is a non-commutative simple group, F=(l).

Since #4 is algebraically closed, 7 is a split torus. Hence 7" has
a decomposition 7=Gm, X 7', where 7' is a torus with dim(7")=
dim(7)—1. Let K be the function field of 7’. Then XK=X;<I
Spec(X) is a connected Galois etale covering of Gm,x with group .
Let X be an algebraic closure of K and let & be the Galois group of
K over K. Invirtue of Lemma 1, (1), Xze=Gm,zll ... |l Gm,z. Let
X, be the first component and let & be the stabilizer group™ of X,
ie. @={ye®lyX, S X,}. Look at the following commutative

diagram,

o] o

Gm,K «— Gm,l?

After an appropriate change of parameters in X, and G,z below,
one can assume the restriction of the base map ¢ on X, is the multi-
plication by some positive integer /. Let X,= Spec(X[¢, #']) and
let G,z = Spec(K[#, t7}]). Furthermore, once obtained the above
splitting of X%, one can assume K is a finite normal extension of X.
Hence @ is a finite group. Then there exists a quotient scheme X,/®,
whose structure we shall give more explicitly.

®(resp. &) acts on Gm,z= Spec(K[¢!, +71]), trivially on #! and
via the canonical @-action on K. For any element y of &, 7¢1is of the
form at™ with e K and me Z. However 7(¢}) = ¢!  Hence

*) @& acts on X% via the canonical action of ® on X£.
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altm =gl whence m=1 and a is a /-th root of the unity. This im-
plies an existence of a multiplicative character ¢ : &,— {the /-th roots
of the unity} such that 7z2=¢(y)¢ for all y=@&,.

Let a7+ ... a1t 4ap+ait+ ... +ast® be any element of
K[t, t71] with a—y, ..., ao, ..., as= K. If this element is ®,-invariant,
we know from the &p-action given explicitly that each term should be
®g-invariant. Let a#’ be a @y-invariant element of K[¢, #!] with the
least positive degree with respect to #. Then the set of &y-invariants
in K[z, #7Y] is L[(atV), (a#")] with L=(K)® and it is the affine
algebra of X,/®,.

K[¢, 1] has rank /'Xcard(®/®,) as a finite Z[(as'), (at)]
algebra, while, on the other hand, it should be <card(®/®,) since
&, acts freely on Xg. This shows that //=1. Therefore X,/&y=
Spec(L[(at), (at)7']). After a parameter change #——at¢ in X, we
may assume Xo/®o=Spec(L[z, t]).

Let (e9)1<i<r be all idempotent elements in the affine algebra of
Xz which correspond to connected components of Xgz. & acts transi-
tively on (eg)i<i<r since Xg is connected. Let aje;+...4arey be a
&-invariant element in the affine algebra of Xz. If Te;=¢; for some

yE®, then 7a; = a;. Hence the above element is of the form

> 7(a)i(e)) with a=L[¢, +']. Conversely any element of this type
TEG/G0

is @-invariant. Let L'={ X (A)(e); A&L}tand let #'=_ X (7£)(Tey).
FE/ G0 FEG/ G0

Then L'[#,#™"] is K-isomorphic to L[z ¢7'] and Xz/@=Xx=

Spec(L'[#, #"]). The base map ¢ : Xx—> Gm,x= Spec(K[¢, ¢71]) is

given by #~——¢#' and a natural injection X <—>Z’. Hereafter ¢ is

a parameter of Gp,x below.

Now F acts on Xg as follows: there exists a multiplicative
character ¢ : F— {the /-th roots of the unity} such that f'=i(f)¢
for all f€ F. F acts on L' as K-automorphisms. With a similar
argument, one knows that L'*=K and that there exists an element
fo of F such that (fo) is a primitive /-th root of the unity. Namely

¢ is surjective.
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First of all, consider the second case. If F is non-commutative
and simple, / must be 1 since ¢ is surjective. Then Xy is isomorphic
to Spec(Z'[¢, £1]). Let Y be the closure in X of a L'-rational point
#'=t=1 of Xg. The affine algebra of V is the integral closure of
the affine algebra of 7’ in L. Then Y C X|¢=nyxr’ and in fact, ¥V
coincides with X|¢=nxzr’ since X|¢=1)x7 is connected. Then by
induction on dim(7"), F==(1).

Consider the first case. Let ¥ be the closure in X of a Z'-rational
point #=1 of Xx. Y is a connected component of X|=1)x7’ which
has just / connected components. Y is a connected Galois etale
covering of 7' with group Fo=Im(F— Gal(L'/K)). / might be l.
If so, Fo=F. If /541, /=a=the order of F. By induction on
dim(7"), Y is a torus and after an appropriate change of parameters,
the base map ¥V — (#=1)X 7'=7" is a homomorphism of tori.

If /=1, then X=GnirXY. Hence X is a torus. If Fo=(l),
then X ==Spec(4[#, #')X T ’l.c Again X is a torus. Finally assume
that /41 and Fo=2F. 6ne can assume that 7'=Spec(£[#, ¢71, ...,
tny t5']) and Y = Spec(£[ts, £57, t3, 23, ..., ta, t7']) with #,°=1# and
n=dim(7"). F=Z[aZ acts on ¢}, t3, ..., tn by Tt;3=4'()t3, Tts=1ts, ...,
Ttpn=ty for all f € F, where ¢’ is a multiplicative character of # onto
{/-th roots of the unity}. Now make the following change of pa-
rameters in Xgx=Spec(L'[#, #'']) with L'=4k(¢}, t3, ..., ta) : (¢, 23,
B3y oy tp) ~—> (' =2t 85, b5, .., ty) if p=4". Then ¢’ is F-
invariant, Xgx = Spec (L'[¢’, ¢'"]) and Gmpm,x = Spec (K[, ¢'']).
Thus this case is reduced to the case where /=1.

(IT) The case where p=~0. With the same notation as in (I), there
exist an integer » and a finite separable extension L of K?™ such that

Xt =GCGmxr” Q L. If T'=Spec(k[t, t3%, ..., tn, t7']), let T'@7)

KB
= Spec(&[t27, 327, ..., 57", t3%7]). Then K?7 is the function field
of 7'@™,
If Fis a non-commutative simple group, /=1 and F acts regularly

on L, hence on the integral closure of £[¢37, t327, ..., t57, tz? 7] in
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L whose spectrum is X X 7'®7)|@_y)xz7»-r.  Induction on dim(7")
shows that F==(1).

Consider the case where F=Z/aZ with a prime number a. If
/=1, we finish the proof by the same argument as above. If F}=
Im(F—Gal(L/KP?™)) is not trivial, one can assume that L ==4((z?7")e™",
87, B =k, ts, ..., 1)) after an appropriate change of
parametersin 7. Since the function field of X4 is the set of all separable
elements in the function field of Xx»" over K(#) and since #, z} 7,
#3, ..., ty are all separable over K(#), the function field of Xx is A(#,
tY"' #s, ..., ty), in which the integral closure of K[¢, 1] is £[¢, #™]Q
K(#5"). Then Xx=Spec(f[t,# 1@ K(¢5™). This case is reduce]i‘l
to the case /=1. If Fy=(0), the ;ﬁ"oof is a little modification of the
case where Fy=~0. q.e.d.

As stated in Introduction, we shall prove

LEMMA 3. Let £ be an algebraically closed field of characteristic
p. If pF0, we assume the order of F is prime to p. Let X be a con-
nected Galois etale covering of G with group F. Then the restriction

of X on a maximal torus T is connected too.

PrOOF¥. Assuming the contrary, we shall derive a contradiction.
Assume the restriction X7 is not connected. Take the root system
R, a positive (resp. negative) root system R4 (resp. R-) and the gross

cell 2z, = || PrXT X [| Pr as indicated in Introduction. Write
reRr_ rER,
Q. X U simply in the form 2z, =7 X A'X ... X A'. Let V=

S~ _ —
2 card(R+)+dim(U)

Tx A' X ... X A" be a sub-product of Qg X U, i.e. »<{2 card(Ry)

r
+dim(U). Assuming that X is not connected, we shall show that
X+ with V"=V X A' is not connected either.
Let K be the function field of V" and let X'=X|,,x Ak. Then
o

X' is a Galois etale covering of AL with group /. Due to Lemma 2,

there exists a finite etale K-algebra R such that X' = A!'X Spec(R)
o
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and that the action of % on X' comes from an action of / on R. Let
B be the integral closure of the affine algebra of 7 in R.  Then
Spec(B)=X|p and XIV/=A}C;<XV‘ Since X|, is not connected,
X|pr is not connected either. Therefore by induction on 2 card(R+y)
+dim(U), X|gg xv is not connected. Then X is not connected.

This is a contradiction. q.e.d.

Thus we have finished the proof of Theorem 1.

2. The proof of Theorems 2 and 3. Our next aim is to give a
complete determination of the algebraic fundamental group mi(G) (or
m1,+p(G)) of a connected algebraic linear group G.  We need the follow-
ing Lemma 4 in order to prove Theorem 2.

LEMMA 4. Let % be an algebraically closed field of characteristic
D, let G be a conmected algebraic linear group defined over k, let G(k)
be the group of k-rational points of G and let F be a finite abelian group.
One assumes the order of F is prime to p if p5%0. Denote by Ext!
(G(k), F) the ordinary extension group of G(&) (considered as an abstract
group) by F.  Then we have injective homomorphisms of abelian groups,

0
Ext(G, F) C— HI(G, F) ©— Exti(G(k), F).

PROOF. 8 is a canonical homomorphism which regards an ex-
tension as an etale covering. Its injectivity is easy to see. p is a
homomorphism defined as follows: First of all, HY(G, F) is a finite
abelian group in virtue of Lemma 6 in [4]. The group of A-rational
points G(%) acts on H!(G, F) in the following way; for g=G(%) and for
a class [X] of HY(G, F), 9[ X ] is the class obtained from a base change
7g: G—G, 74 being the right translation by g. This action of G(4)
on HYG, F) is algebraic and therefore trivial since G(#) is connected
(with its 4-Zariski topology) and H!(G, F) is a finite set. Let o4 be

a morphism defined from a commutative diagram,
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FXxXX 53 X — G
k

Tlp)(a,, Tag Trg

FxX S X — G
k

Then for any g, g’ € G(£), ag9r05} 05! € Aut£(X); the group of auto-
morphisms of the Galois etale covering X. Autf(X) is indeed isomor-
phic to 7 (cf. [4]). Let 7(g, g')=0gg’03)0g!. Then we have

(g, 8’8 Nogr(g', g Vog") =1(gg’, 8" )7(g, &)

where og7(g’, g'Vogl=1(g’, ¢'"), for the action of G(£) on F defined
by 9f = o4 fog! is trivial since this action is algebraic and G(£) is con-
nected. Thus 7(g,g") defines a 2-cocycle Z*(G(£), F). Hence it
defines an element p([X]) of Ext!(G(4), /). The homomorphism p is
an application which assigns p([X]) to [X].

Suppose p([X]) be trivial. Then there exists an application u:
G(k)— F such that (g, &)= u(gg u(g)"u(g). Let oy = u(g) oy
Then opy=o0goy:, for g, g'€G(k). The same argument with £
replaced by a universal domain £2 over £ shows that oj defines an
algebraic action of G on X. Take any A-rational point x of X. The
orbit Gx of x defines a section from G to X. Therefore X is split.
Thus p is injective. q.e.d.

We can now prove

THEOREM 2. Let k be an algebraically closed field of characteristic
P, let G be a connected algebraic linear group defined over kb and let
F be a finite abelian group. If p==0, assume the order of F is prime
to p. Then we have,
Homgr<ﬂ'1(6), F) Z_f p=0.
ExtV(G, F)=HYG, F)=
Homgr(71,+ p(G), F) Zf ]5#0.
PROOF. Let ¢ be the unit element of G and let /, and 7, be
morphisms defined by
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le: g€GC ~— (exXg)eGXG

re: g€6G ——> (gXe)EGXG.

Then we have an isomorphism,

Exti(G(A) X G(&), F) X285 Ext!(G(k), F)x Ext(G(A), F).

Moreover we have a commutative diagram,

HYGXG, F) -7,  HY(G, F)xH\G, F)

[ [

Ext!(G(8) X G(&), F) —EX7E Ext\(G(k), F)x Ext\(G(%), F).

/

363

Therefore HY{GXG, F) SIEXTE HY(G, F) x HYG, F) is injective.

Since /¥ X7»§ is surjective, /§ X#»% is an isomorphism. Namely two

Galois etale coverings of G X G with group # are isomorphic to each

other if and only if they are so on (¢)XG and G X (e).

Let » (resp. p) be the multiplication of G (resp. /). Given a

Galois etale covering X of G with group #, we have two Galois etale
coverings m*(X) and px(XXX) of GXG with group /. They are

easily shown to be isomorphic on (¢) X G and G X (¢). Hence they are

isomorphic to each other on GXG. Thus we have a morphism y:

XXX = pe(XXX) S m*(X) —> X which commutes a diagram,

FxX - X — G

I I i

Fxm*(X) =3  m*X) -— GXG
! ! H
FXpp(XXX) = ps(XXX) — GXG

Jixe o N

(FXE)X(AXX) 3 XxX — GXG.
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Let x¢ be an element of X over the unit element ¢ of G. We can assume
v satisfies v(xoX x9) = xp. Then v is associative, i.e. vX1y=1xXv
and u(x, xg) =v(xo, x) =« for all point x of X. Under these condi-
tions, X is an algebraic group with the multiplication v and with the
unit element xo. The base map ¢: X — G is a homomorphism of
algebraic groups. Thus the homomorphism 6 of Lemma 4 is surjective.

The second isomorphism in Theorem 2 is almost trivial from the
definition of 7(G) and w4 5(G). q.e.d.

REMARK 2. (Due to M. Maruyama) If the order of F is a power
of the characteristic p, Theorem 2 ceases to be valid. Let p=2
and let £ be an ellip'tic curve of Hasse invariant 0. Consider £ as
an abelian variety of dimension 1, taking a point ¢ as the point of unity.
Then E has no 2-division point. Consider an automorphism of £;
a —— —a. Let X be the quotient variety of £ by this action of Z/2Z.
Then X-(the image of ¢) is the affine line A! and E-(¢) is a Galois etale
covering of A! with group Z/2Z. However, since the function field
of an algebraic linear group should be rational, £-{¢) is never isomorphic
to an algebraic linear group. Thus Ext!(4', Z2Z)§ H'(A4!, Z|2Z).

Due to Theorem 2, we can give a complete determination of m(G)

(or m,4p(G)). This is shown in

THEOREM 3. Let £ be an algebraically closed field of charac-
teristic p and let G be a conmected algebraic linear group defined
over k. Let r be the dimension of the torus part of the radical
of G and let G be the associated semi-simple group of G. Then
(G (or map(G) if pFA0)=(Z) XExt'(G, Gm) (or (Z]|Zp)" x Ext!
(G, Gm) if p£0), where Z is the profinite completion of Z and Zp
is the p-adic completion of Z.

PrROOF. Let U be the unipotent radical of G, let 7'=rad(G)/U,
let P=G/U and let G=G/rad(G)=P|7T. Let G be a simply con-
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nected semi-simple algebraic linear group over G which is an isogeny
with kernel Fj.

Let 0> F— G'—:G—»O be an extension of & by a finite
abelian group 7, where the order of £ is prime to p if p=0. One can
assume G’ is connected. Let U’ be the unipotent radical of G’
Then the restriction of = on U’ is an isomorphism, since Ker(m|y)
=U'NF=(0). Hence 7 induces an isogeny # from the associated
reductive group P'=G'|U’ of G’ to P with Ker #=/F. This implies
m(G) (or m,1p(G) if p5=0) is isomorphic to m(P) (or m +p(P) if
75=0). Thus one can assume G is reductive.

Let G'=GXG and look at a commutative diagram,
¢

7 — G —

I

7 — G —

I

Fo —

Ny — Qu— Q)

0 -

Consider the derived group der(G'0) of the neutral component G'® of
G’ which is a simi-simple algebraic group and which is normal in G’
The projection G'— G restricted on der(G~’°) is a separable isogeny,
hence it is an isomorphism since G is simply connected. Thus G'=
7TxG. G has no connected Galois etale covering (cf. [4]). Therefore
a Galois etale covering of G’ comes from a Galois etale covering of 7.

This implies an exact sequence
0 — 71(7) — m(G) — Fo — 0

where one replaces m(7) and 7(G) by m145(7) and 1,4 9(G) if p
0. In virtue of Proposition 1, m(T)zZ" (or w1,+p(T)§(Z/Zp)T
if p=£0).

The above sequence of fundamental groups is split exact. In
fact, let 7’ be a maximal torus of G such that 72> 7. Then 7"=7"|T

is a maximal torus of G and 7'=7x 7. Then the argument which
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proved that m(7)—m(G) is surjective applies to the present situation

in order to obtain the following exact commutative diagram,

0

K

0 — m(7) = m(T) — m(T") — 0
o |

0 — my(7) ? m(G) — m(G)=Fy — 0

! !

0 0

where K is the kernel of the surjection 7 (7"")— Fy, 7 and ; are the
canonical injections and where m;( ) should be replaced by my,1p( )
if p=£0. Since m(7)=22 (or my 4 p(T)=(Z|Zp)? if p=£0) for any
torus group 7 with d=dim 7, there exists a homomorphism ¢&": mi(7"")
—m(T) such that ¢+ = 1) and Ker ¢DK. Therefore ¢
gives rise to a homomorphism ¢: m1(G) — m1(7") such that &i=1, (7).
Therefore we get m(G)=m(T)X Fo (or m1p(C)=m1,1o(T) X Fp
if p5~0), where Fo=Ext{(G, Gum) (cf. [4]). q.e.d.

As a corollary of Theorem 2, we can prove

PROPOSITION 2. Let k be an algebraically closed field of charac-
teristic p and let G be a connected algebraic linear group defined over

k. Then we have isomorphisms,
ExtY(G, Gm)=HYG, Gn)=Pic(G).

When p=£0, the above isomorphisms are still valid except on the p-th

components.

PROOF. For a positive integer 7, consider an exact sequence,
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0 — ZinZ — Gm =5 Gm — 0.

From this, we have an exact commutative diagram,

0 — Cn(G) — HYG, Z|nZ) — 2Pic(G) — 0

! ] I

0 — Homg(G, Gm)n — ExtY G, Z|nZ) — RExt}(G, Gm) — 0

(See [4] for the notation.) Cyu(G) is actually isomorphic to Homgr(G,
Gm)n for any invertible regular function on a connected algebraic
group G is a rational character of G up to a non-zero constant. (See,
for example, H. Sumihiro, J. Math. Kyoto Univ.,, 11 (1971), p.
542.) The assertion of Proposition 2 follows immediately from this

diagram. g.e.d.

MATHEMATICS DEPARTMENT
KyoTo UNIVERSITY

Added in Proof: The proof of Theorem 3 is incomplete.
Theorem should be read as follows: Let 7" be the torus part of the

radical of G. Then we get an exact sequence
0 — m(7) — m(G) — Ext(G, Gm) — 0

where m( ) is replaced by m,1p( ) if p=0 and where 771(.7")52’
(or m,sp(T)=(Z| Zp)").
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